ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nivsRnemd/nivsRnemd.bib
Revision: 3565
Committed: Tue Mar 9 20:37:52 2010 UTC (14 years, 5 months ago) by skuang
File size: 27758 byte(s)
Log Message:
add shearGrad plot, fix some eqn.'s

File Contents

# User Rev Content
1 skuang 3527 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 skuang 3565 %% Created for Shenyu Kuang at 2010-03-09 13:08:58 -0500
6 skuang 3527
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11    
12 skuang 3565 @article{ISI:000273472300004,
13     Abstract = {{The reverse nonequilibrium molecular dynamics (RNEMD) method calculates
14     the shear viscosity of a fluid by imposing a nonphysical exchange of
15     momentum and measuring the resulting shear velocity gradient. In this
16     study we investigate the range of momentum flux values over which RNEMD
17     yields usable (linear) velocity gradients. We find that nonlinear
18     velocity profiles result primarily from gradients in fluid temperature
19     and density. The temperature gradient results from conversion of heat
20     into bulk kinetic energy, which is transformed back into heat elsewhere
21     via viscous heating. An expression is derived to predict the
22     temperature profile resulting from a specified momentum flux for a
23     given fluid and simulation cell. Although primarily bounded above, we
24     also describe milder low-flux limitations. RNEMD results for a
25     Lennard-Jones fluid agree with equilibrium molecular dynamics and
26     conventional nonequilibrium molecular dynamics calculations at low
27     shear, but RNEMD underpredicts viscosity relative to conventional NEMD
28     at high shear.}},
29     Address = {{CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA}},
30     Affiliation = {{Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.}},
31     Article-Number = {{014103}},
32     Author = {Tenney, Craig M. and Maginn, Edward J.},
33     Author-Email = {{ed@nd.edu}},
34     Date-Added = {2010-03-09 13:08:41 -0500},
35     Date-Modified = {2010-03-09 13:08:41 -0500},
36     Doc-Delivery-Number = {{542DQ}},
37     Doi = {{10.1063/1.3276454}},
38     Funding-Acknowledgement = {{U.S. Department of Energy {[}DE-FG36-08G088020]}},
39     Funding-Text = {{Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)}},
40     Issn = {{0021-9606}},
41     Journal = {{JOURNAL OF CHEMICAL PHYSICS}},
42     Journal-Iso = {{J. Chem. Phys.}},
43     Keywords = {{Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity}},
44     Keywords-Plus = {{CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE}},
45     Language = {{English}},
46     Month = {{JAN 7}},
47     Number = {{1}},
48     Number-Of-Cited-References = {{20}},
49     Publisher = {{AMER INST PHYSICS}},
50     Subject-Category = {{Physics, Atomic, Molecular \& Chemical}},
51     Times-Cited = {{0}},
52     Title = {{Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics}},
53     Type = {{Article}},
54     Unique-Id = {{ISI:000273472300004}},
55     Volume = {{132}},
56     Year = {{2010}},
57     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454%7D}}
58    
59 skuang 3563 @article{ISI:A1992HX37800010,
60     Abstract = {{The regrowth velocity of a crystal from a melt depends on contributions
61     from the thermal conductivity, heat gradient, and latent heat. The
62     relative contributions of these terms to the regrowth velocity of the
63     pure metals copper and gold during liquid-phase epitaxy are evaluated.
64     These results are used to explain how results from previous
65     nonequilibrium molecular-dynamics simulations using classical
66     potentials are able to predict regrowth velocities that are close to
67     the experimental values. Results from equilibrium molecular dynamics
68     showing the nature of the solid-vapor interface of an
69     embedded-atom-method-modeled Cu57Ni43 alloy at a temperature
70     corresponding to 62\% of the melting point are presented. The regrowth
71     of this alloy following a simulation of a laser-processing experiment
72     is also given, with use of nonequilibrium molecular-dynamics
73     techniques. The thermal conductivity and temperature gradient in the
74     simulation of the alloy are compared to those for the pure metals.}},
75     Address = {{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}},
76     Affiliation = {{CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.}},
77     Author = {RICHARDSON, CF and CLANCY, P},
78     Date-Added = {2010-01-12 16:17:33 -0500},
79     Date-Modified = {2010-01-12 16:17:33 -0500},
80     Doc-Delivery-Number = {{HX378}},
81     Issn = {{0163-1829}},
82     Journal = {{PHYSICAL REVIEW B}},
83     Journal-Iso = {{Phys. Rev. B}},
84     Keywords-Plus = {{SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI}},
85     Language = {{English}},
86     Month = {{JUN 1}},
87     Number = {{21}},
88     Number-Of-Cited-References = {{24}},
89     Pages = {{12260-12268}},
90     Publisher = {{AMERICAN PHYSICAL SOC}},
91     Subject-Category = {{Physics, Condensed Matter}},
92     Times-Cited = {{11}},
93     Title = {{CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS}},
94     Type = {{Article}},
95     Unique-Id = {{ISI:A1992HX37800010}},
96     Volume = {{45}},
97     Year = {{1992}}}
98    
99     @article{ISI:000090151400044,
100     Abstract = {{We have applied a new nonequilibrium molecular dynamics (NEMD) method
101     {[}F. Muller-Plathe, J. Chem. Phys. 106, 6082 (1997)] previously
102     applied to monatomic Lennard-Jones fluids in the determination of the
103     thermal conductivity of molecular fluids. The method was modified in
104     order to be applicable to systems with holonomic constraints. Because
105     the method involves imposing a known heat flux it is particularly
106     attractive for systems involving long-range and many-body interactions
107     where calculation of the microscopic heat flux is difficult. The
108     predicted thermal conductivities of liquid n-butane and water using the
109     imposed-flux NEMD method were found to be in a good agreement with
110     previous simulations and experiment. (C) 2000 American Institute of
111     Physics. {[}S0021-9606(00)50841-1].}},
112     Address = {{2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA}},
113     Affiliation = {{Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.}},
114     Author = {Bedrov, D and Smith, GD},
115     Date-Added = {2009-11-05 18:21:18 -0500},
116     Date-Modified = {2009-11-05 18:21:18 -0500},
117     Doc-Delivery-Number = {{369BF}},
118     Issn = {{0021-9606}},
119     Journal = {{JOURNAL OF CHEMICAL PHYSICS}},
120     Journal-Iso = {{J. Chem. Phys.}},
121     Keywords-Plus = {{EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER}},
122     Language = {{English}},
123     Month = {{NOV 8}},
124     Number = {{18}},
125     Number-Of-Cited-References = {{26}},
126     Pages = {{8080-8084}},
127     Publisher = {{AMER INST PHYSICS}},
128     Subject-Category = {{Physics, Atomic, Molecular \& Chemical}},
129     Times-Cited = {{23}},
130     Title = {{Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method}},
131     Type = {{Article}},
132     Unique-Id = {{ISI:000090151400044}},
133     Volume = {{113}},
134     Year = {{2000}}}
135    
136     @article{ISI:000231042800044,
137     Abstract = {{The reverse nonequilibrium molecular dynamics method for thermal
138     conductivities is adapted to the investigation of molecular fluids. The
139     method generates a heat flux through the system by suitably exchanging
140     velocities of particles located in different regions. From the
141     resulting temperature gradient, the thermal conductivity is then
142     calculated. Different variants of the algorithm and their combinations
143     with other system parameters are tested: exchange of atomic velocities
144     versus exchange of molecular center-of-mass velocities, different
145     exchange frequencies, molecular models with bond constraints versus
146     models with flexible bonds, united-atom versus all-atom models, and
147     presence versus absence of a thermostat. To help establish the range of
148     applicability, the algorithm is tested on different models of benzene,
149     cyclohexane, water, and n-hexane. We find that the algorithm is robust
150     and that the calculated thermal conductivities are insensitive to
151     variations in its control parameters. The force field, in contrast, has
152     a major influence on the value of the thermal conductivity. While
153     calculated and experimental thermal conductivities fall into the same
154     order of magnitude, in most cases the calculated values are
155     systematically larger. United-atom force fields seem to do better than
156     all-atom force fields, possibly because they remove high-frequency
157     degrees of freedom from the simulation, which, in nature, are
158     quantum-mechanical oscillators in their ground state and do not
159     contribute to heat conduction.}},
160     Address = {{1155 16TH ST, NW, WASHINGTON, DC 20036 USA}},
161     Affiliation = {{Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.}},
162     Author = {Zhang, MM and Lussetti, E and de Souza, LES and Muller-Plathe, F},
163     Date-Added = {2009-11-05 18:17:33 -0500},
164     Date-Modified = {2009-11-05 18:17:33 -0500},
165     Doc-Delivery-Number = {{952YQ}},
166     Doi = {{10.1021/jp0512255}},
167     Issn = {{1520-6106}},
168     Journal = {{JOURNAL OF PHYSICAL CHEMISTRY B}},
169     Journal-Iso = {{J. Phys. Chem. B}},
170     Keywords-Plus = {{LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION}},
171     Language = {{English}},
172     Month = {{AUG 11}},
173     Number = {{31}},
174     Number-Of-Cited-References = {{42}},
175     Pages = {{15060-15067}},
176     Publisher = {{AMER CHEMICAL SOC}},
177     Subject-Category = {{Chemistry, Physical}},
178     Times-Cited = {{17}},
179     Title = {{Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics}},
180     Type = {{Article}},
181     Unique-Id = {{ISI:000231042800044}},
182     Volume = {{109}},
183     Year = {{2005}},
184     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
185    
186     @article{ISI:A1997YC32200056,
187     Abstract = {{Equilibrium molecular dynamics simulations have been carried out in the
188     microcanonical ensemble at 300 and 255 K on the extended simple point
189     charge (SPC/E) model of water {[}Berendsen et al., J. Phys. Chem. 91,
190     6269 (1987)]. In addition to a number of static and dynamic properties,
191     thermal conductivity lambda has been calculated via Green-Kubo
192     integration of the heat current time correlation functions (CF's) in
193     the atomic and molecular formalism, at wave number k=0. The calculated
194     values (0.67 +/- 0.04 W/mK at 300 K and 0.52 +/- 0.03 W/mK at 255 K)
195     are in good agreement with the experimental data (0.61 W/mK at 300 K
196     and 0.49 W/mK at 255 K). A negative long-time tail of the heat current
197     CF, more apparent at 255 K, is responsible for the anomalous decrease
198     of lambda with temperature. An analysis of the dynamical modes
199     contributing to lambda has shown that its value is due to two
200     low-frequency exponential-like modes, a faster collisional mode, with
201     positive contribution, and a slower one, which determines the negative
202     long-time tail. A comparison of the molecular and atomic spectra of the
203     heat current CF has suggested that higher-frequency modes should not
204     contribute to lambda in this temperature range. Generalized thermal
205     diffusivity D-T(k) decreases as a function of k, after an initial minor
206     increase at k = k(min). The k dependence of the generalized
207     thermodynamic properties has been calculated in the atomic and
208     molecular formalisms. The observed differences have been traced back to
209     intramolecular or intermolecular rotational effects and related to the
210     partial structure functions. Finally, from the results we calculated it
211     appears that the SPC/E model gives results in better agreement with
212     experimental data than the transferable intermolecular potential with
213     four points TIP4P water model {[}Jorgensen et al., J. Chem. Phys. 79,
214     926 (1983)], with a larger improvement for, e.g., diffusion,
215     viscosities, and dielectric properties and a smaller one for thermal
216     conductivity. The SPC/E model shares, to a smaller extent, the
217     insufficient slowing down of dynamics at low temperature already found
218     for the TIP4P water model.}},
219     Address = {{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}},
220     Affiliation = {{UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.}},
221     Author = {Bertolini, D and Tani, A},
222     Date-Added = {2009-10-30 15:41:21 -0400},
223     Date-Modified = {2009-10-30 15:41:21 -0400},
224     Doc-Delivery-Number = {{YC322}},
225     Issn = {{1063-651X}},
226     Journal = {{PHYSICAL REVIEW E}},
227     Journal-Iso = {{Phys. Rev. E}},
228     Keywords-Plus = {{TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS}},
229     Language = {{English}},
230     Month = {{OCT}},
231     Number = {{4}},
232     Number-Of-Cited-References = {{35}},
233     Pages = {{4135-4151}},
234     Publisher = {{AMERICAN PHYSICAL SOC}},
235     Subject-Category = {{Physics, Fluids \& Plasmas; Physics, Mathematical}},
236     Times-Cited = {{18}},
237     Title = {{Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results}},
238     Type = {{Article}},
239     Unique-Id = {{ISI:A1997YC32200056}},
240     Volume = {{56}},
241     Year = {{1997}}}
242    
243 skuang 3532 @article{Meineke:2005gd,
244     Abstract = {OOPSE is a new molecular dynamics simulation program that is capable of efficiently integrating equations of motion for atom types with orientational degrees of freedom (e.g. "sticky" atoms and point dipoles). Transition metals can also be simulated using the embedded atom method (EAM) potential included in the code. Parallel simulations are carried out using the force-based decomposition method. Simulations are specified using a very simple C-based meta-data language. A number of advanced integrators are included, and the basic integrator for orientational dynamics provides substantial improvements over older quaternion-based schemes. (C) 2004 Wiley Periodicals, Inc.},
245     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
246     Author = {Meineke, MA and Vardeman, CF and Lin, T and Fennell, CJ and Gezelter, JD},
247     Date-Added = {2009-10-01 18:43:03 -0400},
248     Date-Modified = {2009-10-01 18:43:03 -0400},
249     Doi = {DOI 10.1002/jcc.20161},
250     Isi = {000226558200006},
251     Isi-Recid = {142688207},
252     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
253     Journal = {Journal of Computational Chemistry},
254     Keywords = {OOPSE; molecular dynamics},
255     Month = feb,
256     Number = {3},
257     Pages = {252-271},
258     Publisher = {JOHN WILEY \& SONS INC},
259     Times-Cited = {9},
260     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
261     Volume = {26},
262     Year = {2005},
263     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006}}
264    
265     @article{ISI:000080382700030,
266     Abstract = {{A nonequilibrium method for calculating the shear viscosity is
267     presented. It reverses the cause-and-effect picture customarily used in
268     nonequilibrium molecular dynamics: the effect, the momentum flux or
269     stress, is imposed, whereas the cause, the velocity gradient or shear
270     rate, is obtained from the simulation. It differs from other
271     Norton-ensemble methods by the way in which the steady-state momentum
272     flux is maintained. This method involves a simple exchange of particle
273     momenta, which is easy to implement. Moreover, it can be made to
274     conserve the total energy as well as the total linear momentum, so no
275     coupling to an external temperature bath is needed. The resulting raw
276     data, the velocity profile, is a robust and rapidly converging
277     property. The method is tested on the Lennard-Jones fluid near its
278     triple point. It yields a viscosity of 3.2-3.3, in Lennard-Jones
279     reduced units, in agreement with literature results.
280     {[}S1063-651X(99)03105-0].}},
281     Address = {{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}},
282     Affiliation = {{Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.}},
283     Author = {Muller-Plathe, F},
284     Date-Added = {2009-10-01 14:07:30 -0400},
285     Date-Modified = {2009-10-01 14:07:30 -0400},
286     Doc-Delivery-Number = {{197TX}},
287     Issn = {{1063-651X}},
288     Journal = {{PHYSICAL REVIEW E}},
289     Journal-Iso = {{Phys. Rev. E}},
290     Language = {{English}},
291     Month = {{MAY}},
292     Number = {{5, Part A}},
293     Number-Of-Cited-References = {{17}},
294     Pages = {{4894-4898}},
295     Publisher = {{AMERICAN PHYSICAL SOC}},
296     Subject-Category = {{Physics, Fluids \& Plasmas; Physics, Mathematical}},
297     Times-Cited = {{57}},
298     Title = {{Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids}},
299     Type = {{Article}},
300     Unique-Id = {{ISI:000080382700030}},
301     Volume = {{59}},
302     Year = {{1999}}}
303    
304 skuang 3528 @article{ISI:000246190100032,
305     Abstract = {{Atomistic simulations are conducted to examine the dependence of the
306     viscosity of 1-ethyl-3-methylimidazolium
307     bis(trifluoromethanesulfonyl)imide on temperature and water content. A
308     nonequilibrium molecular dynamics procedure is utilized along with an
309     established fixed charge force field. It is found that the simulations
310     quantitatively capture the temperature dependence of the viscosity as
311     well as the drop in viscosity that occurs with increasing water
312     content. Using mixture viscosity models, we show that the relative drop
313     in viscosity with water content is actually less than that that would
314     be predicted for an ideal system. This finding is at odds with the
315     popular notion that small amounts of water cause an unusually large
316     drop in the viscosity of ionic liquids. The simulations suggest that,
317     due to preferential association of water with anions and the formation
318     of water clusters, the excess molar volume is negative. This means that
319     dissolved water is actually less effective at lowering the viscosity of
320     these mixtures when compared to a solute obeying ideal mixing behavior.
321     The use of a nonequilibrium simulation technique enables diffusive
322     behavior to be observed on the time scale of the simulations, and
323     standard equilibrium molecular dynamics resulted in sub-diffusive
324     behavior even over 2 ns of simulation time.}},
325     Address = {{1155 16TH ST, NW, WASHINGTON, DC 20036 USA}},
326     Affiliation = {{Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.}},
327     Author = {Kelkar, Manish S. and Maginn, Edward J.},
328     Author-Email = {{ed@nd.edu}},
329     Date-Added = {2009-09-29 17:07:17 -0400},
330     Date-Modified = {2009-09-29 17:07:17 -0400},
331     Doc-Delivery-Number = {{163VA}},
332     Doi = {{10.1021/jp0686893}},
333     Issn = {{1520-6106}},
334     Journal = {{JOURNAL OF PHYSICAL CHEMISTRY B}},
335     Journal-Iso = {{J. Phys. Chem. B}},
336     Keywords-Plus = {{MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE}},
337     Language = {{English}},
338     Month = {{MAY 10}},
339     Number = {{18}},
340     Number-Of-Cited-References = {{57}},
341     Pages = {{4867-4876}},
342     Publisher = {{AMER CHEMICAL SOC}},
343     Subject-Category = {{Chemistry, Physical}},
344     Times-Cited = {{35}},
345     Title = {{Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations}},
346     Type = {{Article}},
347     Unique-Id = {{ISI:000246190100032}},
348     Volume = {{111}},
349     Year = {{2007}},
350     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D}}
351    
352 skuang 3527 @article{MullerPlathe:1997xw,
353     Abstract = {A nonequilibrium molecular dynamics method for calculating the thermal conductivity is presented. It reverses the usual cause and effect picture. The ''effect,'' the heat flux, is imposed on the system and the ''cause,'' the temperature gradient is obtained from the simulation. Besides being very simple to implement, the scheme offers several advantages such as compatibility with periodic boundary conditions, conservation of total energy and total linear momentum, and the sampling of a rapidly converging quantity (temperature gradient) rather than a slowly converging one (heat flux). The scheme is tested on the Lennard-Jones fluid. (C) 1997 American Institute of Physics.},
354     Address = {WOODBURY},
355     Author = {MullerPlathe, F.},
356     Cited-Reference-Count = {13},
357     Date = {APR 8},
358     Date-Added = {2009-09-21 16:51:21 -0400},
359     Date-Modified = {2009-09-21 16:51:21 -0400},
360     Document-Type = {Article},
361     Isi = {ISI:A1997WR62000032},
362     Isi-Document-Delivery-Number = {WR620},
363     Iso-Source-Abbreviation = {J. Chem. Phys.},
364     Issn = {0021-9606},
365     Journal = {JOURNAL OF CHEMICAL PHYSICS},
366     Language = {English},
367     Month = {Apr},
368     Number = {14},
369     Page-Count = {4},
370     Pages = {6082--6085},
371     Publication-Type = {J},
372     Publisher = {AMER INST PHYSICS},
373     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
374     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
375     Source = {J CHEM PHYS},
376     Subject-Category = {Physics, Atomic, Molecular & Chemical},
377     Times-Cited = {106},
378     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
379     Volume = {106},
380     Year = {1997}}
381    
382     @article{Muller-Plathe:1999ek,
383     Abstract = {A novel non-equilibrium method for calculating transport coefficients is presented. It reverses the experimental cause-and-effect picture, e.g. for the calculation of viscosities: the effect, the momentum flux or stress, is imposed, whereas the cause, the velocity gradient or shear rates, is obtained from the simulation. It differs from other Norton-ensemble methods by the way, in which the steady-state fluxes are maintained. This method involves a simple exchange of particle momenta, which is easy to implement and to analyse. Moreover, it can be made to conserve the total energy as well as the total linear momentum, so no thermostatting is needed. The resulting raw data are robust and rapidly converging. The method is tested on the calculation of the shear viscosity, the thermal conductivity and the Soret coefficient (thermal diffusion) for the Lennard-Jones (LJ) fluid near its triple point. Possible applications to other transport coefficients and more complicated systems are discussed. (C) 1999 Elsevier Science Ltd. All rights reserved.},
384     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
385     Author = {Muller-Plathe, F and Reith, D},
386     Date-Added = {2009-09-21 16:47:07 -0400},
387     Date-Modified = {2009-09-21 16:47:07 -0400},
388     Isi = {000082266500004},
389     Isi-Recid = {111564960},
390     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
391     Journal = {Computational and Theoretical Polymer Science},
392     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
393     Number = {3-4},
394     Pages = {203-209},
395     Publisher = {ELSEVIER SCI LTD},
396     Times-Cited = {15},
397     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
398     Volume = {9},
399     Year = {1999},
400     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
401    
402     @article{Viscardy:2007lq,
403     Abstract = {The thermal conductivity is calculated with the Helfand-moment method in the Lennard-Jones fluid near the triple point. The Helfand moment of thermal conductivity is here derived for molecular dynamics with periodic boundary conditions. Thermal conductivity is given by a generalized Einstein relation with this Helfand moment. The authors compute thermal conductivity by this new method and compare it with their own values obtained by the standard Green-Kubo method. The agreement is excellent. (C) 2007 American Institute of Physics.},
404     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
405     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
406     Date-Added = {2009-09-21 16:37:20 -0400},
407     Date-Modified = {2009-09-21 16:37:20 -0400},
408     Doi = {DOI 10.1063/1.2724821},
409     Isi = {000246453900035},
410     Isi-Recid = {156192451},
411     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
412     Journal = {Journal of Chemical Physics},
413     Month = may,
414     Number = {18},
415     Publisher = {AMER INST PHYSICS},
416     Times-Cited = {3},
417     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
418     Volume = {126},
419     Year = {2007},
420     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035}}
421    
422     @article{Viscardy:2007bh,
423     Abstract = {The authors propose a new method, the Helfand-moment method, to compute the shear viscosity by equilibrium molecular dynamics in periodic systems. In this method, the shear viscosity is written as an Einstein-type relation in terms of the variance of the so-called Helfand moment. This quantity is modified in order to satisfy systems with periodic boundary conditions usually considered in molecular dynamics. They calculate the shear viscosity in the Lennard-Jones fluid near the triple point thanks to this new technique. They show that the results of the Helfand-moment method are in excellent agreement with the results of the standard Green-Kubo method. (C) 2007 American Institute of Physics.},
424     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
425     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
426     Date-Added = {2009-09-21 16:37:19 -0400},
427     Date-Modified = {2009-09-21 16:37:19 -0400},
428     Doi = {DOI 10.1063/1.2724820},
429     Isi = {000246453900034},
430     Isi-Recid = {156192449},
431     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
432     Journal = {Journal of Chemical Physics},
433     Month = may,
434     Number = {18},
435     Publisher = {AMER INST PHYSICS},
436     Times-Cited = {1},
437     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
438     Volume = {126},
439     Year = {2007},
440     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034}}