ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nivsRnemd/nivsRnemd.bib
Revision: 3580
Committed: Wed Apr 7 16:14:20 2010 UTC (14 years, 3 months ago) by skuang
File size: 32060 byte(s)
Log Message:
add eamGrad plot and result table. modified gold thermal conductivity part.

File Contents

# User Rev Content
1 skuang 3527 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 skuang 3580 %% Created for Shenyu Kuang at 2010-04-07 11:32:04 -0400
6 skuang 3527
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11    
12 skuang 3580 @article{ISI:000207079300006,
13     Abstract = {{Non-equilibrium Molecular Dynamics Simulation methods have been used to
14     study the ability of Embedded Atom Method models of the metals copper
15     and gold to reproduce the equilibrium and non-equilibrium behavior of
16     metals at a stationary and at a moving solid/liquid interface. The
17     equilibrium solid/vapor interface was shown to display a simple
18     termination of the bulk until the temperature of the solid reaches
19     approximate to 90\% of the bulk melting point. At and above such
20     temperatures the systems exhibit a surface disodering known as surface
21     melting. Non-equilibrium simulations emulating the action of a
22     picosecond laser on the metal were performed to determine the regrowth
23     velocity. For copper, the action of a 20 ps laser with an absorbed
24     energy of 2-5 mJ/cm(2) produced a regrowth velocity of 83-100 m/s, in
25     reasonable agreement with the value obtained by experiment (>60 m/s).
26     For gold, similar conditions produced a slower regrowth velocity of 63
27     m/s at an absorbed energy of 5 mJ/cm(2). This is almost a factor of two
28     too low in comparison to experiment (>100 m/s). The regrowth velocities
29     of the metals seems unexpectedly close to experiment considering that
30     the free-electron contribution is ignored in the Embeeded Atom Method
31     models used.}},
32     Address = {{4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND}},
33     Affiliation = {{Clancy, P (Reprint Author), Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA.}},
34     Author = {Richardson, Clifton F. and Clancy, Paulette},
35     Date-Added = {2010-04-07 11:24:36 -0400},
36     Date-Modified = {2010-04-07 11:24:36 -0400},
37     Doc-Delivery-Number = {{V04SY}},
38     Issn = {{0892-7022}},
39     Journal = {{MOLECULAR SIMULATION}},
40     Journal-Iso = {{Mol. Simul.}},
41     Keywords = {{Non-equilibrium computer simulation; molecular dynamics; crystal growth; Embedded Atom Method models of metals}},
42     Language = {{English}},
43     Number = {{5-6}},
44     Number-Of-Cited-References = {{36}},
45     Pages = {{335-355}},
46     Publisher = {{TAYLOR \& FRANCIS LTD}},
47     Subject-Category = {{Chemistry, Physical; Physics, Atomic, Molecular \& Chemical}},
48     Times-Cited = {{7}},
49     Title = {{PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A COMPUTER SIMULATION STUDY}},
50     Type = {{Article}},
51     Unique-Id = {{ISI:000207079300006}},
52     Volume = {{7}},
53     Year = {{1991}}}
54    
55 skuang 3573 @article{ISI:000167766600035,
56     Abstract = {{Molecular dynamics simulations are used to investigate the separation
57     of water films adjacent to a hot metal surface. The simulations clearly
58     show that the water layers nearest the surface overheat and undergo
59     explosive boiling. For thick films, the expansion of the vaporized
60     molecules near the surface forces the outer water layers to move away
61     from the surface. These results are of interest for mass spectrometry
62     of biological molecules, steam cleaning of surfaces, and medical
63     procedures.}},
64     Address = {{1155 16TH ST, NW, WASHINGTON, DC 20036 USA}},
65     Affiliation = {{Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.}},
66     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
67     Date-Added = {2010-03-11 15:32:14 -0500},
68     Date-Modified = {2010-03-11 15:32:14 -0500},
69     Doc-Delivery-Number = {{416ED}},
70     Issn = {{1089-5639}},
71     Journal = {{JOURNAL OF PHYSICAL CHEMISTRY A}},
72     Journal-Iso = {{J. Phys. Chem. A}},
73     Keywords-Plus = {{MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER}},
74     Language = {{English}},
75     Month = {{MAR 29}},
76     Number = {{12}},
77     Number-Of-Cited-References = {{65}},
78     Pages = {{2748-2755}},
79     Publisher = {{AMER CHEMICAL SOC}},
80     Subject-Category = {{Chemistry, Physical; Physics, Atomic, Molecular \& Chemical}},
81     Times-Cited = {{66}},
82     Title = {{Explosive boiling of water films adjacent to heated surfaces: A microscopic description}},
83     Type = {{Article}},
84     Unique-Id = {{ISI:000167766600035}},
85     Volume = {{105}},
86     Year = {{2001}}}
87    
88 skuang 3565 @article{ISI:000273472300004,
89     Abstract = {{The reverse nonequilibrium molecular dynamics (RNEMD) method calculates
90     the shear viscosity of a fluid by imposing a nonphysical exchange of
91     momentum and measuring the resulting shear velocity gradient. In this
92     study we investigate the range of momentum flux values over which RNEMD
93     yields usable (linear) velocity gradients. We find that nonlinear
94     velocity profiles result primarily from gradients in fluid temperature
95     and density. The temperature gradient results from conversion of heat
96     into bulk kinetic energy, which is transformed back into heat elsewhere
97     via viscous heating. An expression is derived to predict the
98     temperature profile resulting from a specified momentum flux for a
99     given fluid and simulation cell. Although primarily bounded above, we
100     also describe milder low-flux limitations. RNEMD results for a
101     Lennard-Jones fluid agree with equilibrium molecular dynamics and
102     conventional nonequilibrium molecular dynamics calculations at low
103     shear, but RNEMD underpredicts viscosity relative to conventional NEMD
104     at high shear.}},
105     Address = {{CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA}},
106     Affiliation = {{Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.}},
107     Article-Number = {{014103}},
108     Author = {Tenney, Craig M. and Maginn, Edward J.},
109     Author-Email = {{ed@nd.edu}},
110     Date-Added = {2010-03-09 13:08:41 -0500},
111     Date-Modified = {2010-03-09 13:08:41 -0500},
112     Doc-Delivery-Number = {{542DQ}},
113     Doi = {{10.1063/1.3276454}},
114     Funding-Acknowledgement = {{U.S. Department of Energy {[}DE-FG36-08G088020]}},
115     Funding-Text = {{Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)}},
116     Issn = {{0021-9606}},
117     Journal = {{JOURNAL OF CHEMICAL PHYSICS}},
118     Journal-Iso = {{J. Chem. Phys.}},
119     Keywords = {{Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity}},
120     Keywords-Plus = {{CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE}},
121     Language = {{English}},
122     Month = {{JAN 7}},
123     Number = {{1}},
124     Number-Of-Cited-References = {{20}},
125     Publisher = {{AMER INST PHYSICS}},
126     Subject-Category = {{Physics, Atomic, Molecular \& Chemical}},
127     Times-Cited = {{0}},
128     Title = {{Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics}},
129     Type = {{Article}},
130     Unique-Id = {{ISI:000273472300004}},
131     Volume = {{132}},
132     Year = {{2010}},
133     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454%7D}}
134    
135 skuang 3563 @article{ISI:A1992HX37800010,
136     Abstract = {{The regrowth velocity of a crystal from a melt depends on contributions
137     from the thermal conductivity, heat gradient, and latent heat. The
138     relative contributions of these terms to the regrowth velocity of the
139     pure metals copper and gold during liquid-phase epitaxy are evaluated.
140     These results are used to explain how results from previous
141     nonequilibrium molecular-dynamics simulations using classical
142     potentials are able to predict regrowth velocities that are close to
143     the experimental values. Results from equilibrium molecular dynamics
144     showing the nature of the solid-vapor interface of an
145     embedded-atom-method-modeled Cu57Ni43 alloy at a temperature
146     corresponding to 62\% of the melting point are presented. The regrowth
147     of this alloy following a simulation of a laser-processing experiment
148     is also given, with use of nonequilibrium molecular-dynamics
149     techniques. The thermal conductivity and temperature gradient in the
150     simulation of the alloy are compared to those for the pure metals.}},
151     Address = {{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}},
152     Affiliation = {{CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.}},
153     Author = {RICHARDSON, CF and CLANCY, P},
154     Date-Added = {2010-01-12 16:17:33 -0500},
155     Date-Modified = {2010-01-12 16:17:33 -0500},
156     Doc-Delivery-Number = {{HX378}},
157     Issn = {{0163-1829}},
158     Journal = {{PHYSICAL REVIEW B}},
159     Journal-Iso = {{Phys. Rev. B}},
160     Keywords-Plus = {{SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI}},
161     Language = {{English}},
162     Month = {{JUN 1}},
163     Number = {{21}},
164     Number-Of-Cited-References = {{24}},
165     Pages = {{12260-12268}},
166     Publisher = {{AMERICAN PHYSICAL SOC}},
167     Subject-Category = {{Physics, Condensed Matter}},
168     Times-Cited = {{11}},
169     Title = {{CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS}},
170     Type = {{Article}},
171     Unique-Id = {{ISI:A1992HX37800010}},
172     Volume = {{45}},
173     Year = {{1992}}}
174    
175     @article{ISI:000090151400044,
176     Abstract = {{We have applied a new nonequilibrium molecular dynamics (NEMD) method
177     {[}F. Muller-Plathe, J. Chem. Phys. 106, 6082 (1997)] previously
178     applied to monatomic Lennard-Jones fluids in the determination of the
179     thermal conductivity of molecular fluids. The method was modified in
180     order to be applicable to systems with holonomic constraints. Because
181     the method involves imposing a known heat flux it is particularly
182     attractive for systems involving long-range and many-body interactions
183     where calculation of the microscopic heat flux is difficult. The
184     predicted thermal conductivities of liquid n-butane and water using the
185     imposed-flux NEMD method were found to be in a good agreement with
186     previous simulations and experiment. (C) 2000 American Institute of
187     Physics. {[}S0021-9606(00)50841-1].}},
188     Address = {{2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA}},
189     Affiliation = {{Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.}},
190     Author = {Bedrov, D and Smith, GD},
191     Date-Added = {2009-11-05 18:21:18 -0500},
192     Date-Modified = {2009-11-05 18:21:18 -0500},
193     Doc-Delivery-Number = {{369BF}},
194     Issn = {{0021-9606}},
195     Journal = {{JOURNAL OF CHEMICAL PHYSICS}},
196     Journal-Iso = {{J. Chem. Phys.}},
197     Keywords-Plus = {{EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER}},
198     Language = {{English}},
199     Month = {{NOV 8}},
200     Number = {{18}},
201     Number-Of-Cited-References = {{26}},
202     Pages = {{8080-8084}},
203     Publisher = {{AMER INST PHYSICS}},
204     Subject-Category = {{Physics, Atomic, Molecular \& Chemical}},
205     Times-Cited = {{23}},
206     Title = {{Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method}},
207     Type = {{Article}},
208     Unique-Id = {{ISI:000090151400044}},
209     Volume = {{113}},
210     Year = {{2000}}}
211    
212     @article{ISI:000231042800044,
213     Abstract = {{The reverse nonequilibrium molecular dynamics method for thermal
214     conductivities is adapted to the investigation of molecular fluids. The
215     method generates a heat flux through the system by suitably exchanging
216     velocities of particles located in different regions. From the
217     resulting temperature gradient, the thermal conductivity is then
218     calculated. Different variants of the algorithm and their combinations
219     with other system parameters are tested: exchange of atomic velocities
220     versus exchange of molecular center-of-mass velocities, different
221     exchange frequencies, molecular models with bond constraints versus
222     models with flexible bonds, united-atom versus all-atom models, and
223     presence versus absence of a thermostat. To help establish the range of
224     applicability, the algorithm is tested on different models of benzene,
225     cyclohexane, water, and n-hexane. We find that the algorithm is robust
226     and that the calculated thermal conductivities are insensitive to
227     variations in its control parameters. The force field, in contrast, has
228     a major influence on the value of the thermal conductivity. While
229     calculated and experimental thermal conductivities fall into the same
230     order of magnitude, in most cases the calculated values are
231     systematically larger. United-atom force fields seem to do better than
232     all-atom force fields, possibly because they remove high-frequency
233     degrees of freedom from the simulation, which, in nature, are
234     quantum-mechanical oscillators in their ground state and do not
235     contribute to heat conduction.}},
236     Address = {{1155 16TH ST, NW, WASHINGTON, DC 20036 USA}},
237     Affiliation = {{Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.}},
238     Author = {Zhang, MM and Lussetti, E and de Souza, LES and Muller-Plathe, F},
239     Date-Added = {2009-11-05 18:17:33 -0500},
240     Date-Modified = {2009-11-05 18:17:33 -0500},
241     Doc-Delivery-Number = {{952YQ}},
242     Doi = {{10.1021/jp0512255}},
243     Issn = {{1520-6106}},
244     Journal = {{JOURNAL OF PHYSICAL CHEMISTRY B}},
245     Journal-Iso = {{J. Phys. Chem. B}},
246     Keywords-Plus = {{LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION}},
247     Language = {{English}},
248     Month = {{AUG 11}},
249     Number = {{31}},
250     Number-Of-Cited-References = {{42}},
251     Pages = {{15060-15067}},
252     Publisher = {{AMER CHEMICAL SOC}},
253     Subject-Category = {{Chemistry, Physical}},
254     Times-Cited = {{17}},
255     Title = {{Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics}},
256     Type = {{Article}},
257     Unique-Id = {{ISI:000231042800044}},
258     Volume = {{109}},
259     Year = {{2005}},
260     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
261    
262     @article{ISI:A1997YC32200056,
263     Abstract = {{Equilibrium molecular dynamics simulations have been carried out in the
264     microcanonical ensemble at 300 and 255 K on the extended simple point
265     charge (SPC/E) model of water {[}Berendsen et al., J. Phys. Chem. 91,
266     6269 (1987)]. In addition to a number of static and dynamic properties,
267     thermal conductivity lambda has been calculated via Green-Kubo
268     integration of the heat current time correlation functions (CF's) in
269     the atomic and molecular formalism, at wave number k=0. The calculated
270     values (0.67 +/- 0.04 W/mK at 300 K and 0.52 +/- 0.03 W/mK at 255 K)
271     are in good agreement with the experimental data (0.61 W/mK at 300 K
272     and 0.49 W/mK at 255 K). A negative long-time tail of the heat current
273     CF, more apparent at 255 K, is responsible for the anomalous decrease
274     of lambda with temperature. An analysis of the dynamical modes
275     contributing to lambda has shown that its value is due to two
276     low-frequency exponential-like modes, a faster collisional mode, with
277     positive contribution, and a slower one, which determines the negative
278     long-time tail. A comparison of the molecular and atomic spectra of the
279     heat current CF has suggested that higher-frequency modes should not
280     contribute to lambda in this temperature range. Generalized thermal
281     diffusivity D-T(k) decreases as a function of k, after an initial minor
282     increase at k = k(min). The k dependence of the generalized
283     thermodynamic properties has been calculated in the atomic and
284     molecular formalisms. The observed differences have been traced back to
285     intramolecular or intermolecular rotational effects and related to the
286     partial structure functions. Finally, from the results we calculated it
287     appears that the SPC/E model gives results in better agreement with
288     experimental data than the transferable intermolecular potential with
289     four points TIP4P water model {[}Jorgensen et al., J. Chem. Phys. 79,
290     926 (1983)], with a larger improvement for, e.g., diffusion,
291     viscosities, and dielectric properties and a smaller one for thermal
292     conductivity. The SPC/E model shares, to a smaller extent, the
293     insufficient slowing down of dynamics at low temperature already found
294     for the TIP4P water model.}},
295     Address = {{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}},
296     Affiliation = {{UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.}},
297     Author = {Bertolini, D and Tani, A},
298     Date-Added = {2009-10-30 15:41:21 -0400},
299     Date-Modified = {2009-10-30 15:41:21 -0400},
300     Doc-Delivery-Number = {{YC322}},
301     Issn = {{1063-651X}},
302     Journal = {{PHYSICAL REVIEW E}},
303     Journal-Iso = {{Phys. Rev. E}},
304     Keywords-Plus = {{TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS}},
305     Language = {{English}},
306     Month = {{OCT}},
307     Number = {{4}},
308     Number-Of-Cited-References = {{35}},
309     Pages = {{4135-4151}},
310     Publisher = {{AMERICAN PHYSICAL SOC}},
311     Subject-Category = {{Physics, Fluids \& Plasmas; Physics, Mathematical}},
312     Times-Cited = {{18}},
313     Title = {{Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results}},
314     Type = {{Article}},
315     Unique-Id = {{ISI:A1997YC32200056}},
316     Volume = {{56}},
317     Year = {{1997}}}
318    
319 skuang 3532 @article{Meineke:2005gd,
320     Abstract = {OOPSE is a new molecular dynamics simulation program that is capable of efficiently integrating equations of motion for atom types with orientational degrees of freedom (e.g. "sticky" atoms and point dipoles). Transition metals can also be simulated using the embedded atom method (EAM) potential included in the code. Parallel simulations are carried out using the force-based decomposition method. Simulations are specified using a very simple C-based meta-data language. A number of advanced integrators are included, and the basic integrator for orientational dynamics provides substantial improvements over older quaternion-based schemes. (C) 2004 Wiley Periodicals, Inc.},
321     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
322     Author = {Meineke, MA and Vardeman, CF and Lin, T and Fennell, CJ and Gezelter, JD},
323     Date-Added = {2009-10-01 18:43:03 -0400},
324     Date-Modified = {2009-10-01 18:43:03 -0400},
325     Doi = {DOI 10.1002/jcc.20161},
326     Isi = {000226558200006},
327     Isi-Recid = {142688207},
328     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
329     Journal = {Journal of Computational Chemistry},
330     Keywords = {OOPSE; molecular dynamics},
331     Month = feb,
332     Number = {3},
333     Pages = {252-271},
334     Publisher = {JOHN WILEY \& SONS INC},
335     Times-Cited = {9},
336     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
337     Volume = {26},
338     Year = {2005},
339     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006}}
340    
341     @article{ISI:000080382700030,
342 gezelter 3569 Abstract = {A nonequilibrium method for calculating the shear viscosity is
343 skuang 3532 presented. It reverses the cause-and-effect picture customarily used in
344     nonequilibrium molecular dynamics: the effect, the momentum flux or
345     stress, is imposed, whereas the cause, the velocity gradient or shear
346     rate, is obtained from the simulation. It differs from other
347     Norton-ensemble methods by the way in which the steady-state momentum
348     flux is maintained. This method involves a simple exchange of particle
349     momenta, which is easy to implement. Moreover, it can be made to
350     conserve the total energy as well as the total linear momentum, so no
351     coupling to an external temperature bath is needed. The resulting raw
352     data, the velocity profile, is a robust and rapidly converging
353     property. The method is tested on the Lennard-Jones fluid near its
354     triple point. It yields a viscosity of 3.2-3.3, in Lennard-Jones
355     reduced units, in agreement with literature results.
356 gezelter 3569 {[}S1063-651X(99)03105-0].},
357     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
358     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
359 skuang 3532 Author = {Muller-Plathe, F},
360     Date-Added = {2009-10-01 14:07:30 -0400},
361     Date-Modified = {2009-10-01 14:07:30 -0400},
362 gezelter 3569 Doc-Delivery-Number = {197TX},
363     Issn = {1063-651X},
364     Journal = {PHYSICAL REVIEW E},
365     Journal-Iso = {Phys. Rev. E},
366     Language = {English},
367     Month = {MAY},
368     Number = {5, Part A},
369     Number-Of-Cited-References = {17},
370     Pages = {4894-4898},
371     Publisher = {AMERICAN PHYSICAL SOC},
372     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
373     Times-Cited = {57},
374     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
375     Type = {Article},
376     Unique-Id = {ISI:000080382700030},
377     Volume = {59},
378     Year = {1999}}
379 skuang 3532
380 skuang 3528 @article{ISI:000246190100032,
381 gezelter 3569 Abstract = {Atomistic simulations are conducted to examine the dependence of the
382 skuang 3528 viscosity of 1-ethyl-3-methylimidazolium
383     bis(trifluoromethanesulfonyl)imide on temperature and water content. A
384     nonequilibrium molecular dynamics procedure is utilized along with an
385     established fixed charge force field. It is found that the simulations
386     quantitatively capture the temperature dependence of the viscosity as
387     well as the drop in viscosity that occurs with increasing water
388     content. Using mixture viscosity models, we show that the relative drop
389     in viscosity with water content is actually less than that that would
390     be predicted for an ideal system. This finding is at odds with the
391     popular notion that small amounts of water cause an unusually large
392     drop in the viscosity of ionic liquids. The simulations suggest that,
393     due to preferential association of water with anions and the formation
394     of water clusters, the excess molar volume is negative. This means that
395     dissolved water is actually less effective at lowering the viscosity of
396     these mixtures when compared to a solute obeying ideal mixing behavior.
397     The use of a nonequilibrium simulation technique enables diffusive
398     behavior to be observed on the time scale of the simulations, and
399     standard equilibrium molecular dynamics resulted in sub-diffusive
400 gezelter 3569 behavior even over 2 ns of simulation time.},
401     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
402     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
403 skuang 3528 Author = {Kelkar, Manish S. and Maginn, Edward J.},
404 gezelter 3569 Author-Email = {ed@nd.edu},
405 skuang 3528 Date-Added = {2009-09-29 17:07:17 -0400},
406     Date-Modified = {2009-09-29 17:07:17 -0400},
407 gezelter 3569 Doc-Delivery-Number = {163VA},
408     Doi = {10.1021/jp0686893},
409     Issn = {1520-6106},
410     Journal = {JOURNAL OF PHYSICAL CHEMISTRY B},
411     Journal-Iso = {J. Phys. Chem. B},
412     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
413     Language = {English},
414     Month = {MAY 10},
415     Number = {18},
416     Number-Of-Cited-References = {57},
417     Pages = {4867-4876},
418     Publisher = {AMER CHEMICAL SOC},
419     Subject-Category = {Chemistry, Physical},
420     Times-Cited = {35},
421     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
422     Type = {Article},
423     Unique-Id = {ISI:000246190100032},
424     Volume = {111},
425     Year = {2007},
426 skuang 3528 Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D}}
427    
428 skuang 3527 @article{MullerPlathe:1997xw,
429     Abstract = {A nonequilibrium molecular dynamics method for calculating the thermal conductivity is presented. It reverses the usual cause and effect picture. The ''effect,'' the heat flux, is imposed on the system and the ''cause,'' the temperature gradient is obtained from the simulation. Besides being very simple to implement, the scheme offers several advantages such as compatibility with periodic boundary conditions, conservation of total energy and total linear momentum, and the sampling of a rapidly converging quantity (temperature gradient) rather than a slowly converging one (heat flux). The scheme is tested on the Lennard-Jones fluid. (C) 1997 American Institute of Physics.},
430     Address = {WOODBURY},
431     Author = {MullerPlathe, F.},
432     Cited-Reference-Count = {13},
433     Date = {APR 8},
434     Date-Added = {2009-09-21 16:51:21 -0400},
435     Date-Modified = {2009-09-21 16:51:21 -0400},
436     Document-Type = {Article},
437     Isi = {ISI:A1997WR62000032},
438     Isi-Document-Delivery-Number = {WR620},
439     Iso-Source-Abbreviation = {J. Chem. Phys.},
440     Issn = {0021-9606},
441     Journal = {JOURNAL OF CHEMICAL PHYSICS},
442     Language = {English},
443     Month = {Apr},
444     Number = {14},
445     Page-Count = {4},
446     Pages = {6082--6085},
447     Publication-Type = {J},
448     Publisher = {AMER INST PHYSICS},
449     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
450     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
451     Source = {J CHEM PHYS},
452     Subject-Category = {Physics, Atomic, Molecular & Chemical},
453     Times-Cited = {106},
454     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
455     Volume = {106},
456     Year = {1997}}
457    
458     @article{Muller-Plathe:1999ek,
459     Abstract = {A novel non-equilibrium method for calculating transport coefficients is presented. It reverses the experimental cause-and-effect picture, e.g. for the calculation of viscosities: the effect, the momentum flux or stress, is imposed, whereas the cause, the velocity gradient or shear rates, is obtained from the simulation. It differs from other Norton-ensemble methods by the way, in which the steady-state fluxes are maintained. This method involves a simple exchange of particle momenta, which is easy to implement and to analyse. Moreover, it can be made to conserve the total energy as well as the total linear momentum, so no thermostatting is needed. The resulting raw data are robust and rapidly converging. The method is tested on the calculation of the shear viscosity, the thermal conductivity and the Soret coefficient (thermal diffusion) for the Lennard-Jones (LJ) fluid near its triple point. Possible applications to other transport coefficients and more complicated systems are discussed. (C) 1999 Elsevier Science Ltd. All rights reserved.},
460     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
461     Author = {Muller-Plathe, F and Reith, D},
462     Date-Added = {2009-09-21 16:47:07 -0400},
463     Date-Modified = {2009-09-21 16:47:07 -0400},
464     Isi = {000082266500004},
465     Isi-Recid = {111564960},
466     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
467     Journal = {Computational and Theoretical Polymer Science},
468     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
469     Number = {3-4},
470     Pages = {203-209},
471     Publisher = {ELSEVIER SCI LTD},
472     Times-Cited = {15},
473     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
474     Volume = {9},
475     Year = {1999},
476     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
477    
478     @article{Viscardy:2007lq,
479     Abstract = {The thermal conductivity is calculated with the Helfand-moment method in the Lennard-Jones fluid near the triple point. The Helfand moment of thermal conductivity is here derived for molecular dynamics with periodic boundary conditions. Thermal conductivity is given by a generalized Einstein relation with this Helfand moment. The authors compute thermal conductivity by this new method and compare it with their own values obtained by the standard Green-Kubo method. The agreement is excellent. (C) 2007 American Institute of Physics.},
480     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
481     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
482     Date-Added = {2009-09-21 16:37:20 -0400},
483     Date-Modified = {2009-09-21 16:37:20 -0400},
484     Doi = {DOI 10.1063/1.2724821},
485     Isi = {000246453900035},
486     Isi-Recid = {156192451},
487     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
488     Journal = {Journal of Chemical Physics},
489     Month = may,
490     Number = {18},
491     Publisher = {AMER INST PHYSICS},
492     Times-Cited = {3},
493     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
494     Volume = {126},
495     Year = {2007},
496     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035}}
497    
498     @article{Viscardy:2007bh,
499     Abstract = {The authors propose a new method, the Helfand-moment method, to compute the shear viscosity by equilibrium molecular dynamics in periodic systems. In this method, the shear viscosity is written as an Einstein-type relation in terms of the variance of the so-called Helfand moment. This quantity is modified in order to satisfy systems with periodic boundary conditions usually considered in molecular dynamics. They calculate the shear viscosity in the Lennard-Jones fluid near the triple point thanks to this new technique. They show that the results of the Helfand-moment method are in excellent agreement with the results of the standard Green-Kubo method. (C) 2007 American Institute of Physics.},
500     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
501     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
502     Date-Added = {2009-09-21 16:37:19 -0400},
503     Date-Modified = {2009-09-21 16:37:19 -0400},
504     Doi = {DOI 10.1063/1.2724820},
505     Isi = {000246453900034},
506     Isi-Recid = {156192449},
507     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
508     Journal = {Journal of Chemical Physics},
509     Month = may,
510     Number = {18},
511     Publisher = {AMER INST PHYSICS},
512     Times-Cited = {1},
513     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
514     Volume = {126},
515     Year = {2007},
516     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034}}