ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nivsRnemd/nivsRnemd.bib
Revision: 3585
Committed: Wed Apr 14 16:57:52 2010 UTC (14 years, 3 months ago) by skuang
File size: 47909 byte(s)
Log Message:
add more citations.

File Contents

# User Rev Content
1 skuang 3527 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 skuang 3585 %% Created for Shenyu Kuang at 2010-04-14 12:51:20 -0400
6 skuang 3527
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11    
12 skuang 3585 @article{ISI:000184808400018,
13     Abstract = {{A new non-equilibrium molecular dynamics algorithm is presented based
14     on the original work of Willer-Plathe, (1997, J. chem. Phys., 106,
15     6082), for the non-equilibrium simulation of heat transport maintaining
16     fixed the total momentum as well as the total energy of the system. The
17     presented scheme preserves these properties but, unlike the original
18     algorithm, is able to deal with multicomponent systems, that is with
19     particles of different mass independently of their relative
20     concentration. The main idea behind the new procedure is to consider an
21     exchange of momentum and energy between the particles in the hot and
22     cold regions, to maintain the non-equilibrium conditions, as if they
23     undergo a hypothetical elastic collision. The new algorithm can also be
24     employed in multicomponent systems for molecular fluids and in a wide
25     range of thermodynamic conditions.}},
26     Address = {{4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND}},
27     Affiliation = {{Nieto-Draghi, C (Reprint Author), Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain. Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Tarragona 43007, Spain.}},
28     Author = {Nieto-Draghi, C and Avalos, JB},
29     Date-Added = {2010-04-14 12:48:08 -0400},
30     Date-Modified = {2010-04-14 12:48:08 -0400},
31     Doc-Delivery-Number = {{712QM}},
32     Doi = {{10.1080/0026897031000154338}},
33     Issn = {{0026-8976}},
34     Journal = {{MOLECULAR PHYSICS}},
35     Journal-Iso = {{Mol. Phys.}},
36     Keywords-Plus = {{BINARY-LIQUID MIXTURES; THERMAL-CONDUCTIVITY; MATTER TRANSPORT; WATER}},
37     Language = {{English}},
38     Month = {{JUL 20}},
39     Number = {{14}},
40     Number-Of-Cited-References = {{20}},
41     Pages = {{2303-2307}},
42     Publisher = {{TAYLOR \& FRANCIS LTD}},
43     Subject-Category = {{Physics, Atomic, Molecular \& Chemical}},
44     Times-Cited = {{13}},
45     Title = {{Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems}},
46     Type = {{Article}},
47     Unique-Id = {{ISI:000184808400018}},
48     Volume = {{101}},
49     Year = {{2003}},
50     Bdsk-Url-1 = {http://dx.doi.org/10.1080/0026897031000154338%7D}}
51    
52     @article{Bedrov:2000-1,
53     Abstract = {{The thermal conductivity of liquid
54     octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been
55     determined from imposed heat flux non-equilibrium molecular dynamics
56     (NEMD) simulations using a previously published quantum chemistry-based
57     atomistic potential. The thermal conductivity was determined in the
58     temperature domain 550 less than or equal to T less than or equal to
59     800 K, which corresponds approximately to the existence limits of the
60     liquid phase of HMX at atmospheric pressure. The NEMD predictions,
61     which comprise the first reported values for thermal conductivity of
62     HMX liquid, were found to be consistent with measured values for
63     crystalline HMX. The thermal conductivity of liquid HMX was found to
64     exhibit a much weaker temperature dependence than the shear viscosity
65     and self-diffusion coefficients. (C) 2000 Elsevier Science B.V. All
66     rights reserved.}},
67     Address = {{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}},
68     Affiliation = {{Bedrov, D (Reprint Author), Univ Utah, Dept Mat Sci \& Engn, 122 S Cent Campus Dr,Room 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.}},
69     Author = {Bedrov, D and Smith, GD and Sewell, TD},
70     Date-Added = {2010-04-14 12:26:59 -0400},
71     Date-Modified = {2010-04-14 12:27:52 -0400},
72     Doc-Delivery-Number = {{330PF}},
73     Issn = {{0009-2614}},
74     Journal = {{CHEMICAL PHYSICS LETTERS}},
75     Journal-Iso = {{Chem. Phys. Lett.}},
76     Keywords-Plus = {{FORCE-FIELD}},
77     Language = {{English}},
78     Month = {{JUN 30}},
79     Number = {{1-3}},
80     Number-Of-Cited-References = {{17}},
81     Pages = {{64-68}},
82     Publisher = {{ELSEVIER SCIENCE BV}},
83     Subject-Category = {{Chemistry, Physical; Physics, Atomic, Molecular \& Chemical}},
84     Times-Cited = {{19}},
85     Title = {{Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations}},
86     Type = {{Article}},
87     Unique-Id = {{ISI:000087969900011}},
88     Volume = {{324}},
89     Year = {{2000}}}
90    
91     @article{ISI:000258840700015,
92     Abstract = {{By using the embedded-atom method (EAM), a series of molecular dynamics
93     (MD) simulations are carried out to calculate the viscosity and
94     self-diffusion coefficient of liquid copper from the normal to the
95     undercooled states. The simulated results are in reasonable agreement
96     with the experimental values available above the melting temperature
97     that is also predicted from a solid-liquid-solid sandwich structure.
98     The relationship between the viscosity and the self-diffusion
99     coefficient is evaluated. It is found that the Stokes-Einstein and
100     Sutherland-Einstein relations qualitatively describe this relationship
101     within the simulation temperature range. However, the predicted
102     constant from MD simulation is close to 1/(3 pi), which is larger than
103     the constants of the Stokes-Einstein and Sutherland-Einstein relations.}},
104     Address = {{233 SPRING ST, NEW YORK, NY 10013 USA}},
105     Affiliation = {{Chen, M (Reprint Author), Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China. {[}Han, X. J.; Chen, M.; Lue, Y. J.] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.}},
106     Author = {Han, X. J. and Chen, M. and Lue, Y. J.},
107     Author-Email = {{mchen@tsinghua.edu.cn}},
108     Date-Added = {2010-04-14 12:00:38 -0400},
109     Date-Modified = {2010-04-14 12:00:38 -0400},
110     Doc-Delivery-Number = {{343GH}},
111     Doi = {{10.1007/s10765-008-0489-7}},
112     Funding-Acknowledgement = {{China Postdoctoral Science Foundation ; National Natural Science Foundation of China {[}50395101, 50371043]}},
113     Funding-Text = {{This work was financially supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China under grant Nos. of 50395101 and 50371043. The computations are carried out at the Tsinghua National Laboratory for Information Science and Technology, China. The authors are grateful to Mr. D. Q. Yu for valuable discussions.}},
114     Issn = {{0195-928X}},
115     Journal = {{INTERNATIONAL JOURNAL OF THERMOPHYSICS}},
116     Journal-Iso = {{Int. J. Thermophys.}},
117     Keywords = {{copper; molecular simulation; self-diffusion coefficient; viscosity; undercooled}},
118     Keywords-Plus = {{EMBEDDED-ATOM MODEL; THERMOPHYSICAL PROPERTIES; COMPUTER-SIMULATION; TRANSITION-METALS; SHEAR VISCOSITY; ALLOYS; TEMPERATURE; DIFFUSION; BINDING; SURFACE}},
119     Language = {{English}},
120     Month = {{AUG}},
121     Number = {{4}},
122     Number-Of-Cited-References = {{39}},
123     Pages = {{1408-1421}},
124     Publisher = {{SPRINGER/PLENUM PUBLISHERS}},
125     Subject-Category = {{Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied}},
126     Times-Cited = {{2}},
127     Title = {{Transport properties of undercooled liquid copper: A molecular dynamics study}},
128     Type = {{Article}},
129     Unique-Id = {{ISI:000258840700015}},
130     Volume = {{29}},
131     Year = {{2008}},
132     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-008-0489-7%7D}}
133    
134     @article{Muller-Plathe:2008,
135     Abstract = {{Reverse nonequilibrium molecular dynamics and equilibrium molecular
136     dynamics simulations were carried out to compute the shear viscosity of
137     the pure ionic liquid system {[}bmim]{[}PF6] at 300 K. The two methods
138     yielded consistent results which were also compared to experiments. The
139     results showed that the reverse nonequilibrium molecular dynamics
140     (RNEMD) methodology can successfully be applied to computation of
141     highly viscous ionic liquids. Moreover, this study provides a
142     validation of the atomistic force-field developed by Bhargava and
143     Balasubramanian (J. Chem. Phys. 2007, 127, 114510) for dynamic
144     properties.}},
145     Address = {{1155 16TH ST, NW, WASHINGTON, DC 20036 USA}},
146     Affiliation = {{Wei, Z (Reprint Author), Tech Univ Darmstadt, Petersenstr 30, D-64287 Darmstadt, Germany. {[}Wei Zhao; Leroy, Frederic; Mueller-Plathe, Florian] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. {[}Balasubramanian, Sundaram] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chem \& Phys Mat Unit, Bangalore 560064, Karnataka, India.}},
147     Author = {Wei Zhao and Leroy, Frederic and Balasubramanian, Sundaram and Mueller-Plathe, Florian},
148     Author-Email = {{w.zhao@theo.chemie.tu-darmstadt.de}},
149     Date-Added = {2010-04-14 11:53:37 -0400},
150     Date-Modified = {2010-04-14 11:54:20 -0400},
151     Doc-Delivery-Number = {{321VS}},
152     Doi = {{10.1021/jp8017869}},
153     Issn = {{1520-6106}},
154     Journal = {{JOURNAL OF PHYSICAL CHEMISTRY B}},
155     Journal-Iso = {{J. Phys. Chem. B}},
156     Keywords-Plus = {{TRANSPORT-PROPERTIES; FORCE-FIELD; TEMPERATURE; SIMULATION; IMIDAZOLIUM; FLUIDS; MODEL; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; PYRIDINIUM; CHLORIDE}},
157     Language = {{English}},
158     Month = {{JUL 10}},
159     Number = {{27}},
160     Number-Of-Cited-References = {{49}},
161     Pages = {{8129-8133}},
162     Publisher = {{AMER CHEMICAL SOC}},
163     Subject-Category = {{Chemistry, Physical}},
164     Times-Cited = {{2}},
165     Title = {{Shear viscosity of the ionic liquid 1-n-butyl 3-methylimidazolium hexafluorophosphate {[}bmim]{[}PF6] computed by reverse nonequilibrium molecular dynamics}},
166     Type = {{Article}},
167     Unique-Id = {{ISI:000257335200022}},
168     Volume = {{112}},
169     Year = {{2008}},
170     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp8017869%7D}}
171    
172     @article{Muller-Plathe:2002,
173     Abstract = {{The reverse nonequilibrium molecular dynamics {[}F. Muller-Plathe,
174     Phys. Rev. E 49, 359 (1999)] presented for the calculation of the shear
175     viscosity of Lennard-Jones liquids has been extended to atomistic
176     models of molecular liquids. The method is improved to overcome the
177     problems due to the detailed molecular models. The new technique is
178     besides a test with a Lennard-Jones fluid, applied on different
179     realistic systems: liquid nitrogen, water, and hexane, in order to
180     cover a large range of interactions and systems/architectures. We show
181     that all the advantages of the method itemized previously are still
182     valid, and that it has a very good efficiency and accuracy making it
183     very competitive. (C) 2002 American Institute of Physics.}},
184     Address = {{CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA}},
185     Affiliation = {{Bordat, P (Reprint Author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymer Res, D-55128 Mainz, Germany.}},
186     Author = {Bordat, P and Muller-Plathe, F},
187     Date-Added = {2010-04-14 11:34:42 -0400},
188     Date-Modified = {2010-04-14 11:35:35 -0400},
189     Doc-Delivery-Number = {{521QV}},
190     Doi = {{10.1063/1.1436124}},
191     Issn = {{0021-9606}},
192     Journal = {{JOURNAL OF CHEMICAL PHYSICS}},
193     Journal-Iso = {{J. Chem. Phys.}},
194     Keywords-Plus = {{TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; LIQUID ALKANES; N-HEPTADECANE; SIMULATION; WATER; FLOW; MIXTURES; BUTANE; NITROGEN}},
195     Language = {{English}},
196     Month = {{FEB 22}},
197     Number = {{8}},
198     Number-Of-Cited-References = {{47}},
199     Pages = {{3362-3369}},
200     Publisher = {{AMER INST PHYSICS}},
201     Subject-Category = {{Physics, Atomic, Molecular \& Chemical}},
202     Times-Cited = {{33}},
203     Title = {{The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics}},
204     Type = {{Article}},
205     Unique-Id = {{ISI:000173853600023}},
206     Volume = {{116}},
207     Year = {{2002}},
208     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1436124%7D}}
209    
210 skuang 3580 @article{ISI:000207079300006,
211 skuang 3585 Abstract = {Non-equilibrium Molecular Dynamics Simulation
212 gezelter 3583 methods have been used to study the ability of
213     Embedded Atom Method models of the metals copper and
214     gold to reproduce the equilibrium and
215     non-equilibrium behavior of metals at a stationary
216     and at a moving solid/liquid interface. The
217     equilibrium solid/vapor interface was shown to
218     display a simple termination of the bulk until the
219     temperature of the solid reaches approximate to 90\%
220     of the bulk melting point. At and above such
221     temperatures the systems exhibit a surface
222     disodering known as surface melting. Non-equilibrium
223     simulations emulating the action of a picosecond
224     laser on the metal were performed to determine the
225     regrowth velocity. For copper, the action of a 20 ps
226     laser with an absorbed energy of 2-5 mJ/cm(2)
227     produced a regrowth velocity of 83-100 m/s, in
228     reasonable agreement with the value obtained by
229     experiment (>60 m/s). For gold, similar conditions
230     produced a slower regrowth velocity of 63 m/s at an
231     absorbed energy of 5 mJ/cm(2). This is almost a
232     factor of two too low in comparison to experiment
233     (>100 m/s). The regrowth velocities of the metals
234     seems unexpectedly close to experiment considering
235     that the free-electron contribution is ignored in
236     the Embeeded Atom Method models used.},
237 skuang 3585 Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
238     Affiliation = {Clancy, P (Reprint Author), Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA.},
239     Author = {Richardson, Clifton F. and Clancy, Paulette},
240     Date-Added = {2010-04-07 11:24:36 -0400},
241     Date-Modified = {2010-04-07 11:24:36 -0400},
242     Doc-Delivery-Number = {V04SY},
243     Issn = {0892-7022},
244     Journal = {MOLECULAR SIMULATION},
245     Journal-Iso = {Mol. Simul.},
246     Keywords = {Non-equilibrium computer simulation; molecular dynamics; crystal growth; Embedded Atom Method models of metals},
247     Language = {English},
248     Number = {5-6},
249     Number-Of-Cited-References = {36},
250     Pages = {335-355},
251     Publisher = {TAYLOR \& FRANCIS LTD},
252     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
253     Times-Cited = {7},
254     Title = {PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A COMPUTER SIMULATION STUDY},
255     Type = {Article},
256     Unique-Id = {ISI:000207079300006},
257     Volume = {7},
258     Year = {1991}}
259 skuang 3580
260 skuang 3573 @article{ISI:000167766600035,
261 skuang 3585 Abstract = {Molecular dynamics simulations are used to
262 gezelter 3583 investigate the separation of water films adjacent
263     to a hot metal surface. The simulations clearly show
264     that the water layers nearest the surface overheat
265     and undergo explosive boiling. For thick films, the
266     expansion of the vaporized molecules near the
267     surface forces the outer water layers to move away
268     from the surface. These results are of interest for
269     mass spectrometry of biological molecules, steam
270     cleaning of surfaces, and medical procedures.},
271 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
272     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
273     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
274     Date-Added = {2010-03-11 15:32:14 -0500},
275     Date-Modified = {2010-03-11 15:32:14 -0500},
276     Doc-Delivery-Number = {416ED},
277     Issn = {1089-5639},
278     Journal = {J. Phys. Chem. A},
279     Journal-Iso = {J. Phys. Chem. A},
280     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
281     Language = {English},
282     Month = {MAR 29},
283     Number = {12},
284     Number-Of-Cited-References = {65},
285     Pages = {2748-2755},
286     Publisher = {AMER CHEMICAL SOC},
287     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
288     Times-Cited = {66},
289     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
290     Type = {Article},
291     Unique-Id = {ISI:000167766600035},
292     Volume = {105},
293     Year = {2001}}
294 skuang 3573
295 skuang 3585 @article{Maginn:2010,
296     Abstract = {The reverse nonequilibrium molecular dynamics
297 gezelter 3583 (RNEMD) method calculates the shear viscosity of a
298     fluid by imposing a nonphysical exchange of momentum
299     and measuring the resulting shear velocity
300     gradient. In this study we investigate the range of
301     momentum flux values over which RNEMD yields usable
302     (linear) velocity gradients. We find that nonlinear
303     velocity profiles result primarily from gradients in
304     fluid temperature and density. The temperature
305     gradient results from conversion of heat into bulk
306     kinetic energy, which is transformed back into heat
307     elsewhere via viscous heating. An expression is
308     derived to predict the temperature profile resulting
309     from a specified momentum flux for a given fluid and
310     simulation cell. Although primarily bounded above,
311     we also describe milder low-flux limitations. RNEMD
312     results for a Lennard-Jones fluid agree with
313     equilibrium molecular dynamics and conventional
314     nonequilibrium molecular dynamics calculations at
315     low shear, but RNEMD underpredicts viscosity
316     relative to conventional NEMD at high shear.},
317 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
318     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
319     Article-Number = {014103},
320     Author = {Tenney, Craig M. and Maginn, Edward J.},
321     Author-Email = {ed@nd.edu},
322     Date-Added = {2010-03-09 13:08:41 -0500},
323     Date-Modified = {2010-04-14 12:51:13 -0400},
324     Doc-Delivery-Number = {542DQ},
325     Doi = {10.1063/1.3276454},
326     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
327     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
328     Issn = {0021-9606},
329     Journal = {J. Chem. Phys.},
330     Journal-Iso = {J. Chem. Phys.},
331     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
332     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
333     Language = {English},
334     Month = {JAN 7},
335     Number = {1},
336     Number-Of-Cited-References = {20},
337     Publisher = {AMER INST PHYSICS},
338     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
339     Times-Cited = {0},
340     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
341     Type = {Article},
342     Unique-Id = {ISI:000273472300004},
343     Volume = {132},
344     Year = {2010},
345     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
346 skuang 3565
347 skuang 3582 @article{Clancy:1992,
348 skuang 3585 Abstract = {The regrowth velocity of a crystal from a melt
349 gezelter 3583 depends on contributions from the thermal
350     conductivity, heat gradient, and latent heat. The
351     relative contributions of these terms to the
352     regrowth velocity of the pure metals copper and gold
353     during liquid-phase epitaxy are evaluated. These
354     results are used to explain how results from
355     previous nonequilibrium molecular-dynamics
356     simulations using classical potentials are able to
357     predict regrowth velocities that are close to the
358     experimental values. Results from equilibrium
359     molecular dynamics showing the nature of the
360     solid-vapor interface of an
361     embedded-atom-method-modeled Cu57Ni43 alloy at a
362     temperature corresponding to 62\% of the melting
363     point are presented. The regrowth of this alloy
364     following a simulation of a laser-processing
365     experiment is also given, with use of nonequilibrium
366     molecular-dynamics techniques. The thermal
367     conductivity and temperature gradient in the
368     simulation of the alloy are compared to those for
369     the pure metals.},
370 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
371     Affiliation = {CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.},
372     Author = {Richardson, C.~F. and Clancy, P},
373     Date-Added = {2010-01-12 16:17:33 -0500},
374     Date-Modified = {2010-04-08 17:18:25 -0400},
375     Doc-Delivery-Number = {HX378},
376     Issn = {0163-1829},
377     Journal = {Phys. Rev. B},
378     Journal-Iso = {Phys. Rev. B},
379     Keywords-Plus = {SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI},
380     Language = {English},
381     Month = {JUN 1},
382     Number = {21},
383     Number-Of-Cited-References = {24},
384     Pages = {12260-12268},
385     Publisher = {AMERICAN PHYSICAL SOC},
386     Subject-Category = {Physics, Condensed Matter},
387     Times-Cited = {11},
388     Title = {CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS},
389     Type = {Article},
390     Unique-Id = {ISI:A1992HX37800010},
391     Volume = {45},
392     Year = {1992}}
393 skuang 3563
394 skuang 3585 @article{Bedrov:2000,
395     Abstract = {We have applied a new nonequilibrium molecular
396 gezelter 3583 dynamics (NEMD) method {[}F. Muller-Plathe,
397     J. Chem. Phys. 106, 6082 (1997)] previously applied
398     to monatomic Lennard-Jones fluids in the
399     determination of the thermal conductivity of
400     molecular fluids. The method was modified in order
401     to be applicable to systems with holonomic
402     constraints. Because the method involves imposing a
403     known heat flux it is particularly attractive for
404     systems involving long-range and many-body
405     interactions where calculation of the microscopic
406     heat flux is difficult. The predicted thermal
407     conductivities of liquid n-butane and water using
408     the imposed-flux NEMD method were found to be in a
409     good agreement with previous simulations and
410     experiment. (C) 2000 American Institute of
411     Physics. {[}S0021-9606(00)50841-1].},
412 skuang 3585 Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
413     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
414     Author = {Bedrov, D and Smith, GD},
415     Date-Added = {2009-11-05 18:21:18 -0500},
416     Date-Modified = {2010-04-14 11:50:48 -0400},
417     Doc-Delivery-Number = {369BF},
418     Issn = {0021-9606},
419     Journal = {J. Chem. Phys.},
420     Journal-Iso = {J. Chem. Phys.},
421     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
422     Language = {English},
423     Month = {NOV 8},
424     Number = {18},
425     Number-Of-Cited-References = {26},
426     Pages = {8080-8084},
427     Publisher = {AMER INST PHYSICS},
428     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
429     Times-Cited = {23},
430     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
431     Type = {Article},
432     Unique-Id = {ISI:000090151400044},
433     Volume = {113},
434     Year = {2000}}
435 skuang 3563
436     @article{ISI:000231042800044,
437 skuang 3585 Abstract = {The reverse nonequilibrium molecular dynamics
438 gezelter 3583 method for thermal conductivities is adapted to the
439     investigation of molecular fluids. The method
440     generates a heat flux through the system by suitably
441     exchanging velocities of particles located in
442     different regions. From the resulting temperature
443     gradient, the thermal conductivity is then
444     calculated. Different variants of the algorithm and
445     their combinations with other system parameters are
446     tested: exchange of atomic velocities versus
447     exchange of molecular center-of-mass velocities,
448     different exchange frequencies, molecular models
449     with bond constraints versus models with flexible
450     bonds, united-atom versus all-atom models, and
451     presence versus absence of a thermostat. To help
452     establish the range of applicability, the algorithm
453     is tested on different models of benzene,
454     cyclohexane, water, and n-hexane. We find that the
455     algorithm is robust and that the calculated thermal
456     conductivities are insensitive to variations in its
457     control parameters. The force field, in contrast,
458     has a major influence on the value of the thermal
459     conductivity. While calculated and experimental
460     thermal conductivities fall into the same order of
461     magnitude, in most cases the calculated values are
462     systematically larger. United-atom force fields seem
463     to do better than all-atom force fields, possibly
464     because they remove high-frequency degrees of
465     freedom from the simulation, which, in nature, are
466     quantum-mechanical oscillators in their ground state
467     and do not contribute to heat conduction.},
468 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
469     Affiliation = {Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.},
470     Author = {Zhang, MM and Lussetti, E and de Souza, LES and M\"{u}ller-Plathe, F},
471     Date-Added = {2009-11-05 18:17:33 -0500},
472     Date-Modified = {2009-11-05 18:17:33 -0500},
473     Doc-Delivery-Number = {952YQ},
474     Doi = {10.1021/jp0512255},
475     Issn = {1520-6106},
476     Journal = {J. Phys. Chem. B},
477     Journal-Iso = {J. Phys. Chem. B},
478     Keywords-Plus = {LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION},
479     Language = {English},
480     Month = {AUG 11},
481     Number = {31},
482     Number-Of-Cited-References = {42},
483     Pages = {15060-15067},
484     Publisher = {AMER CHEMICAL SOC},
485     Subject-Category = {Chemistry, Physical},
486     Times-Cited = {17},
487     Title = {Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics},
488     Type = {Article},
489     Unique-Id = {ISI:000231042800044},
490     Volume = {109},
491     Year = {2005},
492     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
493 skuang 3563
494     @article{ISI:A1997YC32200056,
495 skuang 3585 Abstract = {Equilibrium molecular dynamics simulations have
496 gezelter 3583 been carried out in the microcanonical ensemble at
497     300 and 255 K on the extended simple point charge
498     (SPC/E) model of water {[}Berendsen et al.,
499     J. Phys. Chem. 91, 6269 (1987)]. In addition to a
500     number of static and dynamic properties, thermal
501     conductivity lambda has been calculated via
502     Green-Kubo integration of the heat current time
503     correlation functions (CF's) in the atomic and
504     molecular formalism, at wave number k=0. The
505     calculated values (0.67 +/- 0.04 W/mK at 300 K and
506     0.52 +/- 0.03 W/mK at 255 K) are in good agreement
507     with the experimental data (0.61 W/mK at 300 K and
508     0.49 W/mK at 255 K). A negative long-time tail of
509     the heat current CF, more apparent at 255 K, is
510     responsible for the anomalous decrease of lambda
511     with temperature. An analysis of the dynamical modes
512     contributing to lambda has shown that its value is
513     due to two low-frequency exponential-like modes, a
514     faster collisional mode, with positive contribution,
515     and a slower one, which determines the negative
516     long-time tail. A comparison of the molecular and
517     atomic spectra of the heat current CF has suggested
518     that higher-frequency modes should not contribute to
519     lambda in this temperature range. Generalized
520     thermal diffusivity D-T(k) decreases as a function
521     of k, after an initial minor increase at k =
522     k(min). The k dependence of the generalized
523     thermodynamic properties has been calculated in the
524     atomic and molecular formalisms. The observed
525     differences have been traced back to intramolecular
526     or intermolecular rotational effects and related to
527     the partial structure functions. Finally, from the
528     results we calculated it appears that the SPC/E
529     model gives results in better agreement with
530     experimental data than the transferable
531     intermolecular potential with four points TIP4P
532     water model {[}Jorgensen et al., J. Chem. Phys. 79,
533     926 (1983)], with a larger improvement for, e.g.,
534     diffusion, viscosities, and dielectric properties
535     and a smaller one for thermal conductivity. The
536     SPC/E model shares, to a smaller extent, the
537     insufficient slowing down of dynamics at low
538     temperature already found for the TIP4P water
539     model.},
540 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
541     Affiliation = {UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.},
542     Author = {Bertolini, D and Tani, A},
543     Date-Added = {2009-10-30 15:41:21 -0400},
544     Date-Modified = {2009-10-30 15:41:21 -0400},
545     Doc-Delivery-Number = {YC322},
546     Issn = {1063-651X},
547     Journal = {Phys. Rev. E},
548     Journal-Iso = {Phys. Rev. E},
549     Keywords-Plus = {TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS},
550     Language = {English},
551     Month = {OCT},
552     Number = {4},
553     Number-Of-Cited-References = {35},
554     Pages = {4135-4151},
555     Publisher = {AMERICAN PHYSICAL SOC},
556     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
557     Times-Cited = {18},
558     Title = {Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results},
559     Type = {Article},
560     Unique-Id = {ISI:A1997YC32200056},
561     Volume = {56},
562     Year = {1997}}
563 skuang 3563
564 skuang 3532 @article{Meineke:2005gd,
565 skuang 3585 Abstract = {OOPSE is a new molecular dynamics simulation program
566 gezelter 3583 that is capable of efficiently integrating equations
567     of motion for atom types with orientational degrees
568     of freedom (e.g. #sticky# atoms and point
569     dipoles). Transition metals can also be simulated
570     using the embedded atom method (EAM) potential
571     included in the code. Parallel simulations are
572     carried out using the force-based decomposition
573     method. Simulations are specified using a very
574     simple C-based meta-data language. A number of
575     advanced integrators are included, and the basic
576     integrator for orientational dynamics provides
577     substantial improvements over older quaternion-based
578     schemes.},
579 skuang 3585 Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
580     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
581     Date-Added = {2009-10-01 18:43:03 -0400},
582     Date-Modified = {2010-04-13 09:11:16 -0400},
583     Doi = {DOI 10.1002/jcc.20161},
584     Isi = {000226558200006},
585     Isi-Recid = {142688207},
586     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
587     Journal = {J. Comp. Chem.},
588     Keywords = {OOPSE; molecular dynamics},
589     Month = feb,
590     Number = {3},
591     Pages = {252-271},
592     Publisher = {JOHN WILEY \& SONS INC},
593     Times-Cited = {9},
594     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
595     Volume = {26},
596     Year = {2005},
597     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
598     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
599 skuang 3532
600     @article{ISI:000080382700030,
601 skuang 3585 Abstract = {A nonequilibrium method for calculating the shear
602 gezelter 3583 viscosity is presented. It reverses the
603     cause-and-effect picture customarily used in
604     nonequilibrium molecular dynamics: the effect, the
605     momentum flux or stress, is imposed, whereas the
606     cause, the velocity gradient or shear rate, is
607     obtained from the simulation. It differs from other
608     Norton-ensemble methods by the way in which the
609     steady-state momentum flux is maintained. This
610     method involves a simple exchange of particle
611     momenta, which is easy to implement. Moreover, it
612     can be made to conserve the total energy as well as
613     the total linear momentum, so no coupling to an
614     external temperature bath is needed. The resulting
615     raw data, the velocity profile, is a robust and
616     rapidly converging property. The method is tested on
617     the Lennard-Jones fluid near its triple point. It
618     yields a viscosity of 3.2-3.3, in Lennard-Jones
619     reduced units, in agreement with literature
620     results. {[}S1063-651X(99)03105-0].},
621 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
622     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
623     Author = {M\"{u}ller-Plathe, F},
624     Date-Added = {2009-10-01 14:07:30 -0400},
625     Date-Modified = {2009-10-01 14:07:30 -0400},
626     Doc-Delivery-Number = {197TX},
627     Issn = {1063-651X},
628     Journal = {Phys. Rev. E},
629     Journal-Iso = {Phys. Rev. E},
630     Language = {English},
631     Month = {MAY},
632     Number = {5, Part A},
633     Number-Of-Cited-References = {17},
634     Pages = {4894-4898},
635     Publisher = {AMERICAN PHYSICAL SOC},
636     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
637     Times-Cited = {57},
638     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
639     Type = {Article},
640     Unique-Id = {ISI:000080382700030},
641     Volume = {59},
642     Year = {1999}}
643 skuang 3532
644 skuang 3585 @article{Maginn:2007,
645     Abstract = {Atomistic simulations are conducted to examine the
646 gezelter 3583 dependence of the viscosity of
647     1-ethyl-3-methylimidazolium
648     bis(trifluoromethanesulfonyl)imide on temperature
649     and water content. A nonequilibrium molecular
650     dynamics procedure is utilized along with an
651     established fixed charge force field. It is found
652     that the simulations quantitatively capture the
653     temperature dependence of the viscosity as well as
654     the drop in viscosity that occurs with increasing
655     water content. Using mixture viscosity models, we
656     show that the relative drop in viscosity with water
657     content is actually less than that that would be
658     predicted for an ideal system. This finding is at
659     odds with the popular notion that small amounts of
660     water cause an unusually large drop in the viscosity
661     of ionic liquids. The simulations suggest that, due
662     to preferential association of water with anions and
663     the formation of water clusters, the excess molar
664     volume is negative. This means that dissolved water
665     is actually less effective at lowering the viscosity
666     of these mixtures when compared to a solute obeying
667     ideal mixing behavior. The use of a nonequilibrium
668     simulation technique enables diffusive behavior to
669     be observed on the time scale of the simulations,
670     and standard equilibrium molecular dynamics resulted
671     in sub-diffusive behavior even over 2 ns of
672     simulation time.},
673 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
674     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
675     Author = {Kelkar, Manish S. and Maginn, Edward J.},
676     Author-Email = {ed@nd.edu},
677     Date-Added = {2009-09-29 17:07:17 -0400},
678     Date-Modified = {2010-04-14 12:51:02 -0400},
679     Doc-Delivery-Number = {163VA},
680     Doi = {10.1021/jp0686893},
681     Issn = {1520-6106},
682     Journal = {J. Phys. Chem. B},
683     Journal-Iso = {J. Phys. Chem. B},
684     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
685     Language = {English},
686     Month = {MAY 10},
687     Number = {18},
688     Number-Of-Cited-References = {57},
689     Pages = {4867-4876},
690     Publisher = {AMER CHEMICAL SOC},
691     Subject-Category = {Chemistry, Physical},
692     Times-Cited = {35},
693     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
694     Type = {Article},
695     Unique-Id = {ISI:000246190100032},
696     Volume = {111},
697     Year = {2007},
698     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D},
699     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0686893}}
700 skuang 3528
701 skuang 3527 @article{MullerPlathe:1997xw,
702 skuang 3585 Abstract = {A nonequilibrium molecular dynamics method for
703 gezelter 3583 calculating the thermal conductivity is
704     presented. It reverses the usual cause and effect
705     picture. The ''effect,'' the heat flux, is imposed
706     on the system and the ''cause,'' the temperature
707     gradient is obtained from the simulation. Besides
708     being very simple to implement, the scheme offers
709     several advantages such as compatibility with
710     periodic boundary conditions, conservation of total
711     energy and total linear momentum, and the sampling
712     of a rapidly converging quantity (temperature
713     gradient) rather than a slowly converging one (heat
714     flux). The scheme is tested on the Lennard-Jones
715     fluid. (C) 1997 American Institute of Physics.},
716 skuang 3585 Address = {WOODBURY},
717     Author = {M\"{u}ller-Plathe, F.},
718     Cited-Reference-Count = {13},
719     Date = {APR 8},
720     Date-Added = {2009-09-21 16:51:21 -0400},
721     Date-Modified = {2009-09-21 16:51:21 -0400},
722     Document-Type = {Article},
723     Isi = {ISI:A1997WR62000032},
724     Isi-Document-Delivery-Number = {WR620},
725     Iso-Source-Abbreviation = {J. Chem. Phys.},
726     Issn = {0021-9606},
727     Journal = {J. Chem. Phys.},
728     Language = {English},
729     Month = {Apr},
730     Number = {14},
731     Page-Count = {4},
732     Pages = {6082--6085},
733     Publication-Type = {J},
734     Publisher = {AMER INST PHYSICS},
735     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
736     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
737     Source = {J CHEM PHYS},
738     Subject-Category = {Physics, Atomic, Molecular & Chemical},
739     Times-Cited = {106},
740     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
741     Volume = {106},
742     Year = {1997}}
743 skuang 3527
744     @article{Muller-Plathe:1999ek,
745 skuang 3585 Abstract = {A novel non-equilibrium method for calculating
746 gezelter 3583 transport coefficients is presented. It reverses the
747     experimental cause-and-effect picture, e.g. for the
748     calculation of viscosities: the effect, the momentum
749     flux or stress, is imposed, whereas the cause, the
750     velocity gradient or shear rates, is obtained from
751     the simulation. It differs from other
752     Norton-ensemble methods by the way, in which the
753     steady-state fluxes are maintained. This method
754     involves a simple exchange of particle momenta,
755     which is easy to implement and to analyse. Moreover,
756     it can be made to conserve the total energy as well
757     as the total linear momentum, so no thermostatting
758     is needed. The resulting raw data are robust and
759     rapidly converging. The method is tested on the
760     calculation of the shear viscosity, the thermal
761     conductivity and the Soret coefficient (thermal
762     diffusion) for the Lennard-Jones (LJ) fluid near its
763     triple point. Possible applications to other
764     transport coefficients and more complicated systems
765     are discussed. (C) 1999 Elsevier Science Ltd. All
766     rights reserved.},
767 skuang 3585 Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
768     Author = {M\"{u}ller-Plathe, F and Reith, D},
769     Date-Added = {2009-09-21 16:47:07 -0400},
770     Date-Modified = {2009-09-21 16:47:07 -0400},
771     Isi = {000082266500004},
772     Isi-Recid = {111564960},
773     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
774     Journal = {Computational and Theoretical Polymer Science},
775     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
776     Number = {3-4},
777     Pages = {203-209},
778     Publisher = {ELSEVIER SCI LTD},
779     Times-Cited = {15},
780     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
781     Volume = {9},
782     Year = {1999},
783     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
784 skuang 3527
785     @article{Viscardy:2007lq,
786 skuang 3585 Abstract = {The thermal conductivity is calculated with the
787 gezelter 3583 Helfand-moment method in the Lennard-Jones fluid
788     near the triple point. The Helfand moment of thermal
789     conductivity is here derived for molecular dynamics
790     with periodic boundary conditions. Thermal
791     conductivity is given by a generalized Einstein
792     relation with this Helfand moment. The authors
793     compute thermal conductivity by this new method and
794     compare it with their own values obtained by the
795     standard Green-Kubo method. The agreement is
796     excellent. (C) 2007 American Institute of Physics.},
797 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
798     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
799     Date-Added = {2009-09-21 16:37:20 -0400},
800     Date-Modified = {2009-09-21 16:37:20 -0400},
801     Doi = {DOI 10.1063/1.2724821},
802     Isi = {000246453900035},
803     Isi-Recid = {156192451},
804     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
805     Journal = {J. Chem. Phys.},
806     Month = may,
807     Number = {18},
808     Publisher = {AMER INST PHYSICS},
809     Times-Cited = {3},
810     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
811     Volume = {126},
812     Year = {2007},
813     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035},
814     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724821}}
815 skuang 3527
816     @article{Viscardy:2007bh,
817 skuang 3585 Abstract = {The authors propose a new method, the Helfand-moment
818 gezelter 3583 method, to compute the shear viscosity by
819     equilibrium molecular dynamics in periodic
820     systems. In this method, the shear viscosity is
821     written as an Einstein-type relation in terms of the
822     variance of the so-called Helfand moment. This
823     quantity is modified in order to satisfy systems
824     with periodic boundary conditions usually considered
825     in molecular dynamics. They calculate the shear
826     viscosity in the Lennard-Jones fluid near the triple
827     point thanks to this new technique. They show that
828     the results of the Helfand-moment method are in
829     excellent agreement with the results of the standard
830     Green-Kubo method. (C) 2007 American Institute of
831     Physics.},
832 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
833     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
834     Date-Added = {2009-09-21 16:37:19 -0400},
835     Date-Modified = {2009-09-21 16:37:19 -0400},
836     Doi = {DOI 10.1063/1.2724820},
837     Isi = {000246453900034},
838     Isi-Recid = {156192449},
839     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
840     Journal = {J. Chem. Phys.},
841     Month = may,
842     Number = {18},
843     Publisher = {AMER INST PHYSICS},
844     Times-Cited = {1},
845     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
846     Volume = {126},
847     Year = {2007},
848     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034},
849     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724820}}