ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nanoglass/nano.bib
(Generate patch)

Comparing trunk/nanoglass/nano.bib (file contents):
Revision 3214 by chuckv, Thu Sep 6 14:07:55 2007 UTC vs.
Revision 3253 by chuckv, Wed Oct 10 00:26:04 2007 UTC

# Line 1 | Line 1
1  
2 < %% Created for Charles F. Vardeman II at 2007-07-28 09:35:59 -0400
2 > %% Created for Charles Vardeman at 2007-10-09 20:25:59 -0400
3  
4  
5   %% Saved with string encoding Western (ASCII)
6  
7  
8  
9 + @book{Massalski:1986rt,
10 +        Address = {Metals Park, Ohio },
11 +        Annote = {LDR    01406cam  2200349 a 4500
12 + 001    3824145
13 + 005    20041216124017.0
14 + 008    860703s1986    ohua     b    001 0 eng  
15 + 035    $9(DLC)   86017350
16 + 906    $a7$bcbc$corignew$d1$eocip$f19$gy-gencatlg
17 + 010    $a   86017350
18 + 020    $a0871702614 (set) :$c$499.50
19 + 020    $a0871702622 (v. 1)
20 + 020    $a0871702630 (v. 2)
21 + 040    $aDLC$cDLC$dDLC
22 + 050 00 $aTN690$b.B528 1986
23 + 082 00 $a669/.94$219
24 + 245 00 $aBinary alloy phase diagrams /$ceditor-in-chief, Thaddeus B. Massalski ; editors, Joanne L. Murray, Lawrence H. Bennett, Hugh Baker.
25 + 260    $aMetals Park, Ohio :$bAmerican Society for Metals,$cc1986.
26 + 300    $a2 v. (xiii, 2224 p.) :$bill. ;$c29 cm.
27 + 500    $a"Alloy phase diagram master grid" in pocket.
28 + 504    $aBibliography: v. 1, p. xiii.
29 + 500    $aIncludes indexes.
30 + 650  0 $aAlloys.
31 + 650  0 $aPhase diagrams.
32 + 650  0 $aBinary systems (Metallurgy)
33 + 700 1  $aMassalski, T. B.
34 + 700 1  $aMurray, Joanne L.
35 + 700 1  $aBennett, L. H.$q(Lawrence Herman),$d1930-
36 + 700 1  $aBaker, Hugh.
37 + 952    $aLC's copy ("First printing, October 1986") has "American Society for Metals" on t.p., t.p. verso, and throughout text; "Metals Park, Ohio 44073" appears on t.p. ta01 12-16-2004
38 + 991    $bc-GenColl$hTN690$i.B528 1986$p00029709671$tCopy 1$v2: Fe-Ru - Zn-Zr$wBOOKS
39 + },
40 +        Author = {Massalski, T. B and Murray, Joanne L and Bennett, L. H and Baker, Hugh},
41 +        Call-Number = {TN690},
42 +        Date-Added = {2007-10-09 19:12:42 -0400},
43 +        Date-Modified = {2007-10-09 19:13:18 -0400},
44 +        Dewey-Call-Number = {669/.94},
45 +        Genre = {Alloys},
46 +        Isbn = {0871702614 (set) },
47 +        Library-Id = {86017350},
48 +        Publisher = {American Society for Metals},
49 +        Title = {Binary alloy phase diagrams },
50 +        Year = {1986}}
51 +
52 + @article{Ojovan:2006vn,
53 +        Abstract = {The thermodynamic approach to the viscosity and fragility of amorphous oxides was used to determine the topological characteristics of the disordered network-forming systems. Instead of the disordered system of atoms we considered the congruent disordered system of interconnecting bonds. The Gibbs free energy of network-breaking defects (configurons) was found based on available viscosity data. Amorphous silica and germania were used as reference disordered systems for which we found an excellent agreement of calculated and measured glass transition temperatures. We reveal that the Hausdorff dimension of the system of bonds changes from Euclidian three-dimensional below to fractal 2.55 +/- 0.05-dimensional geometry above the glass transition temperature.},
54 +        Author = {Ojovan, Michael I. and Lee, William E.},
55 +        Date-Added = {2007-10-09 18:40:55 -0400},
56 +        Date-Modified = {2007-10-09 18:44:16 -0400},
57 +        Doi = {DOI 10.1088/0953-8984/18/50/007},
58 +        Journal = {Journal of Physics-Condensed Matter},
59 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/cm6_50_007.pdf},
60 +        Pages = {11507-11520},
61 +        Title = {Topologically disordered systems at the glass transition},
62 +        Volume = {18},
63 +        Year = {2006}}
64 +
65 + @article{Jiang:1999yq,
66 +        Abstract = {A simple and unified model, free of any adjustable parameters, is developed for the finite size effect on glass transition temperatures of polymers and organic particles. As the thickness of polymer thin films and the radius of organic particles decrease, their glass transition temperatures decrease. For polymers, this decrease is independent of their molecular weight, but dependent on the correlation length for intermolecular cooperative rearrangement and the presence of substrates. The model predictions are consistent with available experimental results on size dependence of the glass transition temperatures for free-standing polystyrene thin films, polystyrene films supported on passivated substrates and o-terphenyl and benzyl alcohol nanoparticles. (C) 1999 Elsevier Science S.A. All rights reserved.},
67 +        Author = {Jiang, Q and Shi, HX and Li, JC},
68 +        Date-Added = {2007-10-09 18:33:30 -0400},
69 +        Date-Modified = {2007-10-09 18:33:32 -0400},
70 +        Journal = {Thin Solid Films},
71 +        Keywords = {glass; polymers; surface and interface states; surface thermodynamics},
72 +        Pages = {283-286},
73 +        Title = {Finite size effect on glass transition temperatures},
74 +        Volume = {354},
75 +        Year = {1999}}
76 +
77 + @misc{Alcoutlabi:2005kx,
78 +        Abstract = {In this article, the effects of size and confinement at the nanometre size scale on both the melting temperature, T-m, and the glass transition temperature, T-g, are reviewed. Although there is an accepted thermodynamic model (the Gibbs-Thomson equation) for explaining the shift in the first-order transition, T-m, for confined materials, the depression of the melting point is still not fully understood and clearly requires further investigation. However, the main thrust of the work is a review of the field of confinement and size effects on the glass transition temperature. We present in detail the dynamic, thermodynamic and pseudo-thermodynamic measurements reported for the glass transition in confined geometries for both small molecules confined in nanopores and for ultrathin polymer films. We survey the observations that show that the glass transition temperature decreases, increases, remains the same or even disappears depending upon details of the experimental (or molecular simulation) conditions. Indeed, different behaviours have been observed for the same material depending on the experimental methods used. It seems that the existing theories of T-g are unable to explain the range of behaviours seen at the nanometre size scale, in part because the glass transition phenomenon itself is not fully understood. Importantly, here we conclude that the vast majority of the experiments have been carried out carefully and the results are reproducible. What is currently lacking appears to be an overall view, which accounts for the range of observations. The field seems to be experimentally and empirically driven rather than responding to major theoretical developments.},
79 +        Author = {Alcoutlabi, M and McKenna, GB},
80 +        Date-Added = {2007-10-09 18:31:39 -0400},
81 +        Date-Modified = {2007-10-09 18:49:43 -0400},
82 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/cm5_15_R01.pdf},
83 +        Note = {Journal of Physics-Condensed Matter},
84 +        Pages = {R461-R524},
85 +        Title = {Effects of confinement on material behaviour at the nanometre size scale},
86 +        Volume = {17},
87 +        Year = {2005}}
88 +
89 + @article{HUNT:1994fj,
90 +        Abstract = {An expression for the activation energy of the viscosity in the percolative transport regime demonstrates its proportionality to the peak in a distribution of barrier heights as well as to the width of the distribution. Such an expression implies that a ''blocking'' (slower than average) rate is responsible for the macroscopic relaxation time. This concept has recently been shown to account for a large number off phenomena related to the glass transition. Here it is shown that the average of a glass transition temperature over a large number of very small systems must correspond to an average barrier height; consequently the average glass temperature is reduced by confinement in pores because the average barrier height is smaller than the ''blocking'' barrier.},
91 +        Author = {HUNT, A},
92 +        Date-Added = {2007-10-09 18:30:13 -0400},
93 +        Date-Modified = {2007-10-09 18:30:27 -0400},
94 +        Journal = {Solid State Communications},
95 +        Pages = {527-532},
96 +        Title = {FINITE-SIZE EFFECTS ON THE GLASS-TRANSITION TEMPERATURE},
97 +        Volume = {90},
98 +        Year = {1994}}
99 +
100 + @misc{HUNT:1992uq,
101 +        Abstract = {The relationship of the glass transition temperature T(g) to transport properties has been established. Simple arguments relating transport to distributions of barrier heights, barrier heights to random potential reliefs, and typical potential fluctuations to crystalline potentials allows the establishment of a relationship between T(g) and the melting temperature, T(m), by application of the Lindemann criterion for melting.},
102 +        Author = {HUNT, A},
103 +        Date-Added = {2007-10-09 18:19:48 -0400},
104 +        Date-Modified = {2007-10-09 18:20:00 -0400},
105 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/cm923201.pdf},
106 +        Note = {Journal of Physics-Condensed Matter},
107 +        Pages = {L429-L431},
108 +        Title = {A SIMPLE CONNECTION BETWEEN THE MELTING TEMPERATURE AND THE GLASS TEMPERATURE IN A KINETIC-THEORY OF THE GLASS-TRANSITION},
109 +        Volume = {4},
110 +        Year = {1992}}
111 +
112 + @article{Wang:2003fk,
113 +        Abstract = {The Debye temperature and glass transition temperature of a variety of bulk metallic glasses (BMGs) were determined by acoustic measurement and differential scanning calorimetry, respectively. The relationship between the Debye temperature and glass transition temperature of these BMGs was analyzed, and their observed correlation was interpreted in terms of the characteristics of the glass transition in BMGs.},
114 +        Author = {Wang, WH and Wen, P and Zhao, DQ and Pan, MX and Wang, RJ},
115 +        Date-Added = {2007-10-09 18:12:41 -0400},
116 +        Date-Modified = {2007-10-09 18:15:53 -0400},
117 +        Journal = {Journal of Materials Research},
118 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/494770.pdf},
119 +        Pages = {2747-2751},
120 +        Title = {Relationship between glass transition temperature and Debye temperature in bulk metallic glasses},
121 +        Volume = {18},
122 +        Year = {2003}}
123 +
124 + @book{Mazurin:1993lr,
125 +        Address = {Amsterdam },
126 +        Annote = {LDR    01412cam  2200253 a 4500
127 + 001    4714430
128 + 005    19931007093932.9
129 + 008    830610m19831993ne a     b    001 0 eng  
130 + 035    $9(DLC)   83011642
131 + 906    $a7$bcbc$corignew$d1$eocip$f19$gy-gencatlg
132 + 010    $a   83011642
133 + 020    $a0444416897 (U.S. : set) :$cfl 350.00
134 + 040    $aDLC$cDLC$dDLC$dOCoLC$dDLC
135 + 050 00 $aTP848$b.H36 1983
136 + 082 00 $a620.1/44/0212$219
137 + 245 00 $aHandbook of glass data.
138 + 260    $aAmsterdam ;$aNew York :$bElsevier ;$aNew York, N.Y. :$bDistributors for the U.S. and Canada, Elsevier Science Pub. Co.,$c1983-1993.
139 + 300    $a5 v. :$bill. ;$c26 cm.
140 + 440  0 $aPhysical sciences data ;$v15
141 + 504    $aIncludes bibliographies and indexes.
142 + 505 1  $apt. A. Silica glass and binary silicate glasses / O.V. Mazurin, M.V. Streltsina, and T.P. Shvaiko-Shvaikovskaya -- pt. B. Single-component and binary non-silicate oxide glasses / O.V. Mazurin, M.V. Streltsina, and T.P. Shvaiko-Shvaikovskaya -- pt. C. Ternary silicate glasses / O.V. Mazurin, M.V. Streltsina, and T.P. Shvaiko-Shvaikovskaya -- pt. D. Ternary non-silicate glasses / O.V. Mazurin ... [et al.] -- pt. E. Single-component, binary, and ternary oxide glasses / O.V. Mazurin, M.V. Streltsina, and T.P. Shvaiko-Shvaikovskaysa.
143 + 650  0 $aGlass.
144 + 700 1  $aMazurin, Oleg Vsevolodovich.
145 + 991    $bc-GenColl$hTP848$i.H36 1983$tCopy 1$wBOOKS
146 + },
147 +        Author = {Mazurin, Oleg Vsevolodovich},
148 +        Call-Number = {TP848},
149 +        Date-Added = {2007-10-09 18:02:00 -0400},
150 +        Date-Modified = {2007-10-09 18:02:10 -0400},
151 +        Dewey-Call-Number = {620.1/44/0212},
152 +        Genre = {Glass},
153 +        Isbn = {0444416897 (U.S. : set) },
154 +        Library-Id = {83011642},
155 +        Publisher = {Elsevier },
156 +        Title = {Handbook of glass data},
157 +        Volume = {15},
158 +        Year = {1993}}
159 +
160 + @article{Plech:2003yq,
161 +        Abstract = {The lattice expansion and relaxation of noble-metal nanoparticles heated by intense femtosecond laser pulses are measured by pump-probe time-resolved X-ray scattering. Following the laser pulse, shape and angular shift of the (111) Bragg reflection from crystalline silver and gold particles with diameters from 20 to 100 nm are resolved stroboscopically using 100 ps X-ray pulses from a synchrotron. We observe a transient lattice expansion that corresponds to a laser-induced temperature rise of up to 200 K, and a subsequent lattice relaxation. The relaxation occurs within several hundred picoseconds for embedded silver particles, and several nanoseconds for supported free gold particles. The relaxation time shows a strong dependence on particle size. The relaxation rate appears to be limited by the thermal coupling of the particles to the matrix and substrate, respectively, rather than by bulk thermal diffusion. Furthermore, X-ray diffraction can resolve the internal strain state of the nanoparticles to separate non-thermal from thermal motion of the lattice.},
162 +        Author = {Plech, A and Kurbitz, S and Berg, KJ and Graener, H and Berg, G and Gresillon, S and Kaempfe, M and Feldmann, J and Wulff, M and von Plessen, G},
163 +        Date-Added = {2007-10-09 17:37:01 -0400},
164 +        Date-Modified = {2007-10-09 17:37:01 -0400},
165 +        Journal = {Europhysics Letters},
166 +        Pages = {762-768},
167 +        Title = {Time-resolved X-ray diffraction on laser-excited metal nanoparticles},
168 +        Volume = {61},
169 +        Year = {2003}}
170 +
171 + @article{Plech:2004vn,
172 +        Abstract = {Gold nanoparticles have been adsorbed as monolayers on silicon and glass substrates and the structure evolution following femtosecond laser excitation has been analyzed by means of time resolved X-ray scattering. The synchronization of the laser to the X-ray pulse structure emitted from a third generation synchrotron source allows to obtain a natural time resolution of 100 ps for the lattice kinetics. The prospects of using a picosecond X-ray streak camera are explored. The lattice kinetics are dominated by the fast heating of the particle lattice and nanosecond cooling times. However, the analysis of peak shapes reveals the presence of nonthermal motion within the lattice. Unexpectedly large relaxation times for the thermalization of vibrational modes are found and are attributed to the weak mechanical coupling to the substrate. Strong nonuniform strain develops within the domain of electron-phonon interaction time regime after the laser excitation as seen with the X-ray streak camera. (C) 2003 Elsevier B.V. All rights reserved.},
173 +        Author = {Plech, A and Gresillon, S and von Plessen, G and Scheidt, K and Naylor, G},
174 +        Date-Added = {2007-10-09 17:37:01 -0400},
175 +        Date-Modified = {2007-10-09 17:37:01 -0400},
176 +        Doi = {DOI 10.1016/j.chemphys.2003.10.041},
177 +        Journal = {Chemical Physics},
178 +        Keywords = {nanoparticles; picosecond time resolution; structure; femtosecond laser excitation; thermal kinetics},
179 +        Pages = {183-191},
180 +        Title = {Structural kinetics of laser-excited metal nanoparticles supported on a surface},
181 +        Volume = {299},
182 +        Year = {2004}}
183 +
184 + @article{Plech:2007rt,
185 +        Abstract = {A thermal phase transition has been resolved in gold nanoparticles supported on a surface. By use of asynchronous optical sampling with coupled femtosecond oscillators, the Lamb vibrational modes could be resolved as a function of annealing temperature. At a temperature of 104 degrees C the damping rate and phase changes abruptly, indicating a structural transition in the particle, which is explained as the onset of surface melting.},
186 +        Author = {Plech, Anton and Cerna, Roland and Kotaidis, Vassilios and Hudert, Florian and Bartels, Albrecht and Dekorsy, Thomas},
187 +        Date-Added = {2007-10-09 17:37:01 -0400},
188 +        Date-Modified = {2007-10-09 17:40:03 -0400},
189 +        Doi = {DOI 10.1021/nl070187t},
190 +        Journal = {Nano Letters},
191 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/nl070187t.pdf},
192 +        Pages = {1026-1031},
193 +        Title = {A surface phase transition of supported gold nanoparticles},
194 +        Volume = {7},
195 +        Year = {2007}}
196 +
197 + @article{Plech:2005kx,
198 +        Abstract = {The transient structural response of laser excited gold nanoparticle sols has been recorded by pulsed X-ray scattering. Time resolved wide angle and small angle scattering (SAXS) record the changes in structure both of the nanoparticles and the water environment subsequent to femtosecond laser excitation. Within the first nanosecond after the excitation of the nanoparticles, the water phase shows a signature of compression, induced by a heat-induced evaporation of the water shell close to the heated nanoparticles. The particles themselves undergo a melting transition and are fragmented to Form new clusters in the nanometer range. (C) 2004 Elsevier B.V. All rights reserved.},
199 +        Author = {Plech, A and Kotaidis, V and Lorenc, M and Wulff, M},
200 +        Date-Added = {2007-10-09 17:32:46 -0400},
201 +        Date-Modified = {2007-10-09 17:34:08 -0400},
202 +        Doi = {DOI 10.1016/j.cplett.2004.11.072},
203 +        Journal = {Chemical Physics Letters},
204 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/sdarticle3.pdf},
205 +        Pages = {565-569},
206 +        Title = {Thermal dynamics in laser excited metal nanoparticles},
207 +        Volume = {401},
208 +        Year = {2005}}
209 +
210 + @misc{Hartland:2006fj,
211 +        Abstract = {Excitation of metal nanoparticles with subpicosecond laser pulses causes a rapid increase in the lattice temperature. which can impulsively excite the phonon modes of the particle that correlate with the expansion coordinates. The vibrational periods depend on the size. shape, and elastic constants of the particles. Thus, time-resolved spectroscopy can be used to examine the material properties of nanometer-sized objects. This review provides a brief overview of the steady-state and time-resolved electronic spectroscopy of metal particles, which is important for understanding why vibrational motion appears in transient absorption traces. I also describe how the vibrational modes observed in the experiments are assigned. and what information can be obtained from the measurements. Our work has been mainly concerned with noble metal particles (gold and silver) in aqueous solution. The different shapes that have been examined to date include spheres, rods, and triangles, all with different sizes.},
212 +        Author = {Hartland, GV},
213 +        Date-Added = {2007-10-09 17:21:42 -0400},
214 +        Date-Modified = {2007-10-09 17:24:13 -0400},
215 +        Doi = {DOI 10.1146/annurev.physchem.57.032905.104533},
216 +        Keywords = {metals; nanorods; phonon modes; time-resolved spectroscopy; elastic moduli; laser-induced heating},
217 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/annurev.physchem.57.032905.104533.pdf},
218 +        Note = {Annual Review of Physical Chemistry},
219 +        Pages = {403-430},
220 +        Title = {Coherent excitation of vibrational modes in metallic nanoparticles},
221 +        Volume = {57},
222 +        Year = {2006}}
223 +
224 + @article{Wilson:2002uq,
225 +        Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
226 +        Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
227 +        Date-Added = {2007-10-09 17:17:36 -0400},
228 +        Date-Modified = {2007-10-09 17:18:45 -0400},
229 +        Doi = {ARTN 224301},
230 +        Journal = {Physical Review B},
231 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
232 +        Title = {Colloidal metal particles as probes of nanoscale thermal transport in fluids},
233 +        Volume = {66},
234 +        Year = {2002}}
235 +
236 + @article{Dick:2002qy,
237 +        Abstract = {We report on the size dependence of the melting temperature of silica-encapsulated gold nanoparticles. The melting point was determined using differential thermal analysis (DTA) coupled to thermal gravimetric analysis (TGA) techniques. The small gold particles, with sizes ranging from 1.5 to 20 nm, were synthesized using radiolytic and chemical reduction procedures and then coated with porous silica shells to isolate the particles from one another. The resulting silica-encapsulated gold particles show clear melting endotherms in the DTA scan with no accompanying weight loss of the material in the TGA examination. The silica shell acts as a nanocrucible for the melting gold with little effect on the melting temperature itself, even though the analytical procedure destroys the particles once they melt. Phenomenological thermodynamic predictions of the size dependence of the melting point of gold agree with the experimental observation. Implications of these observations to the self-diffusion coefficient of gold in the nanoparticles are discussed, especially as they relate to the spontaneous alloying of core-shell bimetallic particles.},
238 +        Author = {Dick, K and Dhanasekaran, T and Zhang, ZY and Meisel, D},
239 +        Date-Added = {2007-10-09 16:44:50 -0400},
240 +        Date-Modified = {2007-10-09 16:47:53 -0400},
241 +        Doi = {DOI 10.1021/ja017281a},
242 +        Journal = {Journal of the American Chemical Society},
243 +        Pages = {2312-2317},
244 +        Title = {Size-dependent melting of silica-encapsulated gold nanoparticles},
245 +        Volume = {124},
246 +        Year = {2002}}
247 +
248 + @misc{West:2003fk,
249 +        Abstract = {Advances in chemistry and physics are providing an expanding array of nanostructured materials with unique and powerful optical properties. These nanomaterials provide a new set of tools that are available to biomedical engineers, biologists, and medical scientists who seek new tools as biosensors and probes of biological fluids, cells, and tissue chemistry and function. Nanomaterials are also being used to develop optically controlled devices for applications such as modulated drug delivery as well as optical therapeutics. This review discusses applications that have been successfully demonstrated using nanomaterials including semiconductor nanocrystals, gold nanoparticles, gold nanoshells, and silver plasmon resonant particles.},
250 +        Author = {West, JL and Halas, NJ},
251 +        Date-Added = {2007-10-09 16:38:17 -0400},
252 +        Date-Modified = {2007-10-09 16:39:04 -0400},
253 +        Doi = {DOI 10.1146/annurev.bioeng.5.011303.120723},
254 +        Keywords = {nanotechnology; nanoparticle; optics; biosensor; quantum dot; gold colloid; plasmon resonant particle; nanoshell},
255 +        Note = {Annual Review of Biomedical Engineering},
256 +        Pages = {285-292},
257 +        Title = {Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics},
258 +        Volume = {5},
259 +        Year = {2003}}
260 +
261 + @misc{Hu:2006lr,
262 +        Abstract = {The surface plasmon resonance peaks of gold nanostructures can be tuned from the visible to the near infrared region by controlling the shape and structure ( solid vs. hollow). In this tutorial review we highlight this concept by comparing four typical examples: nanospheres, nanorods, nanoshells, and nanocages. A combination of this optical tunability with the inertness of gold makes gold nanostructures well suited for various biomedical applications.},
263 +        Author = {Hu, Min and Chen, Jingyi and Li, Zhi-Yuan and Au, Leslie and Hartland, Gregory V. and Li, Xingde and Marquez, Manuel and Xia, Younan},
264 +        Date-Added = {2007-10-09 15:39:55 -0400},
265 +        Date-Modified = {2007-10-09 15:43:59 -0400},
266 +        Doi = {DOI 10.1039/b517615h},
267 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/b517615h.pdf},
268 +        Note = {Chemical Society Reviews},
269 +        Pages = {1084-1094},
270 +        Title = {Gold nanostructures: engineering their plasmonic properties for biomedical applications},
271 +        Volume = {35},
272 +        Year = {2006}}
273 +
274 + @article{Zhu:1997lr,
275 +        Abstract = {Experimental bulk mixing data on disordered bimetallics of Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au are used to parametrize the recently developed {$\backslash$}underline{\{}b{\}}ond {$\backslash$}underline{\{}o{\}}rder metal {$\backslash$}underline{\{}s{\}}imulator (BOS-mixing) model, including a full error analysis. This model characterizes the variation of metal-metal bond strength with number and type of atomic neighbors. The model is shown to accurately fit experimental mixing energy curves as a function of composition irrespective of whether the curves are symmetric or asymmetric around the 50{\%} value. As an illustration of the utility of the BOS-mixing model, we predict the microstructures of bimetallic clusters with 201 atoms (or 61{\%} dispersion) and a composition of 50{\%}-50{\%}. The examples demonstrate how differences in surface energy, mixing energy, and mixing entropy either compete or cooperate in determining the microstructure of small bimetallic clusters.},
276 +        Author = {Zhu, Ling and DePristo, Andrew E.},
277 +        Date-Added = {2007-10-03 14:57:41 -0400},
278 +        Date-Modified = {2007-10-03 14:58:17 -0400},
279 +        Journal = {Journal of Catalysis},
280 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/sdarticle2.pdf},
281 +        Number = {2},
282 +        Pages = {400--407},
283 +        Title = {Microstructures of Bimetallic Clusters: Bond Order Metal Simulator for Disordered Alloys},
284 +        Ty = {JOUR},
285 +        Url = {http://www.sciencedirect.com/science/article/B6WHJ-45KMYC8-80/2/0c7f43e48e4dfa1206cb717c85db1972},
286 +        Volume = {167},
287 +        Year = {1997}}
288 +
289 + @article{MainardiD.S._la0014306,
290 +        Affiliation = {Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208},
291 +        Author = {Mainardi, D.S. and Balbuena, P.B.},
292 +        Date-Added = {2007-10-03 14:53:26 -0400},
293 +        Date-Modified = {2007-10-03 15:01:14 -0400},
294 +        Issn = {0743-7463},
295 +        Journal = {Langmuir},
296 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/la0014306.pdf},
297 +        Number = {6},
298 +        Pages = {2047-2050},
299 +        Title = {Monte Carlo Simulation of Cu-Ni Nanoclusters: Surface Segregation Studies},
300 +        Url = {http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/la0014306},
301 +        Volume = {17},
302 +        Year = {2001}}
303 +
304 + @article{nose:1803,
305 +        Author = {Shuichi Nose and Fumiko Yonezawa},
306 +        Date-Added = {2007-09-21 13:00:58 -0400},
307 +        Date-Modified = {2007-09-21 13:01:18 -0400},
308 +        Doi = {10.1063/1.450427},
309 +        Journal = {The Journal of Chemical Physics},
310 +        Keywords = {LENNARDJONES POTENTIAL; COMPUTERIZED SIMULATION; MELTING; CRYSTALLIZATION; MOLECULAR DYNAMICS CALCULATION; LIQUID STRUCTURE; NUCLEATION; MATHEMATICAL MODELS},
311 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/JChemPhys_84_1803.pdf},
312 +        Number = {3},
313 +        Pages = {1803-1814},
314 +        Publisher = {AIP},
315 +        Title = {Isothermal--isobaric computer simulations of melting and crystallization of a Lennard-Jones system},
316 +        Url = {http://link.aip.org/link/?JCP/84/1803/1},
317 +        Volume = {84},
318 +        Year = {1986}}
319 +
320 + @article{hsu:4974,
321 +        Author = {C. S. Hsu and Aneesur Rahman},
322 +        Date-Added = {2007-09-21 12:52:21 -0400},
323 +        Date-Modified = {2007-09-21 12:52:40 -0400},
324 +        Doi = {10.1063/1.438311},
325 +        Journal = {The Journal of Chemical Physics},
326 +        Keywords = {NUCLEATION; SYMMETRY; INTERATOMIC FORCES; RUBIDIUM; LENNARD=(HYPHEN)=JONES POTENTIAL; CORRELATIONS; CRYSTALS},
327 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/JChemPhys_71_4974.pdf},
328 +        Number = {12},
329 +        Pages = {4974-4986},
330 +        Publisher = {AIP},
331 +        Title = {Interaction potentials and their effect on crystal nucleation and symmetry},
332 +        Url = {http://link.aip.org/link/?JCP/71/4974/1},
333 +        Volume = {71},
334 +        Year = {1979}}
335 +
336 + @article{PhysRevLett.53.1951,
337 +        Author = {Shechtman, D. and Blech, I. and Gratias, D. and Cahn, J. W.},
338 +        Date-Added = {2007-09-20 17:44:19 -0400},
339 +        Date-Modified = {2007-09-20 17:44:57 -0400},
340 +        Doi = {10.1103/PhysRevLett.53.1951},
341 +        Journal = {Phys. Rev. Lett.},
342 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/p1951_1.pdf},
343 +        Month = {Nov},
344 +        Number = {20},
345 +        Numpages = {2},
346 +        Pages = {1951--1953},
347 +        Publisher = {American Physical Society},
348 +        Title = {Metallic Phase with Long-Range Orientational Order and No Translational Symmetry},
349 +        Volume = {53},
350 +        Year = {1984}}
351 +
352 + @article{PhysRevLett.56.1168,
353 +        Author = {Stephens, Peter W. and Goldman, Alan I.},
354 +        Date-Added = {2007-09-20 17:35:02 -0400},
355 +        Date-Modified = {2007-09-20 17:35:08 -0400},
356 +        Doi = {10.1103/PhysRevLett.56.1168},
357 +        Journal = {Phys. Rev. Lett.},
358 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/p1168_1.pdf},
359 +        Month = {Mar},
360 +        Number = {11},
361 +        Numpages = {3},
362 +        Pages = {1168--1171},
363 +        Publisher = {American Physical Society},
364 +        Title = {Sharp Diffraction Maxima from an Icosahedral Glass},
365 +        Volume = {56},
366 +        Year = {1986}}
367 +
368 + @article{HOARE:1976fk,
369 +        Author = {HOARE, M},
370 +        Date-Added = {2007-09-20 16:52:33 -0400},
371 +        Date-Modified = {2007-09-20 16:52:37 -0400},
372 +        Journal = {Annals of the New York Academy of Sciences},
373 +        Pages = {186-207},
374 +        Title = {STABILITY AND LOCAL ORDER IN SIMPLE AMORPHOUS PACKINGS},
375 +        Volume = {279},
376 +        Year = {1976}}
377 +
378 + @article{19871127,
379 +        Abstract = {Numerous examples of metallic alloys have been discovered, the atomic structures of which display an icosahedral symmetry that is impossible for ordinary periodic crystals. Recent experimental results support the hypothesis that the alloys are examples of a new ``quasicrystal'' phase of solid matter. Observed deviations from an ideal quasicrystal structure can be explained as ``phason strains,'' a special class of defects predicted to be the dominant type of imperfection formed during solidification.},
380 +        Author = {Steinhardt, Paul J.},
381 +        Copyright = {Copyright 1987 American Association for the Advancement of Science},
382 +        Date-Added = {2007-09-20 15:31:29 -0400},
383 +        Date-Modified = {2007-09-20 15:31:36 -0400},
384 +        Issn = {0036-8075},
385 +        Journal = {Science},
386 +        Jstor_Articletype = {Full Length Article},
387 +        Jstor_Date = {19871127},
388 +        Jstor_Formatteddate = {Nov. 27, 1987},
389 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/steinhart_science.pdf},
390 +        Month = {nov},
391 +        Number = {4831},
392 +        Pages = {1242--1247},
393 +        Publisher = {American Association for the Advancement of Science},
394 +        Series = {3},
395 +        Title = {Icosahedral Solids: A New Phase of Matter?},
396 +        Url = {http://links.jstor.org/sici?sici=0036-8075%2819871127%293%3A238%3A4831%3C1242%3AISANPO%3E2.0.CO%3B2-I},
397 +        Volume = {238},
398 +        Year = {1987}}
399 +
400 + @article{Waal:1995lr,
401 +        Abstract = {It is proposed that the splitting of the second peak of the total static structure factor, S(k), of many metallic glasses is essentially the same feature as the indentation at k{$[$}sigma{$]$} = (9/2){$[$}pi{$]$} in the function (sin k {$[$}sigma{$]$} + {$[$}alpha{$]$}-1 sin k{$[$}alpha{$]$}{$[$}sigma{$]$}), caused by the coincidence of the fourth minimum of the second term with the third maximum of the first term when {$[$}alpha{$]$} {$[$}approximate{$]$} 5/3. Together with the strong-weak relation of the split peak components of S(k), this feature indicates the splitting to be direct evidence for face-sharing of regular tetrahedra ({$[$}alpha{$]$} = 2{$[$}square root{$]$}2/3) dominating the topological short range order; increasing the number of face-sharing tetrahedra in local structural units indeed increases the amount of peak splitting in S(k); a dense random packing of well defined identical structural units (DRPSU), with neighbouring units linked together by a shared icosahedron, is described in detail. The packing fraction in a homogeneous, isotropic 1078-atom model is 0.67, after static relaxation under a two-body Lennard-Jones potential.},
402 +        Author = {van de Waal, Benjamin W.},
403 +        Date-Added = {2007-09-20 13:17:52 -0400},
404 +        Date-Modified = {2007-09-20 13:18:07 -0400},
405 +        Journal = {Journal of Non-Crystalline Solids},
406 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/sdarticle1.pdf},
407 +        Number = {1-2},
408 +        Pages = {118--128},
409 +        Title = {On the origin of second-peak splitting in the static structure factor of metallic glasses},
410 +        Ty = {JOUR},
411 +        Url = {http://www.sciencedirect.com/science/article/B6TXM-3YB50T0-Y/2/cfc3dd6cbf53b26af1daf9cddb6dd2e3},
412 +        Volume = {189},
413 +        Year = {1995}}
414 +
415 + @article{turnbull:411,
416 +        Author = {David Turnbull},
417 +        Date-Added = {2007-09-19 16:54:15 -0400},
418 +        Date-Modified = {2007-09-19 16:58:15 -0400},
419 +        Doi = {10.1063/1.1700435},
420 +        Journal = {The Journal of Chemical Physics},
421 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/JChemPhys_20_411.pdf},
422 +        Number = {3},
423 +        Pages = {411-424},
424 +        Publisher = {AIP},
425 +        Title = {Kinetics of Solidification of Supercooled Liquid Mercury Droplets},
426 +        Url = {http://link.aip.org/link/?JCP/20/411/1},
427 +        Volume = {20},
428 +        Year = {1952}}
429 +
430 + @article{235821,
431 +        Address = {New York, NY, USA},
432 +        Author = {C. Bradford Barber and David P. Dobkin and Hannu Huhdanpaa},
433 +        Date-Added = {2007-09-18 19:11:42 -0400},
434 +        Date-Modified = {2007-09-18 19:11:50 -0400},
435 +        Doi = {http://doi.acm.org/10.1145/235815.235821},
436 +        Issn = {0098-3500},
437 +        Journal = {ACM Trans. Math. Softw.},
438 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/p469-barber.pdf},
439 +        Number = {4},
440 +        Pages = {469--483},
441 +        Publisher = {ACM Press},
442 +        Title = {The quickhull algorithm for convex hulls},
443 +        Volume = {22},
444 +        Year = {1996}}
445 +
446 + @article{0031-9155-41-9-016,
447 +        Abstract = {Volume measurements are useful in many branches of science and medicine. They are usually accomplished by acquiring a sequence of cross sectional images through the object using an appropriate scanning modality, for example x-ray computed tomography (CT), magnetic resonance (MR) or ultrasound (US). In the cases of CT and MR, a dividing cubes algorithm can be used to describe the surface as a triangle mesh. However, such algorithms are not suitable for US data, especially when the image sequence is multiplanar (as it usually is). This problem may be overcome by manually tracing regions of interest (ROIs) on the registered multiplanar images and connecting the points into a trianglar mesh. In this paper we describe and evaluate a new discreet form of Gauss' theorem which enables the calculation of the volume of any enclosed surface described by a triangular mesh. The volume is calculated by summing the vector product of the centroid, area and normal of each surface triangle. The algorithm was tested on computer-generated objects, US-scanned balloons, livers and kidneys and CT-scanned clay rocks. The results, expressed as the mean percentage difference one standard deviation were , , and \% for balloons, livers, kidneys and rocks respectively. The results compare favourably with other volume estimation methods such as planimetry and tetrahedral decomposition.},
448 +        Author = {S W Hughes, T J D'Arcy, D J Maxwell, J E Saunders, C F Ruff, W S C Chiu and R J Sheppard},
449 +        Date-Added = {2007-09-18 18:49:49 -0400},
450 +        Date-Modified = {2007-09-18 18:49:55 -0400},
451 +        Journal = {Physics in Medicine and Biology},
452 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/m60915.pdf},
453 +        Number = {9},
454 +        Pages = {1809-1821},
455 +        Title = {Application of a new discreet form of Gauss' theorem for measuring volume},
456 +        Url = {http://stacks.iop.org/0031-9155/41/1809},
457 +        Volume = {41},
458 +        Year = {1996}}
459 +
460 + @article{Balucani:1990fk,
461 +        Author = {Balucani, U. and Vallauri, R.},
462 +        Date-Added = {2007-09-18 11:47:47 -0400},
463 +        Date-Modified = {2007-09-18 11:48:01 -0400},
464 +        Journal = {Chemical Physics Letters},
465 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/sdarticle0.pdf},
466 +        Number = {1},
467 +        Pages = {77--81},
468 +        Title = {Evolution of bond-angle distribution from liquid to glassy states},
469 +        Ty = {JOUR},
470 +        Url = {http://www.sciencedirect.com/science/article/B6TFN-44XDV0S-9H/2/fa1467fe68d6474b775de0f4cfd7f7ab},
471 +        Volume = {166},
472 +        Year = {1990}}
473 +
474 + @article{Sheng:2006lr,
475 +        Annote = {10.1038/nature04421},
476 +        Author = {Sheng, H. W. and Luo, W. K. and Alamgir, F. M. and Bai, J. M. and Ma, E.},
477 +        Date-Added = {2007-09-17 12:50:02 -0400},
478 +        Date-Modified = {2007-09-17 12:50:07 -0400},
479 +        Isbn = {0028-0836},
480 +        Journal = {Nature},
481 +        L3 = {http://www.nature.com/nature/journal/v439/n7075/suppinfo/nature04421_S1.html},
482 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/nature04421.pdf},
483 +        M3 = {10.1038/nature04421},
484 +        Number = {7075},
485 +        Pages = {419--425},
486 +        Title = {Atomic packing and short-to-medium-range order in metallic glasses},
487 +        Ty = {JOUR},
488 +        Url = {http://dx.doi.org/10.1038/nature04421},
489 +        Volume = {439},
490 +        Year = {2006}}
491 +
492 + @article{19521106,
493 +        Author = {Frank, F. C.},
494 +        Copyright = {Copyright 1952 The Royal Society},
495 +        Date-Added = {2007-09-17 12:26:50 -0400},
496 +        Date-Modified = {2007-09-17 12:26:56 -0400},
497 +        Group = {A Discussion on Theory of Liquids},
498 +        Issn = {0080-4630},
499 +        Journal = {Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences},
500 +        Jstor_Articletype = {Full Length Article},
501 +        Jstor_Date = {19521106},
502 +        Jstor_Formatteddate = {Nov. 6, 1952},
503 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/frank_icos_liq.pdf},
504 +        Month = {nov},
505 +        Number = {1120},
506 +        Pages = {43--46},
507 +        Publisher = {The Royal Society},
508 +        Title = {Supercooling of Liquids},
509 +        Url = {http://links.jstor.org/sici?sici=0080-4630%2819521106%29215%3A1120%3C43%3ASOL%3E2.0.CO%3B2-9},
510 +        Volume = {215},
511 +        Year = {1952}}
512 +
513 + @article{PhysRevLett.91.135505,
514 +        Author = {Di Cicco, Andrea and Trapananti, Angela and Faggioni, Silena and Filipponi, Adriano},
515 +        Date-Added = {2007-09-17 12:15:58 -0400},
516 +        Date-Modified = {2007-09-17 12:16:09 -0400},
517 +        Doi = {10.1103/PhysRevLett.91.135505},
518 +        Journal = {Phys. Rev. Lett.},
519 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/e135505.pdf},
520 +        Month = {Sep},
521 +        Number = {13},
522 +        Numpages = {4},
523 +        Pages = {135505},
524 +        Publisher = {American Physical Society},
525 +        Title = {Is There Icosahedral Ordering in Liquid and Undercooled Metals?},
526 +        Volume = {91},
527 +        Year = {2003}}
528 +
529 + @article{duijneveldt:4655,
530 +        Author = {J. S. van Duijneveldt and D. Frenkel},
531 +        Date-Added = {2007-09-13 16:50:13 -0400},
532 +        Date-Modified = {2007-09-13 16:50:22 -0400},
533 +        Doi = {10.1063/1.462802},
534 +        Journal = {The Journal of Chemical Physics},
535 +        Keywords = {COMPUTERIZED SIMULATION; FREE ENERGY; CRYSTALS; NUCLEATION; THERMAL BARRIERS; MONTE CARLO METHOD; SUPERCOOLED LIQUIDS; FCC LATTICES; BCC LATTICES; SIMULATION; HOMOGENEITY},
536 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/JChemPhys_96_4655.pdf},
537 +        Number = {6},
538 +        Pages = {4655-4668},
539 +        Publisher = {AIP},
540 +        Title = {Computer simulation study of free energy barriers in crystal nucleation},
541 +        Url = {http://link.aip.org/link/?JCP/96/4655/1},
542 +        Volume = {96},
543 +        Year = {1992}}
544 +
545 + @article{Jiang:2005lr,
546 +        Author = {Hongjin Jiang and Kyoung-sik Moon and Wong, C. P.},
547 +        Date-Added = {2007-09-11 14:55:57 -0400},
548 +        Date-Modified = {2007-09-11 14:56:06 -0400},
549 +        Isbn = {1550-5723},
550 +        Journal = {Advanced Packaging Materials: Processes, Properties and Interfaces, 2005. Proceedings. International Symposium on},
551 +        Journal1 = {Advanced Packaging Materials: Processes, Properties and Interfaces, 2005. Proceedings. International Symposium on},
552 +        Keywords = {adhesives; conducting polymers; copper alloys; filled polymers; filler metals; integrated circuit interconnections; materials preparation; nanoparticles; powder technology; powders; silver alloys; Ag-Cu alloy nanoparticle synthesis; AgCu; TEM observation; UV absorption; conductive filler; electrically conductive adhesive; lead-free interconnect material; mixed alloy structure; polyol process; silver-copper alloy},
553 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/01432072.pdf},
554 +        Pages = {173--177},
555 +        Title = {Synthesis of Ag-Cu alloy nanoparticles for lead-free interconnect materials},
556 +        Title1 = {Advanced Packaging Materials: Processes, Properties and Interfaces, 2005. Proceedings. International Symposium on},
557 +        Ty = {CONF},
558 +        Year = {2005}}
559 +
560 + @unpublished{hartlandPrv2007,
561 +        Author = {G. V. Hartland},
562 +        Date-Added = {2007-09-10 16:28:58 -0400},
563 +        Date-Modified = {2007-09-10 16:34:05 -0400},
564 +        Howpublished = {(private communication)},
565 +        Note = {Private Communication},
566 +        Title = {Interfacial Conductance for Nanoparticles}}
567 +
568 + @article{xuan:043507,
569 +        Author = {Yimin Xuan and Qiang Li and Xing Zhang and Motoo Fujii},
570 +        Date-Added = {2007-09-10 16:25:23 -0400},
571 +        Date-Modified = {2007-09-10 16:26:01 -0400},
572 +        Doi = {10.1063/1.2245203},
573 +        Eid = {043507},
574 +        Journal = {Journal of Applied Physics},
575 +        Keywords = {nanoparticles; suspensions; stochastic processes; Brownian motion; heat transfer; thermal conductivity; two-phase flow},
576 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/JApplPhys_100_043507.pdf},
577 +        Number = {4},
578 +        Numpages = {6},
579 +        Pages = {043507},
580 +        Publisher = {AIP},
581 +        Title = {Stochastic thermal transport of nanoparticle suspensions},
582 +        Url = {http://link.aip.org/link/?JAP/100/043507/1},
583 +        Volume = {100},
584 +        Year = {2006}}
585 +
586 + @article{Henglein:1999fk,
587 +        Abstract = {Colloidal silver sols of long-time stability are formed in the gamma-irradiation of 1.0 x 10(-4) M AgClO4 solutions, which also contain 0.3 M 2-propanol, 2.5 x 10(-2) M N2O, and sodium citrate in various concentrations. The reduction of Ag+ in these solutions is brought about by the I-hydroxyalkyl radical generated in the radiolysis of 2-propanol; citrate does not act as a reductant but solely as a stabilizer of the colloidal particles formed. Its concentration is varied in the range from 5.0 x 10(-5) to 1.5 x 10(-3) M, and the size and size distribution of the silver particles are studied by electron microscopy. At low citrate concentration, partly agglomerated large particles are formed that have many imperfections. In an intermediate range (a few 10(-4) M), well-separated particles with a rather narrow size distribution and little imperfections are formed, the size slightly decreasing with increasing citrate concentration. At high citrate concentrations, large lumps of coalesced silver particles are present, due to destabilization by the high ionic strength of the solution. These findings are explained by two growth mechanisms: condensation of small silver clusters (type-I growth), and reduction of Ag+ on silver particles via radical-to-particle electron transfer (type-II growth). The particles formed in the intermediate range of citrate concentration were studied by high-resolution electron microscopy and computer simulations. They constitute icosahedra and cuboctahedra.},
588 +        Author = {Henglein, A and Giersig, M},
589 +        Date-Added = {2007-09-07 18:11:39 -0400},
590 +        Date-Modified = {2007-09-07 18:17:03 -0400},
591 +        Journal = {Journal of Physical Chemistry B},
592 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/jp9925334.pdf},
593 +        Pages = {9533-9539},
594 +        Title = {Formation of colloidal silver nanoparticles: Capping action of citrate},
595 +        Volume = {103},
596 +        Year = {1999}}
597 +
598 + @article{Link:2000lr,
599 +        Abstract = {Driven by the search for new materials with interesting and unique properties and also by the fundamental question of how atomic and molecular physical behaviour develops with increasing size, the field of nanoparticle research has grown immensely in the last two decades. Partially for these reasons, colloidal solutions of metallic (especially silver and gold) nanoparticles have long fascinated scientists because of their very intense colours. The intense red colour of colloidal gold nanoparticles is due to their surface plasmon absorption. This article describes the physical origin of the surface plasmon absorption in gold nanoparticles with emphasis on the Mie and also the Maxwell-Garnett theory and reviews the effects of particle size and shape on the resonance condition. A better understanding of the relationship between the optical absorption spectrum (in particular, the plasmon resonance) and such particle properties as its dimensions or surrounding environment can prove fruitful for the use of the plasmon absorption as an analytical tool. The plasmon resonance has also had a great impact on the Raman spectrum of surface-adsorbed molecules and a large enhancement of the fluorescence quantum yield of gold nanorods is observed. Furthermore, following the changes in the plasmon absorption induced by excitation (heating) with ultrashort laser pulses allows one to monitor the electron dynamics (electron-electron and electron-phonon interactions) in real time, which is important in understanding such fundamental questions regarding the thermal and electrical conductivity of these nanoparticles. Very intense heating with laser pulses leads to structural changes of the nanoparticles (nuclear rearrangements in the form of melting and fragmentation). ABSTRACT FROM AUTHOR Copyright of International Reviews in Physical Chemistry is the property of Taylor \& Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts)},
600 +        Abstract1 = {Driven by the search for new materials with interesting and unique properties and also by the fundamental question of how atomic and molecular physical behaviour develops with increasing size, the field of nanoparticle research has grown immensely in the last two decades. Partially for these reasons, colloidal solutions of metallic (especially silver and gold) nanoparticles have long fascinated scientists because of their very intense colours. The intense red colour of colloidal gold nanoparticles is due to their surface plasmon absorption. This article describes the physical origin of the surface plasmon absorption in gold nanoparticles with emphasis on the Mie and also the Maxwell-Garnett theory and reviews the effects of particle size and shape on the resonance condition. A better understanding of the relationship between the optical absorption spectrum (in particular, the plasmon resonance) and such particle properties as its dimensions or surrounding environment can prove fruitful for the use of the plasmon absorption as an analytical tool. The plasmon resonance has also had a great impact on the Raman spectrum of surface-adsorbed molecules and a large enhancement of the fluorescence quantum yield of gold nanorods is observed. Furthermore, following the changes in the plasmon absorption induced by excitation (heating) with ultrashort laser pulses allows one to monitor the electron dynamics (electron-electron and electron-phonon interactions) in real time, which is important in understanding such fundamental questions regarding the thermal and electrical conductivity of these nanoparticles. Very intense heating with laser pulses leads to structural changes of the nanoparticles (nuclear rearrangements in the form of melting and fragmentation). ABSTRACT FROM AUTHOR Copyright of International Reviews in Physical Chemistry is the property of Taylor \& Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts)},
601 +        Annote = {Accession Number: 3844873; Link, Stephan 1 El-Sayed, Mostafa A. 1; Affiliations:  1: Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; Source Information: Jul/Sep2000, Vol. 19 Issue 3, p409; Subject Term: MOLECULAR structure; Subject Term: NANOPARTICLES; Number of Pages: 45p; Document Type: Article},
602 +        Author = {Link, Stephan and El-Sayed, Mostafa A.},
603 +        Date-Added = {2007-09-07 16:21:48 -0400},
604 +        Date-Modified = {2007-09-07 16:21:55 -0400},
605 +        Isbn = {0144235X},
606 +        J1 = {International Reviews in Physical Chemistry},
607 +        Journal = {International Reviews in Physical Chemistry},
608 +        Journal1 = {International Reviews in Physical Chemistry},
609 +        Keywords = {MOLECULAR structure; NANOPARTICLES},
610 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/3844873.pdf},
611 +        M3 = {Article},
612 +        Number = {3},
613 +        Pages = {409--453},
614 +        Publisher = {Taylor \& Francis Ltd},
615 +        Title = {Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals.},
616 +        Ty = {JOUR},
617 +        Url = {http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,url,uid,cookie&db=afh&AN=3844873&site=ehost-live},
618 +        Volume = {19},
619 +        Year = {2000}}
620 +
621 + @article{BROOKS:1985kx,
622 +        Author = {BROOKS, CL and BRUNGER, A and KARPLUS, M},
623 +        Date-Added = {2007-09-06 15:55:51 -0400},
624 +        Date-Modified = {2007-09-06 15:56:44 -0400},
625 +        Journal = {Biopolymers},
626 +        Pages = {843-865},
627 +        Title = {ACTIVE-SITE DYNAMICS IN PROTEIN MOLECULES - A STOCHASTIC BOUNDARY MOLECULAR-DYNAMICS APPROACH},
628 +        Volume = {24},
629 +        Year = {1985}}
630 +
631 + @article{BRUNGER:1984fj,
632 +        Author = {BRUNGER, A and BROOKS, CL and KARPLUS, M},
633 +        Date-Added = {2007-09-06 15:55:51 -0400},
634 +        Date-Modified = {2007-09-06 15:56:36 -0400},
635 +        Journal = {Chemical Physics Letters},
636 +        Pages = {495-500},
637 +        Title = {STOCHASTIC BOUNDARY-CONDITIONS FOR MOLECULAR-DYNAMICS SIMULATIONS OF ST2 WATER},
638 +        Volume = {105},
639 +        Year = {1984}}
640 +
641 + @article{BROOKS:1983uq,
642 +        Author = {BROOKS, CL and KARPLUS, M},
643 +        Date-Added = {2007-09-06 15:55:51 -0400},
644 +        Date-Modified = {2007-09-06 15:56:24 -0400},
645 +        Journal = {Journal of Chemical Physics},
646 +        Pages = {6312-6325},
647 +        Title = {DEFORMABLE STOCHASTIC BOUNDARIES IN MOLECULAR-DYNAMICS},
648 +        Volume = {79},
649 +        Year = {1983}}
650 +
651 + @book{Strandburg:1992qy,
652 +        Address = {New York},
653 +        Annote = {LDR    01152pam  2200301 a 4500
654 + 001    2960109
655 + 005    19920314112708.5
656 + 008    910605s1992    nyua     b    001 0 eng  
657 + 035    $9(DLC)   91020237
658 + 906    $a7$bcbc$corignew$d1$eocip$f19$gy-gencatlg
659 + 955    $apc17 to ea00 06-05-91; ea27 to SCD 06-05-91; fg08 06-06-91; fm27 6-11-91; CIP ver. bc27 03-07-92; to SL 03-14-92
660 + 010    $a   91020237
661 + 020    $a0387976388 (U.S. : alk. paper)
662 + 020    $a3540976388
663 + 040    $aDLC$cDLC$dDLC
664 + 050 00 $aQC173.4.C65$bB66 1992
665 + 082 00 $a530.4/1$220
666 + 245 00 $aBond-orientational order in condensed matter systems /$cKatherine J. Strandburg, editor ; foreword by David R. Nelson.
667 + 260    $aNew York :$bSpringer-Verlag,$c1992.
668 + 300    $axi, 388 p. :$bill. ;$c25 cm.
669 + 440  0 $aPartially ordered systems
670 + 504    $aIncludes bibliographical references and index.
671 + 650  0 $aCondensed matter.
672 + 650  0 $aCrystals.
673 + 650  0 $aGlass.
674 + 650  0 $aPhase transformations (Statistical physics)
675 + 700 1  $aStrandburg, Katherine Jo,$d1957-
676 + 991    $bc-GenColl$hQC173.4.C65$iB66 1992$p00036991264$tCopy 1$wBOOKS
677 + },
678 +        Author = {Strandburg, Katherine Jo},
679 +        Call-Number = {QC173.4.C65},
680 +        Date-Added = {2007-09-06 15:29:04 -0400},
681 +        Date-Modified = {2007-09-06 15:29:37 -0400},
682 +        Dewey-Call-Number = {530.4/1},
683 +        Genre = {Condensed matter},
684 +        Isbn = {0387976388 (U.S. : alk. paper)},
685 +        Library-Id = {91020237},
686 +        Publisher = {Springer-Verlag},
687 +        Title = {Bond-orientational order in condensed matter systems},
688 +        Year = {1992}}
689 +
690 + @book{Kittel:1996fk,
691 +        Address = {New York},
692 +        Annote = {LDR    01170cam  2200289 a 4500
693 + 001    1143187
694 + 005    20060719213349.0
695 + 008    950426s1996    nyua     b    001 0 eng  
696 + 906    $a7$bcbc$corignew$d1$eocip$f19$gy-gencatlg
697 + 955    $apc01 to JA00 04-26-95; je39 04-27-95; je05 to DDC 04-27-95; CIP ver. pv08 07-27-95
698 + 035    $9(DLC)   95018445
699 + 010    $a   95018445
700 + 020    $a0471111813 (alk. paper)
701 + 040    $aDLC$cDLC$dDLC
702 + 050 00 $aQC176$b.K5 1996
703 + 082 00 $a530.4/1$220
704 + 100 1  $aKittel, Charles.
705 + 245 10 $aIntroduction to solid state physics /$cCharles Kittel.
706 + 250    $a7th ed.
707 + 260    $aNew York :$bWiley,$cc1996.
708 + 300    $axi, 673 p. :$bill. ;$c25 cm.
709 + 504    $aIncludes bibliographical references and index.
710 + 650  0 $aSolid state physics.
711 + 856 42 $3Publisher description$uhttp://www.loc.gov/catdir/description/wiley033/95018445.html
712 + 856 4  $3Table of Contents only$uhttp://www.loc.gov/catdir/toc/onix03/95018445.html
713 + 856 42 $3Contributor biographical information$uhttp://www.loc.gov/catdir/enhancements/fy0607/95018445-b.html
714 + 991    $bc-GenColl$hQC176$i.K5 1996$p00035929873$tCopy 1$wBOOKS
715 + },
716 +        Author = {Kittel, Charles},
717 +        Call-Number = {QC176},
718 +        Date-Added = {2007-09-06 15:23:29 -0400},
719 +        Date-Modified = {2007-09-06 15:25:11 -0400},
720 +        Dewey-Call-Number = {530.4/1},
721 +        Edition = {7th ed},
722 +        Genre = {Solid state physics},
723 +        Isbn = {0471111813 (alk. paper)},
724 +        Library-Id = {95018445},
725 +        Publisher = {Wiley},
726 +        Title = {Introduction to solid state physics},
727 +        Url = {http://www.loc.gov/catdir/description/wiley033/95018445.html},
728 +        Year = {1996}}
729 +
730 + @misc{Hartland:2003lr,
731 +        Abstract = {Laser excitation of metal nanoparticles can provide enough energy to melt or even fragment the particles. In this article we describe some recent experiments where controlled laser excitation was used to transform core-shell bimetallic particles into the corresponding alloy. Results for Au-Ag particles in solution and in a thin film are presented. Details are given about the excitation energies needed for alloying and how interdiffusion and alloying occur in nanoparticles. The spectral and dynamical properties of bimetallic particles are also discussed - especially as they pertain to our experiments.},
732 +        Author = {Hartland, GV and Guillaudeu, S and Hodak, JH},
733 +        Date-Added = {2007-09-06 15:19:25 -0400},
734 +        Date-Modified = {2007-09-06 15:19:59 -0400},
735 +        Note = {Molecules As Components of Electronic Devices},
736 +        Pages = {106-122},
737 +        Series = {ACS SYMPOSIUM SERIES},
738 +        Title = {Laser-induced alloying in metal nanoparticles: Controlling spectral properties with light},
739 +        Volume = {844},
740 +        Year = {2003}}
741 +
742 + @article{HengleinA._jp992950g,
743 +        Affiliation = {Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556},
744 +        Author = {Henglein, A.},
745 +        Date-Added = {2007-09-06 15:01:20 -0400},
746 +        Date-Modified = {2007-09-06 15:01:27 -0400},
747 +        Issn = {1520-6106},
748 +        Journal = {Journal of Physical Chemistry B},
749 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/jp992950g.pdf},
750 +        Number = {6},
751 +        Pages = {1206-1211},
752 +        Title = {Formation and Absorption Spectrum of Copper Nanoparticles from the Radiolytic Reduction of Cu(CN)2-},
753 +        Url = {http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp992950g},
754 +        Volume = {104},
755 +        Year = {2000}}
756 +
757 + @article{Petrova:2007qy,
758 +        Abstract = {This paper describes our recent time-resolved spectroscopy studies of the properties of gold particles at high laser excitation levels. In these experiments, an intense pump laser pulse rapidly heats the particle, creating very high lattice temperatures - up to the melting point of bulk gold. These high temperatures can have dramatic effects on the particle and the surroundings. The lattice temperature created is determined by observing the coherently excited the vibrational modes of the particles. The periods of these modes depend on temperature, thus, they act as an internal thermometer. We have used these experiments to provide values for the threshold temperatures for explosive boiling of the solvent surrounding the particles, and laser induced structural transformations in non-spherical particles. The results of these experiments are relevant to the use of metal nanoparticles in photothermal therapy, where laser induced heating is used to selectively kill cells.},
759 +        Author = {Petrova, Hristina and Hu, Min and Hartland, Gregory V.},
760 +        Date-Added = {2007-09-06 14:47:57 -0400},
761 +        Date-Modified = {2007-09-06 14:49:36 -0400},
762 +        Doi = {DOI 10.1524/zpch.2007.221.3.361},
763 +        Journal = {Zeitschrift Fur Physikalische Chemie-International Journal of Research In Physical Chemistry \& Chemical Physics},
764 +        Keywords = {metal nanoparticles; phonon modes; photothermal properties; laser-induced heating},
765 +        Pages = {361-376},
766 +        Title = {Photothermal properties of gold nanoparticles},
767 +        Volume = {221},
768 +        Year = {2007}}
769 +
770 + @article{Hartland:2004fk,
771 +        Author = {Gregory V. Hartland},
772 +        Date-Added = {2007-09-06 14:34:21 -0400},
773 +        Date-Modified = {2007-09-06 14:37:40 -0400},
774 +        Journal = {Physical Chemistry Chemical Physics},
775 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/b413368d.pdf},
776 +        Number = {23},
777 +        Pages = {5263-5274},
778 +        Title = {Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy},
779 +        Volume = {6},
780 +        Year = {2004}}
781 +
782 + @article{Qi:2001nn,
783 +        Author = {Yue Qi and Tahir Cagin and William L. Johnson and William A. Goddard III},
784 +        Date-Added = {2007-09-06 13:34:45 -0400},
785 +        Date-Modified = {2007-09-06 13:34:45 -0400},
786 +        Journal = {The Journal of Chemical Physics},
787 +        Keywords = {melting; freezing; crystallisation; nickel; nanostructured materials; metal clusters},
788 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/2001.pdf},
789 +        Number = {1},
790 +        Pages = {385-394},
791 +        Publisher = {AIP},
792 +        Title = {Melting and crystallization in Ni nanoclusters: The mesoscale regime},
793 +        Url = {http://link.aip.org/link/?JCP/115/385/1},
794 +        Volume = {115},
795 +        Year = {2001}}
796 +
797 + @article{Cleveland:1997jb,
798 +        Author = {Charles L. Cleveland and Uzi Landman and Thomas G. Schaaff and Marat N. Shafigullin and Peter W. Stephens and Robert L. Whetten},
799 +        Date-Added = {2007-09-06 13:34:10 -0400},
800 +        Date-Modified = {2007-09-06 13:34:10 -0400},
801 +        Journal = {Phys. Rev. Lett.},
802 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/Cleveland/1997a.pdf},
803 +        Pages = {1873-1876},
804 +        Title = {Structural Evolution of Smaller Gold Nanocrystals: The Truncated Decahedral Motif},
805 +        Volume = {79},
806 +        Year = {1997}}
807 +
808 + @article{Roy:2003dy,
809 +        Author = {R.K. Roy and S.K. Mandal and A.K. Pal},
810 +        Date-Added = {2007-09-06 13:32:38 -0400},
811 +        Date-Modified = {2007-09-06 13:32:38 -0400},
812 +        Journal = {Eur. Phys. J. B},
813 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/Roy/2003.pdf},
814 +        Pages = {109-114},
815 +        Title = {Effect of interfacial alloying on the surface plasmon resonance of nanocrystalline Au-Ag multilayer thin films},
816 +        Volume = {33},
817 +        Year = {2003}}
818 +
819 + @article{gonzalo:5163,
820 +        Author = {J. Gonzalo and D. Babonneau and C. N. Afonso and J.-P. Barnes},
821 +        Date-Added = {2007-09-06 13:32:05 -0400},
822 +        Date-Modified = {2007-09-06 13:32:05 -0400},
823 +        Journal = {Journal of Applied Physics},
824 +        Keywords = {alumina; silver; copper; nanocomposites; metallic thin films; pulsed laser deposition; surface plasmon resonance; spectral line shift; nucleation; visible spectra; electron diffraction; electron microscopy},
825 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/Gonzalo/2004.pdf},
826 +        Number = {9},
827 +        Pages = {5163-5168},
828 +        Publisher = {AIP},
829 +        Title = {Optical response of mixed Ag-Cu nanocrystals produced by pulsed laser deposition},
830 +        Url = {http://link.aip.org/link/?JAP/96/5163/1},
831 +        Volume = {96},
832 +        Year = {2004}}
833 +
834 + @article{Kim:2003lv,
835 +        Author = {M. Kim and H. Na and K. C. Lee and E. A. Yoo and M. Lee},
836 +        Date-Added = {2007-09-06 13:31:15 -0400},
837 +        Date-Modified = {2007-09-06 13:31:15 -0400},
838 +        Journal = {J. Mat. Chem},
839 +        Number = {7},
840 +        Pages = {1789-1792},
841 +        Title = {Preperation and characterization of Au-Ag and Au-Cu alloy nanoparticles in chloroform.},
842 +        Volume = {13},
843 +        Year = {2003}}
844 +
845 + @article{Malyavantham:2004cu,
846 +        Author = {Malyavantham, Gokul and O'Brien, Daniel T. and Becker, Michael F. and Keto, John W. and Kovar, Desiderio},
847 +        Date-Added = {2007-09-06 13:30:22 -0400},
848 +        Date-Modified = {2007-09-06 13:30:22 -0400},
849 +        Journal = {Journal of Nanoparticle Research},
850 +        Local-Url = {file://localhost/Users/charles/Documents/Papers/Malyavantham/2004.pdf},
851 +        Number = {6},
852 +        Pages = {661 --664},
853 +        Title = {Au-Cu nanoparticles produced by laser ablation of mixtures of Au and Cu microparticles},
854 +        Ty = {JOUR},
855 +        Url = {http://www.springerlink.com/openurl.asp?genre=article\& id=doi:10.1007/s11051-004-3212-z},
856 +        Volume = {6},
857 +        Year = {2004}}
858 +
859   @article{Ludwig:2003lr,
860          Address = {Physikalische Chemie, Fachbereich Chemie, Universitat Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany. ludwig@pc2a.chemie.uni-dortmund.de},
861          Au = {Ludwig, R},
# Line 1483 | Line 2333
2333          Volume = {104},
2334          Year = {2000}}
2335  
1486 @inproceedings{Hartland:2003yf,
1487        Author = {G. V. Hartland and S. Guillaudeu and J Hodak},
1488        Booktitle = {ACS Symposium Series No. 844: Molecules as Components in Electronic Devices},
1489        Date-Added = {2006-09-22 14:06:42 -0400},
1490        Date-Modified = {2007-02-16 15:23:00 -0500},
1491        Editor = {M. Liebermann},
1492        Title = {Laser Induced Alloying in Metal Nanoparticles: Controlling Spectral Properties with Light.},
1493        Year = {2003}}
1494
2336   @article{Gafner:2004bg,
2337          Author = {Yu. Ya. Gafner and S. L. Gafner and P. Entel},
2338          Date-Added = {2006-09-22 14:06:33 -0400},
# Line 1545 | Line 2386
2386          Volume = {28},
2387          Year = {1983}}
2388  
1548 @book{Sachdev:1992mo,
1549        Author = {S Sachdev},
1550        Date-Added = {2006-09-22 14:05:46 -0400},
1551        Date-Modified = {2007-02-16 15:23:00 -0500},
1552        Editor = {K J Strandburg},
1553        Local-Url = {file://localhost/Users/charles/Documents/Papers/c8.pdf},
1554        Publisher = {Springer-Verlag},
1555        Series = {Partially Ordered Systems},
1556        Title = {Bond-Orientational Order in Condensed Matter Systems},
1557        Year = {1992}}
1558
1559 @book{Massalski:1986kl,
1560        Date-Added = {2006-09-22 14:05:43 -0400},
1561        Date-Modified = {2007-02-16 15:23:00 -0500},
1562        Editor = {T B Massalski},
1563        Publisher = {Materials Park, OH: American Society for Metals},
1564        Title = {Binary alloy phase diagrams},
1565        Volume = {1-3},
1566        Year = {1986}}
1567
2389   @article{Ascencio:2000qy,
2390          Author = {Ascencio, Jorge A. and Perez, Mario and Jose-Yacaman, Miguel},
2391          Date-Added = {2006-09-22 14:05:27 -0400},
# Line 1626 | Line 2447
2447          </dict>
2448          <dict>
2449                  <key>group name</key>
2450 +                <string>Glass-Melting Transition</string>
2451 +                <key>keys</key>
2452 +                <string>HUNT:1994fj,Wang:2003fk,Alcoutlabi:2005kx,HUNT:1992uq,Jiang:1999yq,Ojovan:2006vn</string>
2453 +        </dict>
2454 +        <dict>
2455 +                <key>group name</key>
2456 +                <string>Hartland Cites</string>
2457 +                <key>keys</key>
2458 +                <string>West:2003fk,Plech:2003yq,Plech:2007rt,Plech:2004vn,Wang:2003fk,Wilson:2002uq,Hodak:2000rb,Hu:2006lr,Dick:2002qy,Buffat:1976yq</string>
2459 +        </dict>
2460 +        <dict>
2461 +                <key>group name</key>
2462                  <string>Icosahedral Order</string>
2463                  <key>keys</key>
2464 <                <string>ganesh-2006-</string>
2464 >                <string>PhysRevLett.60.2295,hsu:4974,HOARE:1976fk,19871127,Balucani:1990fk,ganesh-2006-,PhysRevLett.53.1951,19521106,Waal:1995lr,Steinhardt:1983mo,PhysRevLett.56.1168,PhysRevLett.91.135505,turnbull:411,luo:131927</string>
2465          </dict>
2466          <dict>
2467                  <key>group name</key>
# Line 1640 | Line 2473
2473                  <key>group name</key>
2474                  <string>Melting-surface</string>
2475                  <key>keys</key>
2476 <                <string>PhysRevB.59.15990,cheng:064117,mendez-villuendas:185503,kay:5120,HuangS.-P._jp0204206,Ramirez-Caballero:2006lr,sankaranarayanan:155441</string>
2476 >                <string>PhysRevB.59.15990,cheng:064117,MainardiD.S._la0014306,kay:5120,Zhu:1997lr,sankaranarayanan:155441,Ramirez-Caballero:2006lr,HuangS.-P._jp0204206,mendez-villuendas:185503</string>
2477          </dict>
2478          <dict>
2479                  <key>group name</key>
# Line 1656 | Line 2489
2489          </dict>
2490          <dict>
2491                  <key>group name</key>
2492 +                <string>NPT Langevin</string>
2493 +                <key>keys</key>
2494 +                <string>calvo:125414,Kohanoff:2005,0953-8984-18-39-037,0031-9155-41-9-016,Buscaglia:1997fk,0953-8984-14-26-101,Baltazar:2006lr</string>
2495 +        </dict>
2496 +        <dict>
2497 +                <key>group name</key>
2498                  <string>Pair Analysis</string>
2499                  <key>keys</key>
2500                  <string>Miracle:2006qy,Iwamatsu:2007lr,HoneycuttJ.Dana_j100303a014,PhysRevLett.60.2295</string>

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines