ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nanoglass/analysis.tex
Revision: 3226
Committed: Wed Sep 19 16:53:58 2007 UTC (17 years, 7 months ago) by chuckv
Content type: application/x-tex
File size: 3120 byte(s)
Log Message:
More writing.

File Contents

# Content
1 %!TEX root = /Users/charles/Desktop/nanoglass/nanoglass.tex
2
3 \section{Analysis}
4
5
6
7 One method of analysis that has been used extensively for determining local and extended orientational symmetry of a central atom with its surrounding neighbors is that of bond-orientational analysis as formulated by Steinhart et.al.\cite{Steinhardt:1983mo}
8 In this model, a set of spherical harmonics is associated with its near neighbors as defined by the first minimum in the radial distribution function forming an association that Steinhart et.al termed a "bond". More formally, this set of numbers is defined as
9 \begin{equation}
10 Y_{lm}\left(\vec{r}_{ij}\right)=Y_{lm}\left(\theta(\vec{r}_{ij}),\phi(\vec{r}_{ij})\right)
11 \label{eq:spharm}
12 \end{equation}
13 where, $\{ Y_{lm}(\theta,\phi)\}$ are spherical harmonic functions, and $\theta(\vec{r})$ and $\phi(\vec{r})$ are the polar angles made by the bond with respect to a reference coordinate system. We chose for simplicity the origin as defined by the coordinates for our nanoparticle. The local environment surrounding any given atom in a system can be defined by the average over all bonds, $N_b(i)$, surrounding that central atom
14 \begin{equation}
15 \bar{q}_{lm}(i) = \frac{1}{N_{b}(i)}\sum_{j=1}^{N_b(i)} Y_{lm}(\vec{r}_{ij}).
16 \label{eq:local_avg_bo}
17 \end{equation}
18 We can further define a global average orientational-bond order over all $\bar{q}_{lm}$ by calculating the average of $\bar{q}_{lm}(i)$ over all $N$ particles
19 \begin{equation}
20 \bar{Q}_{lm} = \frac{\sum^{N}_{i=1}N_{b}(i)\bar{q}_{lm}(i)}{\sum^{N}_{i=1}N_{b}(i)}
21 \label{eq:sys_avg_bo}
22 \end{equation}
23 The $\bar{Q}_{lm}$ contained in Equation(\ref{eq:sys_avg_bo}) is not necessarily invariant with respect to rotation to the reference coordinate system. This can be addressed by constructing the following rotationally invariant combinations $Q_l$ and $W_l$ as the second and third order invariant combinations of $\bar{Q}_{lm}$.
24 \begin{equation}
25 Q_{l} = \left( \frac{4\pi}{2 l+1} \sum^{l}_{m=-l} \left| \bar{Q}_{lm} \right|^2\right)^{1/2}
26 \label{eq:sec_ord_inv}
27 \end{equation}
28 and
29 \begin{equation}
30 \hat{W}_{l} = \frac{W_{l}}{\left( \sum^{l}_{m=-l} \left| \bar{Q}_{lm} \right|^2\right)^{3/2}}
31 \label{eq:third_ord_inv}
32 \end{equation}
33 \begin{equation}
34 W_{l} = \sum_{\substack{m_1,m_2,m_3 \\m_1 + m_2 + m_3 = 0}} \left( \begin{array}{ccc} l & l & l \\ m_1 & m_2 & m_3 \end{array}\right) \\ \times \bar{Q}_{lm_1}\bar{Q}_{lm_2}\bar{Q}_{lm_3}
35 \label{eq:third_inv}
36 \end{equation}
37 where the term in parentheses is Wigner-3$j$ symbol.
38
39 \begin{table}
40 \caption{Calculated values of bond orientational order parameters for simple structures cooresponding to $l=4$ and $l=6$ spherical harmonic functions.\cite{wolde:9932}}
41 \begin{center}
42 \begin{tabular}{ccccc}
43 \hline
44 \hline
45 & $Q_4$ & $Q_6$ & $\hat{W}_4$ & $\hat{W}_6$\\
46
47 fcc & 0.191 & 0.575 & -0.159 & -0.013\\
48
49 hcp & 0.097 & 0.485 & 0.134 & -0.012\\
50
51 bcc & 0.036 & 0.511 & 0.159 & 0.013\\
52
53 sc & 0.764 & 0.354 & 0.159 & 0.013\\
54
55 Icosahedral & 0 & 0.663 & 0 & -0.170\\
56
57 (liquid) & 0 & 0 & 0 & 0\\
58 \hline
59 \end{tabular}
60 \end{center}
61 \label{table:bopval}
62 \end{table}
63