ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nivsRnemd/nivsRnemd.bib
Revision: 3573
Committed: Thu Mar 11 23:41:33 2010 UTC (14 years, 4 months ago) by skuang
File size: 29596 byte(s)
Log Message:
rearrange some parts

File Contents

# User Rev Content
1 skuang 3527 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 skuang 3573 %% Created for Shenyu Kuang at 2010-03-11 15:35:18 -0500
6 skuang 3527
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11    
12 skuang 3573 @article{ISI:000167766600035,
13     Abstract = {{Molecular dynamics simulations are used to investigate the separation
14     of water films adjacent to a hot metal surface. The simulations clearly
15     show that the water layers nearest the surface overheat and undergo
16     explosive boiling. For thick films, the expansion of the vaporized
17     molecules near the surface forces the outer water layers to move away
18     from the surface. These results are of interest for mass spectrometry
19     of biological molecules, steam cleaning of surfaces, and medical
20     procedures.}},
21     Address = {{1155 16TH ST, NW, WASHINGTON, DC 20036 USA}},
22     Affiliation = {{Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.}},
23     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
24     Date-Added = {2010-03-11 15:32:14 -0500},
25     Date-Modified = {2010-03-11 15:32:14 -0500},
26     Doc-Delivery-Number = {{416ED}},
27     Issn = {{1089-5639}},
28     Journal = {{JOURNAL OF PHYSICAL CHEMISTRY A}},
29     Journal-Iso = {{J. Phys. Chem. A}},
30     Keywords-Plus = {{MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER}},
31     Language = {{English}},
32     Month = {{MAR 29}},
33     Number = {{12}},
34     Number-Of-Cited-References = {{65}},
35     Pages = {{2748-2755}},
36     Publisher = {{AMER CHEMICAL SOC}},
37     Subject-Category = {{Chemistry, Physical; Physics, Atomic, Molecular \& Chemical}},
38     Times-Cited = {{66}},
39     Title = {{Explosive boiling of water films adjacent to heated surfaces: A microscopic description}},
40     Type = {{Article}},
41     Unique-Id = {{ISI:000167766600035}},
42     Volume = {{105}},
43     Year = {{2001}}}
44    
45 skuang 3565 @article{ISI:000273472300004,
46     Abstract = {{The reverse nonequilibrium molecular dynamics (RNEMD) method calculates
47     the shear viscosity of a fluid by imposing a nonphysical exchange of
48     momentum and measuring the resulting shear velocity gradient. In this
49     study we investigate the range of momentum flux values over which RNEMD
50     yields usable (linear) velocity gradients. We find that nonlinear
51     velocity profiles result primarily from gradients in fluid temperature
52     and density. The temperature gradient results from conversion of heat
53     into bulk kinetic energy, which is transformed back into heat elsewhere
54     via viscous heating. An expression is derived to predict the
55     temperature profile resulting from a specified momentum flux for a
56     given fluid and simulation cell. Although primarily bounded above, we
57     also describe milder low-flux limitations. RNEMD results for a
58     Lennard-Jones fluid agree with equilibrium molecular dynamics and
59     conventional nonequilibrium molecular dynamics calculations at low
60     shear, but RNEMD underpredicts viscosity relative to conventional NEMD
61     at high shear.}},
62     Address = {{CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA}},
63     Affiliation = {{Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.}},
64     Article-Number = {{014103}},
65     Author = {Tenney, Craig M. and Maginn, Edward J.},
66     Author-Email = {{ed@nd.edu}},
67     Date-Added = {2010-03-09 13:08:41 -0500},
68     Date-Modified = {2010-03-09 13:08:41 -0500},
69     Doc-Delivery-Number = {{542DQ}},
70     Doi = {{10.1063/1.3276454}},
71     Funding-Acknowledgement = {{U.S. Department of Energy {[}DE-FG36-08G088020]}},
72     Funding-Text = {{Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)}},
73     Issn = {{0021-9606}},
74     Journal = {{JOURNAL OF CHEMICAL PHYSICS}},
75     Journal-Iso = {{J. Chem. Phys.}},
76     Keywords = {{Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity}},
77     Keywords-Plus = {{CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE}},
78     Language = {{English}},
79     Month = {{JAN 7}},
80     Number = {{1}},
81     Number-Of-Cited-References = {{20}},
82     Publisher = {{AMER INST PHYSICS}},
83     Subject-Category = {{Physics, Atomic, Molecular \& Chemical}},
84     Times-Cited = {{0}},
85     Title = {{Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics}},
86     Type = {{Article}},
87     Unique-Id = {{ISI:000273472300004}},
88     Volume = {{132}},
89     Year = {{2010}},
90     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454%7D}}
91    
92 skuang 3563 @article{ISI:A1992HX37800010,
93     Abstract = {{The regrowth velocity of a crystal from a melt depends on contributions
94     from the thermal conductivity, heat gradient, and latent heat. The
95     relative contributions of these terms to the regrowth velocity of the
96     pure metals copper and gold during liquid-phase epitaxy are evaluated.
97     These results are used to explain how results from previous
98     nonequilibrium molecular-dynamics simulations using classical
99     potentials are able to predict regrowth velocities that are close to
100     the experimental values. Results from equilibrium molecular dynamics
101     showing the nature of the solid-vapor interface of an
102     embedded-atom-method-modeled Cu57Ni43 alloy at a temperature
103     corresponding to 62\% of the melting point are presented. The regrowth
104     of this alloy following a simulation of a laser-processing experiment
105     is also given, with use of nonequilibrium molecular-dynamics
106     techniques. The thermal conductivity and temperature gradient in the
107     simulation of the alloy are compared to those for the pure metals.}},
108     Address = {{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}},
109     Affiliation = {{CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.}},
110     Author = {RICHARDSON, CF and CLANCY, P},
111     Date-Added = {2010-01-12 16:17:33 -0500},
112     Date-Modified = {2010-01-12 16:17:33 -0500},
113     Doc-Delivery-Number = {{HX378}},
114     Issn = {{0163-1829}},
115     Journal = {{PHYSICAL REVIEW B}},
116     Journal-Iso = {{Phys. Rev. B}},
117     Keywords-Plus = {{SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI}},
118     Language = {{English}},
119     Month = {{JUN 1}},
120     Number = {{21}},
121     Number-Of-Cited-References = {{24}},
122     Pages = {{12260-12268}},
123     Publisher = {{AMERICAN PHYSICAL SOC}},
124     Subject-Category = {{Physics, Condensed Matter}},
125     Times-Cited = {{11}},
126     Title = {{CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS}},
127     Type = {{Article}},
128     Unique-Id = {{ISI:A1992HX37800010}},
129     Volume = {{45}},
130     Year = {{1992}}}
131    
132     @article{ISI:000090151400044,
133     Abstract = {{We have applied a new nonequilibrium molecular dynamics (NEMD) method
134     {[}F. Muller-Plathe, J. Chem. Phys. 106, 6082 (1997)] previously
135     applied to monatomic Lennard-Jones fluids in the determination of the
136     thermal conductivity of molecular fluids. The method was modified in
137     order to be applicable to systems with holonomic constraints. Because
138     the method involves imposing a known heat flux it is particularly
139     attractive for systems involving long-range and many-body interactions
140     where calculation of the microscopic heat flux is difficult. The
141     predicted thermal conductivities of liquid n-butane and water using the
142     imposed-flux NEMD method were found to be in a good agreement with
143     previous simulations and experiment. (C) 2000 American Institute of
144     Physics. {[}S0021-9606(00)50841-1].}},
145     Address = {{2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA}},
146     Affiliation = {{Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.}},
147     Author = {Bedrov, D and Smith, GD},
148     Date-Added = {2009-11-05 18:21:18 -0500},
149     Date-Modified = {2009-11-05 18:21:18 -0500},
150     Doc-Delivery-Number = {{369BF}},
151     Issn = {{0021-9606}},
152     Journal = {{JOURNAL OF CHEMICAL PHYSICS}},
153     Journal-Iso = {{J. Chem. Phys.}},
154     Keywords-Plus = {{EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER}},
155     Language = {{English}},
156     Month = {{NOV 8}},
157     Number = {{18}},
158     Number-Of-Cited-References = {{26}},
159     Pages = {{8080-8084}},
160     Publisher = {{AMER INST PHYSICS}},
161     Subject-Category = {{Physics, Atomic, Molecular \& Chemical}},
162     Times-Cited = {{23}},
163     Title = {{Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method}},
164     Type = {{Article}},
165     Unique-Id = {{ISI:000090151400044}},
166     Volume = {{113}},
167     Year = {{2000}}}
168    
169     @article{ISI:000231042800044,
170     Abstract = {{The reverse nonequilibrium molecular dynamics method for thermal
171     conductivities is adapted to the investigation of molecular fluids. The
172     method generates a heat flux through the system by suitably exchanging
173     velocities of particles located in different regions. From the
174     resulting temperature gradient, the thermal conductivity is then
175     calculated. Different variants of the algorithm and their combinations
176     with other system parameters are tested: exchange of atomic velocities
177     versus exchange of molecular center-of-mass velocities, different
178     exchange frequencies, molecular models with bond constraints versus
179     models with flexible bonds, united-atom versus all-atom models, and
180     presence versus absence of a thermostat. To help establish the range of
181     applicability, the algorithm is tested on different models of benzene,
182     cyclohexane, water, and n-hexane. We find that the algorithm is robust
183     and that the calculated thermal conductivities are insensitive to
184     variations in its control parameters. The force field, in contrast, has
185     a major influence on the value of the thermal conductivity. While
186     calculated and experimental thermal conductivities fall into the same
187     order of magnitude, in most cases the calculated values are
188     systematically larger. United-atom force fields seem to do better than
189     all-atom force fields, possibly because they remove high-frequency
190     degrees of freedom from the simulation, which, in nature, are
191     quantum-mechanical oscillators in their ground state and do not
192     contribute to heat conduction.}},
193     Address = {{1155 16TH ST, NW, WASHINGTON, DC 20036 USA}},
194     Affiliation = {{Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.}},
195     Author = {Zhang, MM and Lussetti, E and de Souza, LES and Muller-Plathe, F},
196     Date-Added = {2009-11-05 18:17:33 -0500},
197     Date-Modified = {2009-11-05 18:17:33 -0500},
198     Doc-Delivery-Number = {{952YQ}},
199     Doi = {{10.1021/jp0512255}},
200     Issn = {{1520-6106}},
201     Journal = {{JOURNAL OF PHYSICAL CHEMISTRY B}},
202     Journal-Iso = {{J. Phys. Chem. B}},
203     Keywords-Plus = {{LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION}},
204     Language = {{English}},
205     Month = {{AUG 11}},
206     Number = {{31}},
207     Number-Of-Cited-References = {{42}},
208     Pages = {{15060-15067}},
209     Publisher = {{AMER CHEMICAL SOC}},
210     Subject-Category = {{Chemistry, Physical}},
211     Times-Cited = {{17}},
212     Title = {{Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics}},
213     Type = {{Article}},
214     Unique-Id = {{ISI:000231042800044}},
215     Volume = {{109}},
216     Year = {{2005}},
217     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
218    
219     @article{ISI:A1997YC32200056,
220     Abstract = {{Equilibrium molecular dynamics simulations have been carried out in the
221     microcanonical ensemble at 300 and 255 K on the extended simple point
222     charge (SPC/E) model of water {[}Berendsen et al., J. Phys. Chem. 91,
223     6269 (1987)]. In addition to a number of static and dynamic properties,
224     thermal conductivity lambda has been calculated via Green-Kubo
225     integration of the heat current time correlation functions (CF's) in
226     the atomic and molecular formalism, at wave number k=0. The calculated
227     values (0.67 +/- 0.04 W/mK at 300 K and 0.52 +/- 0.03 W/mK at 255 K)
228     are in good agreement with the experimental data (0.61 W/mK at 300 K
229     and 0.49 W/mK at 255 K). A negative long-time tail of the heat current
230     CF, more apparent at 255 K, is responsible for the anomalous decrease
231     of lambda with temperature. An analysis of the dynamical modes
232     contributing to lambda has shown that its value is due to two
233     low-frequency exponential-like modes, a faster collisional mode, with
234     positive contribution, and a slower one, which determines the negative
235     long-time tail. A comparison of the molecular and atomic spectra of the
236     heat current CF has suggested that higher-frequency modes should not
237     contribute to lambda in this temperature range. Generalized thermal
238     diffusivity D-T(k) decreases as a function of k, after an initial minor
239     increase at k = k(min). The k dependence of the generalized
240     thermodynamic properties has been calculated in the atomic and
241     molecular formalisms. The observed differences have been traced back to
242     intramolecular or intermolecular rotational effects and related to the
243     partial structure functions. Finally, from the results we calculated it
244     appears that the SPC/E model gives results in better agreement with
245     experimental data than the transferable intermolecular potential with
246     four points TIP4P water model {[}Jorgensen et al., J. Chem. Phys. 79,
247     926 (1983)], with a larger improvement for, e.g., diffusion,
248     viscosities, and dielectric properties and a smaller one for thermal
249     conductivity. The SPC/E model shares, to a smaller extent, the
250     insufficient slowing down of dynamics at low temperature already found
251     for the TIP4P water model.}},
252     Address = {{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}},
253     Affiliation = {{UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.}},
254     Author = {Bertolini, D and Tani, A},
255     Date-Added = {2009-10-30 15:41:21 -0400},
256     Date-Modified = {2009-10-30 15:41:21 -0400},
257     Doc-Delivery-Number = {{YC322}},
258     Issn = {{1063-651X}},
259     Journal = {{PHYSICAL REVIEW E}},
260     Journal-Iso = {{Phys. Rev. E}},
261     Keywords-Plus = {{TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS}},
262     Language = {{English}},
263     Month = {{OCT}},
264     Number = {{4}},
265     Number-Of-Cited-References = {{35}},
266     Pages = {{4135-4151}},
267     Publisher = {{AMERICAN PHYSICAL SOC}},
268     Subject-Category = {{Physics, Fluids \& Plasmas; Physics, Mathematical}},
269     Times-Cited = {{18}},
270     Title = {{Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results}},
271     Type = {{Article}},
272     Unique-Id = {{ISI:A1997YC32200056}},
273     Volume = {{56}},
274     Year = {{1997}}}
275    
276 skuang 3532 @article{Meineke:2005gd,
277     Abstract = {OOPSE is a new molecular dynamics simulation program that is capable of efficiently integrating equations of motion for atom types with orientational degrees of freedom (e.g. "sticky" atoms and point dipoles). Transition metals can also be simulated using the embedded atom method (EAM) potential included in the code. Parallel simulations are carried out using the force-based decomposition method. Simulations are specified using a very simple C-based meta-data language. A number of advanced integrators are included, and the basic integrator for orientational dynamics provides substantial improvements over older quaternion-based schemes. (C) 2004 Wiley Periodicals, Inc.},
278     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
279     Author = {Meineke, MA and Vardeman, CF and Lin, T and Fennell, CJ and Gezelter, JD},
280     Date-Added = {2009-10-01 18:43:03 -0400},
281     Date-Modified = {2009-10-01 18:43:03 -0400},
282     Doi = {DOI 10.1002/jcc.20161},
283     Isi = {000226558200006},
284     Isi-Recid = {142688207},
285     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
286     Journal = {Journal of Computational Chemistry},
287     Keywords = {OOPSE; molecular dynamics},
288     Month = feb,
289     Number = {3},
290     Pages = {252-271},
291     Publisher = {JOHN WILEY \& SONS INC},
292     Times-Cited = {9},
293     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
294     Volume = {26},
295     Year = {2005},
296     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006}}
297    
298     @article{ISI:000080382700030,
299 gezelter 3569 Abstract = {A nonequilibrium method for calculating the shear viscosity is
300 skuang 3532 presented. It reverses the cause-and-effect picture customarily used in
301     nonequilibrium molecular dynamics: the effect, the momentum flux or
302     stress, is imposed, whereas the cause, the velocity gradient or shear
303     rate, is obtained from the simulation. It differs from other
304     Norton-ensemble methods by the way in which the steady-state momentum
305     flux is maintained. This method involves a simple exchange of particle
306     momenta, which is easy to implement. Moreover, it can be made to
307     conserve the total energy as well as the total linear momentum, so no
308     coupling to an external temperature bath is needed. The resulting raw
309     data, the velocity profile, is a robust and rapidly converging
310     property. The method is tested on the Lennard-Jones fluid near its
311     triple point. It yields a viscosity of 3.2-3.3, in Lennard-Jones
312     reduced units, in agreement with literature results.
313 gezelter 3569 {[}S1063-651X(99)03105-0].},
314     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
315     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
316 skuang 3532 Author = {Muller-Plathe, F},
317     Date-Added = {2009-10-01 14:07:30 -0400},
318     Date-Modified = {2009-10-01 14:07:30 -0400},
319 gezelter 3569 Doc-Delivery-Number = {197TX},
320     Issn = {1063-651X},
321     Journal = {PHYSICAL REVIEW E},
322     Journal-Iso = {Phys. Rev. E},
323     Language = {English},
324     Month = {MAY},
325     Number = {5, Part A},
326     Number-Of-Cited-References = {17},
327     Pages = {4894-4898},
328     Publisher = {AMERICAN PHYSICAL SOC},
329     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
330     Times-Cited = {57},
331     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
332     Type = {Article},
333     Unique-Id = {ISI:000080382700030},
334     Volume = {59},
335     Year = {1999}}
336 skuang 3532
337 skuang 3528 @article{ISI:000246190100032,
338 gezelter 3569 Abstract = {Atomistic simulations are conducted to examine the dependence of the
339 skuang 3528 viscosity of 1-ethyl-3-methylimidazolium
340     bis(trifluoromethanesulfonyl)imide on temperature and water content. A
341     nonequilibrium molecular dynamics procedure is utilized along with an
342     established fixed charge force field. It is found that the simulations
343     quantitatively capture the temperature dependence of the viscosity as
344     well as the drop in viscosity that occurs with increasing water
345     content. Using mixture viscosity models, we show that the relative drop
346     in viscosity with water content is actually less than that that would
347     be predicted for an ideal system. This finding is at odds with the
348     popular notion that small amounts of water cause an unusually large
349     drop in the viscosity of ionic liquids. The simulations suggest that,
350     due to preferential association of water with anions and the formation
351     of water clusters, the excess molar volume is negative. This means that
352     dissolved water is actually less effective at lowering the viscosity of
353     these mixtures when compared to a solute obeying ideal mixing behavior.
354     The use of a nonequilibrium simulation technique enables diffusive
355     behavior to be observed on the time scale of the simulations, and
356     standard equilibrium molecular dynamics resulted in sub-diffusive
357 gezelter 3569 behavior even over 2 ns of simulation time.},
358     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
359     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
360 skuang 3528 Author = {Kelkar, Manish S. and Maginn, Edward J.},
361 gezelter 3569 Author-Email = {ed@nd.edu},
362 skuang 3528 Date-Added = {2009-09-29 17:07:17 -0400},
363     Date-Modified = {2009-09-29 17:07:17 -0400},
364 gezelter 3569 Doc-Delivery-Number = {163VA},
365     Doi = {10.1021/jp0686893},
366     Issn = {1520-6106},
367     Journal = {JOURNAL OF PHYSICAL CHEMISTRY B},
368     Journal-Iso = {J. Phys. Chem. B},
369     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
370     Language = {English},
371     Month = {MAY 10},
372     Number = {18},
373     Number-Of-Cited-References = {57},
374     Pages = {4867-4876},
375     Publisher = {AMER CHEMICAL SOC},
376     Subject-Category = {Chemistry, Physical},
377     Times-Cited = {35},
378     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
379     Type = {Article},
380     Unique-Id = {ISI:000246190100032},
381     Volume = {111},
382     Year = {2007},
383 skuang 3528 Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D}}
384    
385 skuang 3527 @article{MullerPlathe:1997xw,
386     Abstract = {A nonequilibrium molecular dynamics method for calculating the thermal conductivity is presented. It reverses the usual cause and effect picture. The ''effect,'' the heat flux, is imposed on the system and the ''cause,'' the temperature gradient is obtained from the simulation. Besides being very simple to implement, the scheme offers several advantages such as compatibility with periodic boundary conditions, conservation of total energy and total linear momentum, and the sampling of a rapidly converging quantity (temperature gradient) rather than a slowly converging one (heat flux). The scheme is tested on the Lennard-Jones fluid. (C) 1997 American Institute of Physics.},
387     Address = {WOODBURY},
388     Author = {MullerPlathe, F.},
389     Cited-Reference-Count = {13},
390     Date = {APR 8},
391     Date-Added = {2009-09-21 16:51:21 -0400},
392     Date-Modified = {2009-09-21 16:51:21 -0400},
393     Document-Type = {Article},
394     Isi = {ISI:A1997WR62000032},
395     Isi-Document-Delivery-Number = {WR620},
396     Iso-Source-Abbreviation = {J. Chem. Phys.},
397     Issn = {0021-9606},
398     Journal = {JOURNAL OF CHEMICAL PHYSICS},
399     Language = {English},
400     Month = {Apr},
401     Number = {14},
402     Page-Count = {4},
403     Pages = {6082--6085},
404     Publication-Type = {J},
405     Publisher = {AMER INST PHYSICS},
406     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
407     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
408     Source = {J CHEM PHYS},
409     Subject-Category = {Physics, Atomic, Molecular & Chemical},
410     Times-Cited = {106},
411     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
412     Volume = {106},
413     Year = {1997}}
414    
415     @article{Muller-Plathe:1999ek,
416     Abstract = {A novel non-equilibrium method for calculating transport coefficients is presented. It reverses the experimental cause-and-effect picture, e.g. for the calculation of viscosities: the effect, the momentum flux or stress, is imposed, whereas the cause, the velocity gradient or shear rates, is obtained from the simulation. It differs from other Norton-ensemble methods by the way, in which the steady-state fluxes are maintained. This method involves a simple exchange of particle momenta, which is easy to implement and to analyse. Moreover, it can be made to conserve the total energy as well as the total linear momentum, so no thermostatting is needed. The resulting raw data are robust and rapidly converging. The method is tested on the calculation of the shear viscosity, the thermal conductivity and the Soret coefficient (thermal diffusion) for the Lennard-Jones (LJ) fluid near its triple point. Possible applications to other transport coefficients and more complicated systems are discussed. (C) 1999 Elsevier Science Ltd. All rights reserved.},
417     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
418     Author = {Muller-Plathe, F and Reith, D},
419     Date-Added = {2009-09-21 16:47:07 -0400},
420     Date-Modified = {2009-09-21 16:47:07 -0400},
421     Isi = {000082266500004},
422     Isi-Recid = {111564960},
423     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
424     Journal = {Computational and Theoretical Polymer Science},
425     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
426     Number = {3-4},
427     Pages = {203-209},
428     Publisher = {ELSEVIER SCI LTD},
429     Times-Cited = {15},
430     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
431     Volume = {9},
432     Year = {1999},
433     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
434    
435     @article{Viscardy:2007lq,
436     Abstract = {The thermal conductivity is calculated with the Helfand-moment method in the Lennard-Jones fluid near the triple point. The Helfand moment of thermal conductivity is here derived for molecular dynamics with periodic boundary conditions. Thermal conductivity is given by a generalized Einstein relation with this Helfand moment. The authors compute thermal conductivity by this new method and compare it with their own values obtained by the standard Green-Kubo method. The agreement is excellent. (C) 2007 American Institute of Physics.},
437     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
438     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
439     Date-Added = {2009-09-21 16:37:20 -0400},
440     Date-Modified = {2009-09-21 16:37:20 -0400},
441     Doi = {DOI 10.1063/1.2724821},
442     Isi = {000246453900035},
443     Isi-Recid = {156192451},
444     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
445     Journal = {Journal of Chemical Physics},
446     Month = may,
447     Number = {18},
448     Publisher = {AMER INST PHYSICS},
449     Times-Cited = {3},
450     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
451     Volume = {126},
452     Year = {2007},
453     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035}}
454    
455     @article{Viscardy:2007bh,
456     Abstract = {The authors propose a new method, the Helfand-moment method, to compute the shear viscosity by equilibrium molecular dynamics in periodic systems. In this method, the shear viscosity is written as an Einstein-type relation in terms of the variance of the so-called Helfand moment. This quantity is modified in order to satisfy systems with periodic boundary conditions usually considered in molecular dynamics. They calculate the shear viscosity in the Lennard-Jones fluid near the triple point thanks to this new technique. They show that the results of the Helfand-moment method are in excellent agreement with the results of the standard Green-Kubo method. (C) 2007 American Institute of Physics.},
457     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
458     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
459     Date-Added = {2009-09-21 16:37:19 -0400},
460     Date-Modified = {2009-09-21 16:37:19 -0400},
461     Doi = {DOI 10.1063/1.2724820},
462     Isi = {000246453900034},
463     Isi-Recid = {156192449},
464     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
465     Journal = {Journal of Chemical Physics},
466     Month = may,
467     Number = {18},
468     Publisher = {AMER INST PHYSICS},
469     Times-Cited = {1},
470     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
471     Volume = {126},
472     Year = {2007},
473     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034}}