ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nivsRnemd/nivsRnemd.bib
Revision: 3583
Committed: Tue Apr 13 19:59:50 2010 UTC (14 years, 5 months ago) by gezelter
File size: 40275 byte(s)
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 skuang 3527 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 gezelter 3583 %% Created for Dan Gezelter at 2010-04-13 09:12:19 -0400
6 skuang 3527
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11    
12 skuang 3580 @article{ISI:000207079300006,
13 gezelter 3583 Abstract = {Non-equilibrium Molecular Dynamics Simulation
14     methods have been used to study the ability of
15     Embedded Atom Method models of the metals copper and
16     gold to reproduce the equilibrium and
17     non-equilibrium behavior of metals at a stationary
18     and at a moving solid/liquid interface. The
19     equilibrium solid/vapor interface was shown to
20     display a simple termination of the bulk until the
21     temperature of the solid reaches approximate to 90\%
22     of the bulk melting point. At and above such
23     temperatures the systems exhibit a surface
24     disodering known as surface melting. Non-equilibrium
25     simulations emulating the action of a picosecond
26     laser on the metal were performed to determine the
27     regrowth velocity. For copper, the action of a 20 ps
28     laser with an absorbed energy of 2-5 mJ/cm(2)
29     produced a regrowth velocity of 83-100 m/s, in
30     reasonable agreement with the value obtained by
31     experiment (>60 m/s). For gold, similar conditions
32     produced a slower regrowth velocity of 63 m/s at an
33     absorbed energy of 5 mJ/cm(2). This is almost a
34     factor of two too low in comparison to experiment
35     (>100 m/s). The regrowth velocities of the metals
36     seems unexpectedly close to experiment considering
37     that the free-electron contribution is ignored in
38     the Embeeded Atom Method models used.},
39     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN,
40     OXON, ENGLAND},
41     Affiliation = {Clancy, P (Reprint Author), Cornell Univ, Sch Chem
42     Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton
43     F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn,
44     Ithaca, NY 14853 USA.},
45     Author = {Richardson, Clifton F. and Clancy, Paulette},
46     Date-Added = {2010-04-07 11:24:36 -0400},
47     Date-Modified ={2010-04-07 11:24:36 -0400},
48     Doc-Delivery-Number ={V04SY},
49     Issn = {0892-7022},
50     Journal = {MOLECULAR SIMULATION},
51     Journal-Iso = {Mol. Simul.},
52     Keywords = {Non-equilibrium computer simulation; molecular
53     dynamics; crystal growth; Embedded Atom Method
54     models of metals},
55     Language = {English},
56     Number = {5-6},
57     Number-Of-Cited-References ={36},
58     Pages = {335-355},
59     Publisher = {TAYLOR \& FRANCIS LTD},
60     Subject-Category ={Chemistry, Physical; Physics, Atomic, Molecular
61     \& Chemical},
62     Times-Cited = {7},
63     Title = {PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A
64     COMPUTER SIMULATION STUDY},
65     Type = {Article},
66     Unique-Id = {ISI:000207079300006},
67     Volume = {7},
68     Year = {1991}
69     }
70 skuang 3580
71 skuang 3573 @article{ISI:000167766600035,
72 gezelter 3583 Abstract = {Molecular dynamics simulations are used to
73     investigate the separation of water films adjacent
74     to a hot metal surface. The simulations clearly show
75     that the water layers nearest the surface overheat
76     and undergo explosive boiling. For thick films, the
77     expansion of the vaporized molecules near the
78     surface forces the outer water layers to move away
79     from the surface. These results are of interest for
80     mass spectrometry of biological molecules, steam
81     cleaning of surfaces, and medical procedures.},
82     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
83     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ,
84     Dept Chem, University Pk, PA 16802 USA. Penn State
85     Univ, Dept Chem, University Pk, PA 16802 USA. Penn
86     State Univ, Inst Mat Res, University Pk, PA 16802
87     USA. Univ Virginia, Dept Mat Sci \& Engn,
88     Charlottesville, VA 22903 USA.},
89     Author = {Dou, YS and Zhigilei, LV and Winograd, N and
90     Garrison, BJ},
91     Date-Added = {2010-03-11 15:32:14 -0500},
92     Date-Modified ={2010-03-11 15:32:14 -0500},
93     Doc-Delivery-Number ={416ED},
94     Issn = {1089-5639},
95     Journal = {J. Phys. Chem. A},
96     Journal-Iso = {J. Phys. Chem. A},
97     Keywords-Plus ={MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED
98     LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS;
99     COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY
100     DISTRIBUTIONS; PARTICLE BOMBARDMENT;
101     MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
102     Language = {English},
103     Month = {MAR 29},
104     Number = {12},
105     Number-Of-Cited-References ={65},
106     Pages = {2748-2755},
107     Publisher = {AMER CHEMICAL SOC},
108     Subject-Category ={Chemistry, Physical; Physics, Atomic, Molecular
109     \& Chemical},
110     Times-Cited = {66},
111     Title = {Explosive boiling of water films adjacent to heated
112     surfaces: A microscopic description},
113     Type = {Article},
114     Unique-Id = {ISI:000167766600035},
115     Volume = {105},
116     Year = {2001}
117     }
118 skuang 3573
119 skuang 3565 @article{ISI:000273472300004,
120 gezelter 3583 Abstract = {The reverse nonequilibrium molecular dynamics
121     (RNEMD) method calculates the shear viscosity of a
122     fluid by imposing a nonphysical exchange of momentum
123     and measuring the resulting shear velocity
124     gradient. In this study we investigate the range of
125     momentum flux values over which RNEMD yields usable
126     (linear) velocity gradients. We find that nonlinear
127     velocity profiles result primarily from gradients in
128     fluid temperature and density. The temperature
129     gradient results from conversion of heat into bulk
130     kinetic energy, which is transformed back into heat
131     elsewhere via viscous heating. An expression is
132     derived to predict the temperature profile resulting
133     from a specified momentum flux for a given fluid and
134     simulation cell. Although primarily bounded above,
135     we also describe milder low-flux limitations. RNEMD
136     results for a Lennard-Jones fluid agree with
137     equilibrium molecular dynamics and conventional
138     nonequilibrium molecular dynamics calculations at
139     low shear, but RNEMD underpredicts viscosity
140     relative to conventional NEMD at high shear.},
141     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON
142     QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501
143     USA},
144     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept
145     Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre
146     Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn,
147     Edward J.] Univ Notre Dame, Dept Chem \& Biomol
148     Engn, Notre Dame, IN 46556 USA.},
149     Article-Number ={014103},
150     Author = {Tenney, Craig M. and Maginn, Edward J.},
151     Author-Email = {ed@nd.edu},
152     Date-Added = {2010-03-09 13:08:41 -0500},
153     Date-Modified ={2010-03-09 13:08:41 -0500},
154     Doc-Delivery-Number ={542DQ},
155     Doi = {10.1063/1.3276454},
156     Funding-Acknowledgement ={U.S. Department of Energy
157     {[}DE-FG36-08G088020]},
158     Funding-Text = {Support for this work was provided by the
159     U.S. Department of Energy (Grant
160     No. DE-FG36-08G088020)},
161     Issn = {0021-9606},
162     Journal = {J. Chem. Phys.},
163     Journal-Iso = {J. Chem. Phys.},
164     Keywords = {Lennard-Jones potential; molecular dynamics method;
165     Navier-Stokes equations; viscosity},
166     Keywords-Plus ={CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID;
167     SIMULATIONS; TEMPERATURE},
168     Language = {English},
169     Month = {JAN 7},
170     Number = {1},
171     Number-Of-Cited-References ={20},
172     Publisher = {AMER INST PHYSICS},
173     Subject-Category ={Physics, Atomic, Molecular \& Chemical},
174     Times-Cited = {0},
175     Title = {Limitations and recommendations for the calculation
176     of shear viscosity using reverse nonequilibrium
177     molecular dynamics},
178     Type = {Article},
179     Unique-Id = {ISI:000273472300004},
180     Volume = {132},
181     Year = {2010},
182     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}
183     }
184 skuang 3565
185 skuang 3582 @article{Clancy:1992,
186 gezelter 3583 Abstract = {The regrowth velocity of a crystal from a melt
187     depends on contributions from the thermal
188     conductivity, heat gradient, and latent heat. The
189     relative contributions of these terms to the
190     regrowth velocity of the pure metals copper and gold
191     during liquid-phase epitaxy are evaluated. These
192     results are used to explain how results from
193     previous nonequilibrium molecular-dynamics
194     simulations using classical potentials are able to
195     predict regrowth velocities that are close to the
196     experimental values. Results from equilibrium
197     molecular dynamics showing the nature of the
198     solid-vapor interface of an
199     embedded-atom-method-modeled Cu57Ni43 alloy at a
200     temperature corresponding to 62\% of the melting
201     point are presented. The regrowth of this alloy
202     following a simulation of a laser-processing
203     experiment is also given, with use of nonequilibrium
204     molecular-dynamics techniques. The thermal
205     conductivity and temperature gradient in the
206     simulation of the alloy are compared to those for
207     the pure metals.},
208     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844
209     USA},
210     Affiliation = {CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.},
211     Author = {Richardson, C.~F. and Clancy, P},
212     Date-Added = {2010-01-12 16:17:33 -0500},
213     Date-Modified ={2010-04-08 17:18:25 -0400},
214     Doc-Delivery-Number ={HX378},
215     Issn = {0163-1829},
216     Journal = {Phys. Rev. B},
217     Journal-Iso = {Phys. Rev. B},
218     Keywords-Plus ={SURFACE SEGREGATION; MOLECULAR-DYNAMICS;
219     TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI},
220     Language = {English},
221     Month = {JUN 1},
222     Number = {21},
223     Number-Of-Cited-References ={24},
224     Pages = {12260-12268},
225     Publisher = {AMERICAN PHYSICAL SOC},
226     Subject-Category ={Physics, Condensed Matter},
227     Times-Cited = {11},
228     Title = {CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE
229     CRYSTAL-REGROWTH VELOCITY OF
230     EMBEDDED-ATOM-METHOD-MODELED METALS AND
231     METAL-ALLOYS},
232     Type = {Article},
233     Unique-Id = {ISI:A1992HX37800010},
234     Volume = {45},
235     Year = {1992}
236     }
237 skuang 3563
238     @article{ISI:000090151400044,
239 gezelter 3583 Abstract = {We have applied a new nonequilibrium molecular
240     dynamics (NEMD) method {[}F. Muller-Plathe,
241     J. Chem. Phys. 106, 6082 (1997)] previously applied
242     to monatomic Lennard-Jones fluids in the
243     determination of the thermal conductivity of
244     molecular fluids. The method was modified in order
245     to be applicable to systems with holonomic
246     constraints. Because the method involves imposing a
247     known heat flux it is particularly attractive for
248     systems involving long-range and many-body
249     interactions where calculation of the microscopic
250     heat flux is difficult. The predicted thermal
251     conductivities of liquid n-butane and water using
252     the imposed-flux NEMD method were found to be in a
253     good agreement with previous simulations and
254     experiment. (C) 2000 American Institute of
255     Physics. {[}S0021-9606(00)50841-1].},
256     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY
257     11747-4501 USA},
258     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \&
259     Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake
260     City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels
261     Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept
262     Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
263     Author = {Bedrov, D and Smith, GD},
264     Date-Added = {2009-11-05 18:21:18 -0500},
265     Date-Modified ={2009-11-05 18:21:18 -0500},
266     Doc-Delivery-Number ={369BF},
267     Issn = {0021-9606},
268     Journal = {J. Chem. Phys.},
269     Journal-Iso = {J. Chem. Phys.},
270     Keywords-Plus ={EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES;
271     CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS;
272     SHAKE; WATER},
273     Language = {English},
274     Month = {NOV 8},
275     Number = {18},
276     Number-Of-Cited-References ={26},
277     Pages = {8080-8084},
278     Publisher = {AMER INST PHYSICS},
279     Subject-Category ={Physics, Atomic, Molecular \& Chemical},
280     Times-Cited = {23},
281     Title = {Thermal conductivity of molecular fluids from
282     molecular dynamics simulations: Application of a new
283     imposed-flux method},
284     Type = {Article},
285     Unique-Id = {ISI:000090151400044},
286     Volume = {113},
287     Year = {2000}
288     }
289 skuang 3563
290     @article{ISI:000231042800044,
291 gezelter 3583 Abstract = {The reverse nonequilibrium molecular dynamics
292     method for thermal conductivities is adapted to the
293     investigation of molecular fluids. The method
294     generates a heat flux through the system by suitably
295     exchanging velocities of particles located in
296     different regions. From the resulting temperature
297     gradient, the thermal conductivity is then
298     calculated. Different variants of the algorithm and
299     their combinations with other system parameters are
300     tested: exchange of atomic velocities versus
301     exchange of molecular center-of-mass velocities,
302     different exchange frequencies, molecular models
303     with bond constraints versus models with flexible
304     bonds, united-atom versus all-atom models, and
305     presence versus absence of a thermostat. To help
306     establish the range of applicability, the algorithm
307     is tested on different models of benzene,
308     cyclohexane, water, and n-hexane. We find that the
309     algorithm is robust and that the calculated thermal
310     conductivities are insensitive to variations in its
311     control parameters. The force field, in contrast,
312     has a major influence on the value of the thermal
313     conductivity. While calculated and experimental
314     thermal conductivities fall into the same order of
315     magnitude, in most cases the calculated values are
316     systematically larger. United-atom force fields seem
317     to do better than all-atom force fields, possibly
318     because they remove high-frequency degrees of
319     freedom from the simulation, which, in nature, are
320     quantum-mechanical oscillators in their ground state
321     and do not contribute to heat conduction.},
322     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
323     Affiliation = {Zhang, MM (Reprint Author), Int Univ Bremen, POB
324     750 561, D-28725 Bremen, Germany. Int Univ Bremen,
325     D-28725 Bremen, Germany. Banco Cent Brasil, Desup,
326     Diesp, BR-01310922 Sao Paulo, Brazil.},
327     Author = {Zhang, MM and Lussetti, E and de Souza, LES and
328     M\"{u}ller-Plathe, F},
329     Date-Added = {2009-11-05 18:17:33 -0500},
330     Date-Modified ={2009-11-05 18:17:33 -0500},
331     Doc-Delivery-Number ={952YQ},
332     Doi = {10.1021/jp0512255},
333     Issn = {1520-6106},
334     Journal = {J. Phys. Chem. B},
335     Journal-Iso = {J. Phys. Chem. B},
336     Keywords-Plus ={LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS;
337     SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS;
338     SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION},
339     Language = {English},
340     Month = {AUG 11},
341     Number = {31},
342     Number-Of-Cited-References ={42},
343     Pages = {15060-15067},
344     Publisher = {AMER CHEMICAL SOC},
345     Subject-Category ={Chemistry, Physical},
346     Times-Cited = {17},
347     Title = {Thermal conductivities of molecular liquids by
348     reverse nonequilibrium molecular dynamics},
349     Type = {Article},
350     Unique-Id = {ISI:000231042800044},
351     Volume = {109},
352     Year = {2005},
353     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}
354     }
355 skuang 3563
356     @article{ISI:A1997YC32200056,
357 gezelter 3583 Abstract = {Equilibrium molecular dynamics simulations have
358     been carried out in the microcanonical ensemble at
359     300 and 255 K on the extended simple point charge
360     (SPC/E) model of water {[}Berendsen et al.,
361     J. Phys. Chem. 91, 6269 (1987)]. In addition to a
362     number of static and dynamic properties, thermal
363     conductivity lambda has been calculated via
364     Green-Kubo integration of the heat current time
365     correlation functions (CF's) in the atomic and
366     molecular formalism, at wave number k=0. The
367     calculated values (0.67 +/- 0.04 W/mK at 300 K and
368     0.52 +/- 0.03 W/mK at 255 K) are in good agreement
369     with the experimental data (0.61 W/mK at 300 K and
370     0.49 W/mK at 255 K). A negative long-time tail of
371     the heat current CF, more apparent at 255 K, is
372     responsible for the anomalous decrease of lambda
373     with temperature. An analysis of the dynamical modes
374     contributing to lambda has shown that its value is
375     due to two low-frequency exponential-like modes, a
376     faster collisional mode, with positive contribution,
377     and a slower one, which determines the negative
378     long-time tail. A comparison of the molecular and
379     atomic spectra of the heat current CF has suggested
380     that higher-frequency modes should not contribute to
381     lambda in this temperature range. Generalized
382     thermal diffusivity D-T(k) decreases as a function
383     of k, after an initial minor increase at k =
384     k(min). The k dependence of the generalized
385     thermodynamic properties has been calculated in the
386     atomic and molecular formalisms. The observed
387     differences have been traced back to intramolecular
388     or intermolecular rotational effects and related to
389     the partial structure functions. Finally, from the
390     results we calculated it appears that the SPC/E
391     model gives results in better agreement with
392     experimental data than the transferable
393     intermolecular potential with four points TIP4P
394     water model {[}Jorgensen et al., J. Chem. Phys. 79,
395     926 (1983)], with a larger improvement for, e.g.,
396     diffusion, viscosities, and dielectric properties
397     and a smaller one for thermal conductivity. The
398     SPC/E model shares, to a smaller extent, the
399     insufficient slowing down of dynamics at low
400     temperature already found for the TIP4P water
401     model.},
402     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844
403     USA},
404     Affiliation = {UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126
405     PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127
406     PISA,ITALY.},
407     Author = {Bertolini, D and Tani, A},
408     Date-Added = {2009-10-30 15:41:21 -0400},
409     Date-Modified ={2009-10-30 15:41:21 -0400},
410     Doc-Delivery-Number ={YC322},
411     Issn = {1063-651X},
412     Journal = {Phys. Rev. E},
413     Journal-Iso = {Phys. Rev. E},
414     Keywords-Plus ={TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID;
415     TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY;
416     SIMULATIONS; RELAXATION; VELOCITY; ELECTRON;
417     FLUIDS},
418     Language = {English},
419     Month = {OCT},
420     Number = {4},
421     Number-Of-Cited-References ={35},
422     Pages = {4135-4151},
423     Publisher = {AMERICAN PHYSICAL SOC},
424     Subject-Category ={Physics, Fluids \& Plasmas; Physics,
425     Mathematical},
426     Times-Cited = {18},
427     Title = {Thermal conductivity of water: Molecular dynamics
428     and generalized hydrodynamics results},
429     Type = {Article},
430     Unique-Id = {ISI:A1997YC32200056},
431     Volume = {56},
432     Year = {1997}
433     }
434 skuang 3563
435 skuang 3532 @article{Meineke:2005gd,
436 gezelter 3583 Abstract = {OOPSE is a new molecular dynamics simulation program
437     that is capable of efficiently integrating equations
438     of motion for atom types with orientational degrees
439     of freedom (e.g. #sticky# atoms and point
440     dipoles). Transition metals can also be simulated
441     using the embedded atom method (EAM) potential
442     included in the code. Parallel simulations are
443     carried out using the force-based decomposition
444     method. Simulations are specified using a very
445     simple C-based meta-data language. A number of
446     advanced integrators are included, and the basic
447     integrator for orientational dynamics provides
448     substantial improvements over older quaternion-based
449     schemes.},
450     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
451     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell,
452     CJ and Gezelter, J. D.},
453     Date-Added = {2009-10-01 18:43:03 -0400},
454     Date-Modified ={2010-04-13 09:11:16 -0400},
455     Doi = {DOI 10.1002/jcc.20161},
456     Isi = {000226558200006},
457     Isi-Recid = {142688207},
458     Isi-Ref-Recids ={67885400 50663994 64190493 93668415 46699855
459     89992422 57614458 49016001 61447131 111114169
460     68770425 52728075 102422498 66381878 32391149
461     134477335 53221357 9929643 59492217 69681001
462     99223832 142688208 94600872 91658572 54857943
463     117365867 69323123 49588888 109970172 101670714
464     142688209 121603296 94652379 96449138 99938010
465     112825758 114905670 86802042 121339042 104794914
466     82674909 72096791 93668384 90513335 142688210
467     23060767 63731466 109033408 76303716 31384453
468     97861662 71842426 130707771 125809946 66381889
469     99676497},
470     Journal = {J. Comp. Chem.},
471     Keywords = {OOPSE; molecular dynamics},
472     Month = feb,
473     Number = {3},
474     Pages = {252-271},
475     Publisher = {JOHN WILEY \& SONS INC},
476     Times-Cited = {9},
477     Title = {OOPSE: An object-oriented parallel simulation engine
478     for molecular dynamics},
479     Volume = {26},
480     Year = {2005},
481     Bdsk-Url-1 =
482     {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
483     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}
484     }
485 skuang 3532
486     @article{ISI:000080382700030,
487 gezelter 3583 Abstract = {A nonequilibrium method for calculating the shear
488     viscosity is presented. It reverses the
489     cause-and-effect picture customarily used in
490     nonequilibrium molecular dynamics: the effect, the
491     momentum flux or stress, is imposed, whereas the
492     cause, the velocity gradient or shear rate, is
493     obtained from the simulation. It differs from other
494     Norton-ensemble methods by the way in which the
495     steady-state momentum flux is maintained. This
496     method involves a simple exchange of particle
497     momenta, which is easy to implement. Moreover, it
498     can be made to conserve the total energy as well as
499     the total linear momentum, so no coupling to an
500     external temperature bath is needed. The resulting
501     raw data, the velocity profile, is a robust and
502     rapidly converging property. The method is tested on
503     the Lennard-Jones fluid near its triple point. It
504     yields a viscosity of 3.2-3.3, in Lennard-Jones
505     reduced units, in agreement with literature
506     results. {[}S1063-651X(99)03105-0].},
507     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
508     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst
509     Polymerforsch, Ackermannweg 10, D-55128 Mainz,
510     Germany. Max Planck Inst Polymerforsch, D-55128
511     Mainz, Germany.},
512     Author = {M\"{u}ller-Plathe, F},
513     Date-Added = {2009-10-01 14:07:30 -0400},
514     Date-Modified ={2009-10-01 14:07:30 -0400},
515     Doc-Delivery-Number ={197TX},
516     Issn = {1063-651X},
517     Journal = {Phys. Rev. E},
518     Journal-Iso = {Phys. Rev. E},
519     Language = {English},
520     Month = {MAY},
521     Number = {5, Part A},
522     Number-Of-Cited-References ={17},
523     Pages = {4894-4898},
524     Publisher = {AMERICAN PHYSICAL SOC},
525     Subject-Category ={Physics, Fluids \& Plasmas; Physics,
526     Mathematical},
527     Times-Cited = {57},
528     Title = {Reversing the perturbation in nonequilibrium
529     molecular dynamics: An easy way to calculate the
530     shear viscosity of fluids},
531     Type = {Article},
532     Unique-Id = {ISI:000080382700030},
533     Volume = {59},
534     Year = {1999}
535     }
536 skuang 3532
537 skuang 3528 @article{ISI:000246190100032,
538 gezelter 3583 Abstract = {Atomistic simulations are conducted to examine the
539     dependence of the viscosity of
540     1-ethyl-3-methylimidazolium
541     bis(trifluoromethanesulfonyl)imide on temperature
542     and water content. A nonequilibrium molecular
543     dynamics procedure is utilized along with an
544     established fixed charge force field. It is found
545     that the simulations quantitatively capture the
546     temperature dependence of the viscosity as well as
547     the drop in viscosity that occurs with increasing
548     water content. Using mixture viscosity models, we
549     show that the relative drop in viscosity with water
550     content is actually less than that that would be
551     predicted for an ideal system. This finding is at
552     odds with the popular notion that small amounts of
553     water cause an unusually large drop in the viscosity
554     of ionic liquids. The simulations suggest that, due
555     to preferential association of water with anions and
556     the formation of water clusters, the excess molar
557     volume is negative. This means that dissolved water
558     is actually less effective at lowering the viscosity
559     of these mixtures when compared to a solute obeying
560     ideal mixing behavior. The use of a nonequilibrium
561     simulation technique enables diffusive behavior to
562     be observed on the time scale of the simulations,
563     and standard equilibrium molecular dynamics resulted
564     in sub-diffusive behavior even over 2 ns of
565     simulation time.},
566     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
567     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept
568     Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre
569     Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \&
570     Biomol Engn, Notre Dame, IN 46556 USA.},
571     Author = {Kelkar, Manish S. and Maginn, Edward J.},
572     Author-Email = {ed@nd.edu},
573     Date-Added = {2009-09-29 17:07:17 -0400},
574     Date-Modified ={2009-09-29 17:07:17 -0400},
575     Doc-Delivery-Number ={163VA},
576     Doi = {10.1021/jp0686893},
577     Issn = {1520-6106},
578     Journal = {J. Phys. Chem. B},
579     Journal-Iso = {J. Phys. Chem. B},
580     Keywords-Plus ={MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE
581     RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES;
582     PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL;
583     SALTS; ARCHITECTURE},
584     Language = {English},
585     Month = {MAY 10},
586     Number = {18},
587     Number-Of-Cited-References ={57},
588     Pages = {4867-4876},
589     Publisher = {AMER CHEMICAL SOC},
590     Subject-Category ={Chemistry, Physical},
591     Times-Cited = {35},
592     Title = {Effect of temperature and water content on the shear
593     viscosity of the ionic liquid
594     1-ethyl-3-methylimidazolium
595     bis(trifluoromethanesulfonyl)imide as studied by
596     atomistic simulations},
597     Type = {Article},
598     Unique-Id = {ISI:000246190100032},
599     Volume = {111},
600     Year = {2007},
601     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D},
602     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0686893}
603     }
604 skuang 3528
605 skuang 3527 @article{MullerPlathe:1997xw,
606 gezelter 3583 Abstract = {A nonequilibrium molecular dynamics method for
607     calculating the thermal conductivity is
608     presented. It reverses the usual cause and effect
609     picture. The ''effect,'' the heat flux, is imposed
610     on the system and the ''cause,'' the temperature
611     gradient is obtained from the simulation. Besides
612     being very simple to implement, the scheme offers
613     several advantages such as compatibility with
614     periodic boundary conditions, conservation of total
615     energy and total linear momentum, and the sampling
616     of a rapidly converging quantity (temperature
617     gradient) rather than a slowly converging one (heat
618     flux). The scheme is tested on the Lennard-Jones
619     fluid. (C) 1997 American Institute of Physics.},
620     Address = {WOODBURY},
621     Author = {M\"{u}ller-Plathe, F.},
622     Cited-Reference-Count ={13},
623     Date = {APR 8},
624     Date-Added = {2009-09-21 16:51:21 -0400},
625     Date-Modified ={2009-09-21 16:51:21 -0400},
626     Document-Type ={Article},
627     Isi = {ISI:A1997WR62000032},
628     Isi-Document-Delivery-Number ={WR620},
629     Iso-Source-Abbreviation ={J. Chem. Phys.},
630     Issn = {0021-9606},
631     Journal = {J. Chem. Phys.},
632     Language = {English},
633     Month = {Apr},
634     Number = {14},
635     Page-Count = {4},
636     Pages = {6082--6085},
637     Publication-Type ={J},
638     Publisher = {AMER INST PHYSICS},
639     Publisher-Address ={CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD,
640     WOODBURY, NY 11797-2999},
641     Reprint-Address ={MullerPlathe, F, MAX PLANCK INST POLYMER RES,
642     D-55128 MAINZ, GERMANY.},
643     Source = {J CHEM PHYS},
644     Subject-Category ={Physics, Atomic, Molecular & Chemical},
645     Times-Cited = {106},
646     Title = {A simple nonequilibrium molecular dynamics method
647     for calculating the thermal conductivity},
648     Volume = {106},
649     Year = {1997}
650     }
651 skuang 3527
652     @article{Muller-Plathe:1999ek,
653 gezelter 3583 Abstract = {A novel non-equilibrium method for calculating
654     transport coefficients is presented. It reverses the
655     experimental cause-and-effect picture, e.g. for the
656     calculation of viscosities: the effect, the momentum
657     flux or stress, is imposed, whereas the cause, the
658     velocity gradient or shear rates, is obtained from
659     the simulation. It differs from other
660     Norton-ensemble methods by the way, in which the
661     steady-state fluxes are maintained. This method
662     involves a simple exchange of particle momenta,
663     which is easy to implement and to analyse. Moreover,
664     it can be made to conserve the total energy as well
665     as the total linear momentum, so no thermostatting
666     is needed. The resulting raw data are robust and
667     rapidly converging. The method is tested on the
668     calculation of the shear viscosity, the thermal
669     conductivity and the Soret coefficient (thermal
670     diffusion) for the Lennard-Jones (LJ) fluid near its
671     triple point. Possible applications to other
672     transport coefficients and more complicated systems
673     are discussed. (C) 1999 Elsevier Science Ltd. All
674     rights reserved.},
675     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5
676     1GB, OXON, ENGLAND},
677     Author = {M\"{u}ller-Plathe, F and Reith, D},
678     Date-Added = {2009-09-21 16:47:07 -0400},
679     Date-Modified ={2009-09-21 16:47:07 -0400},
680     Isi = {000082266500004},
681     Isi-Recid = {111564960},
682     Isi-Ref-Recids ={64516210 89773595 53816621 60134000 94875498
683     60964023 90228608 85968509 86405859 63979644
684     108048497 87560156 577165 103281654 111564961
685     83735333 99953572 88476740 110174781 111564963
686     6599000 75892253},
687     Journal = {Computational and Theoretical Polymer Science},
688     Keywords = {viscosity; Ludwig-Soret effect; thermal
689     conductivity; Onsager coefficents; non-equilibrium
690     molecular dynamics},
691     Number = {3-4},
692     Pages = {203-209},
693     Publisher = {ELSEVIER SCI LTD},
694     Times-Cited = {15},
695     Title = {Cause and effect reversed in non-equilibrium
696     molecular dynamics: an easy route to transport
697     coefficients},
698     Volume = {9},
699     Year = {1999},
700     Bdsk-Url-1 =
701     {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}
702     }
703 skuang 3527
704     @article{Viscardy:2007lq,
705 gezelter 3583 Abstract = {The thermal conductivity is calculated with the
706     Helfand-moment method in the Lennard-Jones fluid
707     near the triple point. The Helfand moment of thermal
708     conductivity is here derived for molecular dynamics
709     with periodic boundary conditions. Thermal
710     conductivity is given by a generalized Einstein
711     relation with this Helfand moment. The authors
712     compute thermal conductivity by this new method and
713     compare it with their own values obtained by the
714     standard Green-Kubo method. The agreement is
715     excellent. (C) 2007 American Institute of Physics.},
716     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON
717     QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501
718     USA},
719     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
720     Date-Added = {2009-09-21 16:37:20 -0400},
721     Date-Modified ={2009-09-21 16:37:20 -0400},
722     Doi = {DOI 10.1063/1.2724821},
723     Isi = {000246453900035},
724     Isi-Recid = {156192451},
725     Isi-Ref-Recids ={18794442 84473620 156192452 41891249 90040203
726     110174972 59859940 47256160 105716249 91804339
727     93329429 95967319 6199670 1785176 105872066 6325196
728     65361295 71941152 4307928 23120502 54053395
729     149068110 4811016 99953572 59859908 132156782
730     156192449},
731     Journal = {J. Chem. Phys.},
732     Month = may,
733     Number = {18},
734     Publisher = {AMER INST PHYSICS},
735     Times-Cited = {3},
736     Title = {Transport and Helfand moments in the Lennard-Jones
737     fluid. II. Thermal conductivity},
738     Volume = {126},
739     Year = {2007},
740     Bdsk-Url-1 =
741     {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035},
742     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724821}
743     }
744 skuang 3527
745     @article{Viscardy:2007bh,
746 gezelter 3583 Abstract = {The authors propose a new method, the Helfand-moment
747     method, to compute the shear viscosity by
748     equilibrium molecular dynamics in periodic
749     systems. In this method, the shear viscosity is
750     written as an Einstein-type relation in terms of the
751     variance of the so-called Helfand moment. This
752     quantity is modified in order to satisfy systems
753     with periodic boundary conditions usually considered
754     in molecular dynamics. They calculate the shear
755     viscosity in the Lennard-Jones fluid near the triple
756     point thanks to this new technique. They show that
757     the results of the Helfand-moment method are in
758     excellent agreement with the results of the standard
759     Green-Kubo method. (C) 2007 American Institute of
760     Physics.},
761     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON
762     QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501
763     USA},
764     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
765     Date-Added = {2009-09-21 16:37:19 -0400},
766     Date-Modified ={2009-09-21 16:37:19 -0400},
767     Doi = {DOI 10.1063/1.2724820},
768     Isi = {000246453900034},
769     Isi-Recid = {156192449},
770     Isi-Ref-Recids ={18794442 89109900 84473620 86837966 26564374
771     23367140 83161139 75750220 90040203 110174972 5885
772     67722779 91461489 42484251 77907850 93329429
773     95967319 105716249 6199670 1785176 105872066 6325196
774     129596740 120782555 51131244 65361295 41141868
775     4307928 21555860 23120502 563068 120721875 142813985
776     135942402 4811016 86224873 57621419 85506488
777     89860062 44796632 51381285 132156779 156192450
778     132156782 156192451},
779     Journal = {J. Chem. Phys.},
780     Month = may,
781     Number = {18},
782     Publisher = {AMER INST PHYSICS},
783     Times-Cited = {1},
784     Title = {Transport and Helfand moments in the Lennard-Jones
785     fluid. I. Shear viscosity},
786     Volume = {126},
787     Year = {2007},
788     Bdsk-Url-1 =
789     {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034},
790     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724820}
791     }
792