ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nivsRnemd/nivsRnemd.bib
Revision: 3587
Committed: Wed Apr 14 19:56:44 2010 UTC (14 years, 5 months ago) by skuang
File size: 54832 byte(s)
Log Message:
more citations.

File Contents

# User Rev Content
1 skuang 3527 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 skuang 3587 %% Created for Shenyu Kuang at 2010-04-14 15:48:27 -0400
6 skuang 3527
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11    
12 skuang 3587 @article{ISI:000261835100054,
13     Abstract = {{Transport properties of liquid methanol and ethanol are predicted by
14     molecular dynamics simulation. The molecular models for the alcohols
15     are rigid, nonpolarizable, and of united-atom type. They were developed
16     in preceding work using experimental vapor-liquid equilibrium data
17     only. Self- and Maxwell-Stefan diffusion coefficients as well as the
18     shear viscosity of methanol, ethanol, and their binary mixture are
19     determined using equilibrium molecular dynamics and the Green-Kubo
20     formalism. Nonequilibrium molecular dynamics is used for predicting the
21     thermal conductivity of the two pure substances. The transport
22     properties of the fluids are calculated over a wide temperature range
23     at ambient pressure and compared with experimental and simulation data
24     from the literature. Overall, a very good agreement with the experiment
25     is found. For instance, the self-diffusion coefficient and the shear
26     viscosity are predicted with average deviations of less than 8\% for
27     the pure alcohols and 12\% for the mixture. The predicted thermal
28     conductivity agrees on average within 5\% with the experimental data.
29     Additionally, some velocity and shear viscosity autocorrelation
30     functions are presented and discussed. Radial distribution functions
31     for ethanol are also presented. The predicted excess volume, excess
32     enthalpy, and the vapor-liquid equilibrium of the binary mixture
33     methanol + ethanol are assessed and agree well with experimental data.}},
34     Address = {{1155 16TH ST, NW, WASHINGTON, DC 20036 USA}},
35     Affiliation = {{Vrabec, J (Reprint Author), Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Vrabec, Jadran] Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Guevara-Carrion, Gabriela; Hasse, Hans] Univ Kaiserslautern, Lab Engn Thermodynam, D-67663 Kaiserslautern, Germany. {[}Nieto-Draghi, Carlos] Inst Francais Petr, F-92852 Rueil Malmaison, France.}},
36     Author = {Guevara-Carrion, Gabriela and Nieto-Draghi, Carlos and Vrabec, Jadran and Hasse, Hans},
37     Author-Email = {{vrabec@itt.uni-stuttgart.de}},
38     Date-Added = {2010-04-14 15:43:29 -0400},
39     Date-Modified = {2010-04-14 15:43:29 -0400},
40     Doc-Delivery-Number = {{385SY}},
41     Doi = {{10.1021/jp805584d}},
42     Issn = {{1520-6106}},
43     Journal = {{JOURNAL OF PHYSICAL CHEMISTRY B}},
44     Journal-Iso = {{J. Phys. Chem. B}},
45     Keywords-Plus = {{STEFAN DIFFUSION-COEFFICIENTS; MONTE-CARLO CALCULATIONS; ATOM FORCE-FIELD; SELF-DIFFUSION; DYNAMICS SIMULATION; PHASE-EQUILIBRIA; LIQUID METHANOL; TEMPERATURE-DEPENDENCE; COMPUTER-SIMULATION; MONOHYDRIC ALCOHOLS}},
46     Language = {{English}},
47     Month = {{DEC 25}},
48     Number = {{51}},
49     Number-Of-Cited-References = {{86}},
50     Pages = {{16664-16674}},
51     Publisher = {{AMER CHEMICAL SOC}},
52     Subject-Category = {{Chemistry, Physical}},
53     Times-Cited = {{5}},
54     Title = {{Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture}},
55     Type = {{Article}},
56     Unique-Id = {{ISI:000261835100054}},
57     Volume = {{112}},
58     Year = {{2008}},
59     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp805584d%7D}}
60    
61     @article{ISI:000258460400020,
62     Abstract = {{Nonequilibrium molecular dynamics simulations with the nonpolarizable
63     SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the
64     polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121,
65     9549) force fields have been employed to calculate the thermal
66     conductivity and other associated properties of methane hydrate over a
67     temperature range from 30 to 260 K. The calculated results are compared
68     to experimental data over this same range. The values of the thermal
69     conductivity calculated with the COS/G2 model are closer to the
70     experimental values than are those calculated with the nonpolarizable
71     SPC/E model. The calculations match the temperature trend in the
72     experimental data at temperatures below 50 K; however, they exhibit a
73     slight decrease in thermal conductivity at higher temperatures in
74     comparison to an opposite trend in the experimental data. The
75     calculated thermal conductivity values are found to be relatively
76     insensitive to the occupancy of the cages except at low (T <= 50 K)
77     temperatures, which indicates that the differences between the two
78     lattice structures may have a more dominant role than generally thought
79     in explaining the low thermal conductivity of methane hydrate compared
80     to ice Ih. The introduction of defects into the water lattice is found
81     to cause a reduction in the thermal conductivity but to have a
82     negligible impact on its temperature dependence.}},
83     Address = {{1155 16TH ST, NW, WASHINGTON, DC 20036 USA}},
84     Affiliation = {{Jordan, KD (Reprint Author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Myshakin, Evgeniy M.; Jordan, Kenneth D.; Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol \& Mat Simulat, Pittsburgh, PA 15260 USA. {[}Myshakin, Evgeniy M.] Parsons Project Serv Inc, South Pk, PA 15129 USA.}},
85     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
86     Date-Added = {2010-04-14 15:38:14 -0400},
87     Date-Modified = {2010-04-14 15:38:14 -0400},
88     Doc-Delivery-Number = {{337UG}},
89     Doi = {{10.1021/jp802942v}},
90     Funding-Acknowledgement = {{E.M.M. ; National Energy Technology Laboratory's Office of Research and Development {[}41817.660.01.03]; ORISE Part-Time Faculty Program ; {[}DE-AM26-04NT41817]; {[}41817.606.06.03]}},
91     Funding-Text = {{We thank Drs. John Tse, Niall English, and Alan McGaughey for their comments. H.J. and K.D.J. performed this work under Contract DE-AM26-04NT41817, Subtask 41817.606.06.03, and E.M.M. performed this work under the same contract, Subtask 41817.660.01.03, in support of the National Energy Technology Laboratory's Office of Research and Development. K.D.J. was also supported at NETL by the ORISE Part-Time Faculty Program during the early stages of this work.}},
92     Issn = {{1520-6106}},
93     Journal = {{JOURNAL OF PHYSICAL CHEMISTRY B}},
94     Journal-Iso = {{J. Phys. Chem. B}},
95     Keywords-Plus = {{LIQUID WATER; CLATHRATE HYDRATE; HEAT-CAPACITY; FORCE-FIELDS; ICE; ANHARMONICITY; SUMMATION; MODELS; SILICA}},
96     Language = {{English}},
97     Month = {{AUG 21}},
98     Number = {{33}},
99     Number-Of-Cited-References = {{51}},
100     Pages = {{10207-10216}},
101     Publisher = {{AMER CHEMICAL SOC}},
102     Subject-Category = {{Chemistry, Physical}},
103     Times-Cited = {{8}},
104     Title = {{Molecular dynamics Simulations of the thermal conductivity of methane hydrate}},
105     Type = {{Article}},
106     Unique-Id = {{ISI:000258460400020}},
107     Volume = {{112}},
108     Year = {{2008}},
109     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp802942v%7D}}
110    
111 skuang 3585 @article{ISI:000184808400018,
112     Abstract = {{A new non-equilibrium molecular dynamics algorithm is presented based
113     on the original work of Willer-Plathe, (1997, J. chem. Phys., 106,
114     6082), for the non-equilibrium simulation of heat transport maintaining
115     fixed the total momentum as well as the total energy of the system. The
116     presented scheme preserves these properties but, unlike the original
117     algorithm, is able to deal with multicomponent systems, that is with
118     particles of different mass independently of their relative
119     concentration. The main idea behind the new procedure is to consider an
120     exchange of momentum and energy between the particles in the hot and
121     cold regions, to maintain the non-equilibrium conditions, as if they
122     undergo a hypothetical elastic collision. The new algorithm can also be
123     employed in multicomponent systems for molecular fluids and in a wide
124     range of thermodynamic conditions.}},
125     Address = {{4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND}},
126     Affiliation = {{Nieto-Draghi, C (Reprint Author), Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain. Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Tarragona 43007, Spain.}},
127     Author = {Nieto-Draghi, C and Avalos, JB},
128     Date-Added = {2010-04-14 12:48:08 -0400},
129     Date-Modified = {2010-04-14 12:48:08 -0400},
130     Doc-Delivery-Number = {{712QM}},
131     Doi = {{10.1080/0026897031000154338}},
132     Issn = {{0026-8976}},
133     Journal = {{MOLECULAR PHYSICS}},
134     Journal-Iso = {{Mol. Phys.}},
135     Keywords-Plus = {{BINARY-LIQUID MIXTURES; THERMAL-CONDUCTIVITY; MATTER TRANSPORT; WATER}},
136     Language = {{English}},
137     Month = {{JUL 20}},
138     Number = {{14}},
139     Number-Of-Cited-References = {{20}},
140     Pages = {{2303-2307}},
141     Publisher = {{TAYLOR \& FRANCIS LTD}},
142     Subject-Category = {{Physics, Atomic, Molecular \& Chemical}},
143     Times-Cited = {{13}},
144     Title = {{Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems}},
145     Type = {{Article}},
146     Unique-Id = {{ISI:000184808400018}},
147     Volume = {{101}},
148     Year = {{2003}},
149     Bdsk-Url-1 = {http://dx.doi.org/10.1080/0026897031000154338%7D}}
150    
151     @article{Bedrov:2000-1,
152     Abstract = {{The thermal conductivity of liquid
153     octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been
154     determined from imposed heat flux non-equilibrium molecular dynamics
155     (NEMD) simulations using a previously published quantum chemistry-based
156     atomistic potential. The thermal conductivity was determined in the
157     temperature domain 550 less than or equal to T less than or equal to
158     800 K, which corresponds approximately to the existence limits of the
159     liquid phase of HMX at atmospheric pressure. The NEMD predictions,
160     which comprise the first reported values for thermal conductivity of
161     HMX liquid, were found to be consistent with measured values for
162     crystalline HMX. The thermal conductivity of liquid HMX was found to
163     exhibit a much weaker temperature dependence than the shear viscosity
164     and self-diffusion coefficients. (C) 2000 Elsevier Science B.V. All
165     rights reserved.}},
166     Address = {{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}},
167     Affiliation = {{Bedrov, D (Reprint Author), Univ Utah, Dept Mat Sci \& Engn, 122 S Cent Campus Dr,Room 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.}},
168     Author = {Bedrov, D and Smith, GD and Sewell, TD},
169     Date-Added = {2010-04-14 12:26:59 -0400},
170     Date-Modified = {2010-04-14 12:27:52 -0400},
171     Doc-Delivery-Number = {{330PF}},
172     Issn = {{0009-2614}},
173     Journal = {{CHEMICAL PHYSICS LETTERS}},
174     Journal-Iso = {{Chem. Phys. Lett.}},
175     Keywords-Plus = {{FORCE-FIELD}},
176     Language = {{English}},
177     Month = {{JUN 30}},
178     Number = {{1-3}},
179     Number-Of-Cited-References = {{17}},
180     Pages = {{64-68}},
181     Publisher = {{ELSEVIER SCIENCE BV}},
182     Subject-Category = {{Chemistry, Physical; Physics, Atomic, Molecular \& Chemical}},
183     Times-Cited = {{19}},
184     Title = {{Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations}},
185     Type = {{Article}},
186     Unique-Id = {{ISI:000087969900011}},
187     Volume = {{324}},
188     Year = {{2000}}}
189    
190     @article{ISI:000258840700015,
191     Abstract = {{By using the embedded-atom method (EAM), a series of molecular dynamics
192     (MD) simulations are carried out to calculate the viscosity and
193     self-diffusion coefficient of liquid copper from the normal to the
194     undercooled states. The simulated results are in reasonable agreement
195     with the experimental values available above the melting temperature
196     that is also predicted from a solid-liquid-solid sandwich structure.
197     The relationship between the viscosity and the self-diffusion
198     coefficient is evaluated. It is found that the Stokes-Einstein and
199     Sutherland-Einstein relations qualitatively describe this relationship
200     within the simulation temperature range. However, the predicted
201     constant from MD simulation is close to 1/(3 pi), which is larger than
202     the constants of the Stokes-Einstein and Sutherland-Einstein relations.}},
203     Address = {{233 SPRING ST, NEW YORK, NY 10013 USA}},
204     Affiliation = {{Chen, M (Reprint Author), Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China. {[}Han, X. J.; Chen, M.; Lue, Y. J.] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.}},
205     Author = {Han, X. J. and Chen, M. and Lue, Y. J.},
206     Author-Email = {{mchen@tsinghua.edu.cn}},
207     Date-Added = {2010-04-14 12:00:38 -0400},
208     Date-Modified = {2010-04-14 12:00:38 -0400},
209     Doc-Delivery-Number = {{343GH}},
210     Doi = {{10.1007/s10765-008-0489-7}},
211     Funding-Acknowledgement = {{China Postdoctoral Science Foundation ; National Natural Science Foundation of China {[}50395101, 50371043]}},
212     Funding-Text = {{This work was financially supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China under grant Nos. of 50395101 and 50371043. The computations are carried out at the Tsinghua National Laboratory for Information Science and Technology, China. The authors are grateful to Mr. D. Q. Yu for valuable discussions.}},
213     Issn = {{0195-928X}},
214     Journal = {{INTERNATIONAL JOURNAL OF THERMOPHYSICS}},
215     Journal-Iso = {{Int. J. Thermophys.}},
216     Keywords = {{copper; molecular simulation; self-diffusion coefficient; viscosity; undercooled}},
217     Keywords-Plus = {{EMBEDDED-ATOM MODEL; THERMOPHYSICAL PROPERTIES; COMPUTER-SIMULATION; TRANSITION-METALS; SHEAR VISCOSITY; ALLOYS; TEMPERATURE; DIFFUSION; BINDING; SURFACE}},
218     Language = {{English}},
219     Month = {{AUG}},
220     Number = {{4}},
221     Number-Of-Cited-References = {{39}},
222     Pages = {{1408-1421}},
223     Publisher = {{SPRINGER/PLENUM PUBLISHERS}},
224     Subject-Category = {{Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied}},
225     Times-Cited = {{2}},
226     Title = {{Transport properties of undercooled liquid copper: A molecular dynamics study}},
227     Type = {{Article}},
228     Unique-Id = {{ISI:000258840700015}},
229     Volume = {{29}},
230     Year = {{2008}},
231     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-008-0489-7%7D}}
232    
233     @article{Muller-Plathe:2008,
234     Abstract = {{Reverse nonequilibrium molecular dynamics and equilibrium molecular
235     dynamics simulations were carried out to compute the shear viscosity of
236     the pure ionic liquid system {[}bmim]{[}PF6] at 300 K. The two methods
237     yielded consistent results which were also compared to experiments. The
238     results showed that the reverse nonequilibrium molecular dynamics
239     (RNEMD) methodology can successfully be applied to computation of
240     highly viscous ionic liquids. Moreover, this study provides a
241     validation of the atomistic force-field developed by Bhargava and
242     Balasubramanian (J. Chem. Phys. 2007, 127, 114510) for dynamic
243     properties.}},
244     Address = {{1155 16TH ST, NW, WASHINGTON, DC 20036 USA}},
245     Affiliation = {{Wei, Z (Reprint Author), Tech Univ Darmstadt, Petersenstr 30, D-64287 Darmstadt, Germany. {[}Wei Zhao; Leroy, Frederic; Mueller-Plathe, Florian] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. {[}Balasubramanian, Sundaram] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chem \& Phys Mat Unit, Bangalore 560064, Karnataka, India.}},
246     Author = {Wei Zhao and Leroy, Frederic and Balasubramanian, Sundaram and Mueller-Plathe, Florian},
247     Author-Email = {{w.zhao@theo.chemie.tu-darmstadt.de}},
248     Date-Added = {2010-04-14 11:53:37 -0400},
249     Date-Modified = {2010-04-14 11:54:20 -0400},
250     Doc-Delivery-Number = {{321VS}},
251     Doi = {{10.1021/jp8017869}},
252     Issn = {{1520-6106}},
253     Journal = {{JOURNAL OF PHYSICAL CHEMISTRY B}},
254     Journal-Iso = {{J. Phys. Chem. B}},
255     Keywords-Plus = {{TRANSPORT-PROPERTIES; FORCE-FIELD; TEMPERATURE; SIMULATION; IMIDAZOLIUM; FLUIDS; MODEL; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; PYRIDINIUM; CHLORIDE}},
256     Language = {{English}},
257     Month = {{JUL 10}},
258     Number = {{27}},
259     Number-Of-Cited-References = {{49}},
260     Pages = {{8129-8133}},
261     Publisher = {{AMER CHEMICAL SOC}},
262     Subject-Category = {{Chemistry, Physical}},
263     Times-Cited = {{2}},
264     Title = {{Shear viscosity of the ionic liquid 1-n-butyl 3-methylimidazolium hexafluorophosphate {[}bmim]{[}PF6] computed by reverse nonequilibrium molecular dynamics}},
265     Type = {{Article}},
266     Unique-Id = {{ISI:000257335200022}},
267     Volume = {{112}},
268     Year = {{2008}},
269     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp8017869%7D}}
270    
271     @article{Muller-Plathe:2002,
272     Abstract = {{The reverse nonequilibrium molecular dynamics {[}F. Muller-Plathe,
273     Phys. Rev. E 49, 359 (1999)] presented for the calculation of the shear
274     viscosity of Lennard-Jones liquids has been extended to atomistic
275     models of molecular liquids. The method is improved to overcome the
276     problems due to the detailed molecular models. The new technique is
277     besides a test with a Lennard-Jones fluid, applied on different
278     realistic systems: liquid nitrogen, water, and hexane, in order to
279     cover a large range of interactions and systems/architectures. We show
280     that all the advantages of the method itemized previously are still
281     valid, and that it has a very good efficiency and accuracy making it
282     very competitive. (C) 2002 American Institute of Physics.}},
283     Address = {{CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA}},
284     Affiliation = {{Bordat, P (Reprint Author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymer Res, D-55128 Mainz, Germany.}},
285     Author = {Bordat, P and Muller-Plathe, F},
286     Date-Added = {2010-04-14 11:34:42 -0400},
287     Date-Modified = {2010-04-14 11:35:35 -0400},
288     Doc-Delivery-Number = {{521QV}},
289     Doi = {{10.1063/1.1436124}},
290     Issn = {{0021-9606}},
291     Journal = {{JOURNAL OF CHEMICAL PHYSICS}},
292     Journal-Iso = {{J. Chem. Phys.}},
293     Keywords-Plus = {{TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; LIQUID ALKANES; N-HEPTADECANE; SIMULATION; WATER; FLOW; MIXTURES; BUTANE; NITROGEN}},
294     Language = {{English}},
295     Month = {{FEB 22}},
296     Number = {{8}},
297     Number-Of-Cited-References = {{47}},
298     Pages = {{3362-3369}},
299     Publisher = {{AMER INST PHYSICS}},
300     Subject-Category = {{Physics, Atomic, Molecular \& Chemical}},
301     Times-Cited = {{33}},
302     Title = {{The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics}},
303     Type = {{Article}},
304     Unique-Id = {{ISI:000173853600023}},
305     Volume = {{116}},
306     Year = {{2002}},
307     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1436124%7D}}
308    
309 skuang 3580 @article{ISI:000207079300006,
310 skuang 3585 Abstract = {Non-equilibrium Molecular Dynamics Simulation
311 gezelter 3583 methods have been used to study the ability of
312     Embedded Atom Method models of the metals copper and
313     gold to reproduce the equilibrium and
314     non-equilibrium behavior of metals at a stationary
315     and at a moving solid/liquid interface. The
316     equilibrium solid/vapor interface was shown to
317     display a simple termination of the bulk until the
318     temperature of the solid reaches approximate to 90\%
319     of the bulk melting point. At and above such
320     temperatures the systems exhibit a surface
321     disodering known as surface melting. Non-equilibrium
322     simulations emulating the action of a picosecond
323     laser on the metal were performed to determine the
324     regrowth velocity. For copper, the action of a 20 ps
325     laser with an absorbed energy of 2-5 mJ/cm(2)
326     produced a regrowth velocity of 83-100 m/s, in
327     reasonable agreement with the value obtained by
328     experiment (>60 m/s). For gold, similar conditions
329     produced a slower regrowth velocity of 63 m/s at an
330     absorbed energy of 5 mJ/cm(2). This is almost a
331     factor of two too low in comparison to experiment
332     (>100 m/s). The regrowth velocities of the metals
333     seems unexpectedly close to experiment considering
334     that the free-electron contribution is ignored in
335     the Embeeded Atom Method models used.},
336 skuang 3585 Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
337     Affiliation = {Clancy, P (Reprint Author), Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA.},
338     Author = {Richardson, Clifton F. and Clancy, Paulette},
339     Date-Added = {2010-04-07 11:24:36 -0400},
340     Date-Modified = {2010-04-07 11:24:36 -0400},
341     Doc-Delivery-Number = {V04SY},
342     Issn = {0892-7022},
343     Journal = {MOLECULAR SIMULATION},
344     Journal-Iso = {Mol. Simul.},
345     Keywords = {Non-equilibrium computer simulation; molecular dynamics; crystal growth; Embedded Atom Method models of metals},
346     Language = {English},
347     Number = {5-6},
348     Number-Of-Cited-References = {36},
349     Pages = {335-355},
350     Publisher = {TAYLOR \& FRANCIS LTD},
351     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
352     Times-Cited = {7},
353     Title = {PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A COMPUTER SIMULATION STUDY},
354     Type = {Article},
355     Unique-Id = {ISI:000207079300006},
356     Volume = {7},
357     Year = {1991}}
358 skuang 3580
359 skuang 3573 @article{ISI:000167766600035,
360 skuang 3585 Abstract = {Molecular dynamics simulations are used to
361 gezelter 3583 investigate the separation of water films adjacent
362     to a hot metal surface. The simulations clearly show
363     that the water layers nearest the surface overheat
364     and undergo explosive boiling. For thick films, the
365     expansion of the vaporized molecules near the
366     surface forces the outer water layers to move away
367     from the surface. These results are of interest for
368     mass spectrometry of biological molecules, steam
369     cleaning of surfaces, and medical procedures.},
370 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
371     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
372     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
373     Date-Added = {2010-03-11 15:32:14 -0500},
374     Date-Modified = {2010-03-11 15:32:14 -0500},
375     Doc-Delivery-Number = {416ED},
376     Issn = {1089-5639},
377     Journal = {J. Phys. Chem. A},
378     Journal-Iso = {J. Phys. Chem. A},
379     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
380     Language = {English},
381     Month = {MAR 29},
382     Number = {12},
383     Number-Of-Cited-References = {65},
384     Pages = {2748-2755},
385     Publisher = {AMER CHEMICAL SOC},
386     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
387     Times-Cited = {66},
388     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
389     Type = {Article},
390     Unique-Id = {ISI:000167766600035},
391     Volume = {105},
392     Year = {2001}}
393 skuang 3573
394 skuang 3585 @article{Maginn:2010,
395     Abstract = {The reverse nonequilibrium molecular dynamics
396 gezelter 3583 (RNEMD) method calculates the shear viscosity of a
397     fluid by imposing a nonphysical exchange of momentum
398     and measuring the resulting shear velocity
399     gradient. In this study we investigate the range of
400     momentum flux values over which RNEMD yields usable
401     (linear) velocity gradients. We find that nonlinear
402     velocity profiles result primarily from gradients in
403     fluid temperature and density. The temperature
404     gradient results from conversion of heat into bulk
405     kinetic energy, which is transformed back into heat
406     elsewhere via viscous heating. An expression is
407     derived to predict the temperature profile resulting
408     from a specified momentum flux for a given fluid and
409     simulation cell. Although primarily bounded above,
410     we also describe milder low-flux limitations. RNEMD
411     results for a Lennard-Jones fluid agree with
412     equilibrium molecular dynamics and conventional
413     nonequilibrium molecular dynamics calculations at
414     low shear, but RNEMD underpredicts viscosity
415     relative to conventional NEMD at high shear.},
416 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
417     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
418     Article-Number = {014103},
419     Author = {Tenney, Craig M. and Maginn, Edward J.},
420     Author-Email = {ed@nd.edu},
421     Date-Added = {2010-03-09 13:08:41 -0500},
422     Date-Modified = {2010-04-14 12:51:13 -0400},
423     Doc-Delivery-Number = {542DQ},
424     Doi = {10.1063/1.3276454},
425     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
426     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
427     Issn = {0021-9606},
428     Journal = {J. Chem. Phys.},
429     Journal-Iso = {J. Chem. Phys.},
430     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
431     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
432     Language = {English},
433     Month = {JAN 7},
434     Number = {1},
435     Number-Of-Cited-References = {20},
436     Publisher = {AMER INST PHYSICS},
437     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
438     Times-Cited = {0},
439     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
440     Type = {Article},
441     Unique-Id = {ISI:000273472300004},
442     Volume = {132},
443     Year = {2010},
444     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
445 skuang 3565
446 skuang 3582 @article{Clancy:1992,
447 skuang 3585 Abstract = {The regrowth velocity of a crystal from a melt
448 gezelter 3583 depends on contributions from the thermal
449     conductivity, heat gradient, and latent heat. The
450     relative contributions of these terms to the
451     regrowth velocity of the pure metals copper and gold
452     during liquid-phase epitaxy are evaluated. These
453     results are used to explain how results from
454     previous nonequilibrium molecular-dynamics
455     simulations using classical potentials are able to
456     predict regrowth velocities that are close to the
457     experimental values. Results from equilibrium
458     molecular dynamics showing the nature of the
459     solid-vapor interface of an
460     embedded-atom-method-modeled Cu57Ni43 alloy at a
461     temperature corresponding to 62\% of the melting
462     point are presented. The regrowth of this alloy
463     following a simulation of a laser-processing
464     experiment is also given, with use of nonequilibrium
465     molecular-dynamics techniques. The thermal
466     conductivity and temperature gradient in the
467     simulation of the alloy are compared to those for
468     the pure metals.},
469 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
470     Affiliation = {CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.},
471     Author = {Richardson, C.~F. and Clancy, P},
472     Date-Added = {2010-01-12 16:17:33 -0500},
473     Date-Modified = {2010-04-08 17:18:25 -0400},
474     Doc-Delivery-Number = {HX378},
475     Issn = {0163-1829},
476     Journal = {Phys. Rev. B},
477     Journal-Iso = {Phys. Rev. B},
478     Keywords-Plus = {SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI},
479     Language = {English},
480     Month = {JUN 1},
481     Number = {21},
482     Number-Of-Cited-References = {24},
483     Pages = {12260-12268},
484     Publisher = {AMERICAN PHYSICAL SOC},
485     Subject-Category = {Physics, Condensed Matter},
486     Times-Cited = {11},
487     Title = {CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS},
488     Type = {Article},
489     Unique-Id = {ISI:A1992HX37800010},
490     Volume = {45},
491     Year = {1992}}
492 skuang 3563
493 skuang 3585 @article{Bedrov:2000,
494     Abstract = {We have applied a new nonequilibrium molecular
495 gezelter 3583 dynamics (NEMD) method {[}F. Muller-Plathe,
496     J. Chem. Phys. 106, 6082 (1997)] previously applied
497     to monatomic Lennard-Jones fluids in the
498     determination of the thermal conductivity of
499     molecular fluids. The method was modified in order
500     to be applicable to systems with holonomic
501     constraints. Because the method involves imposing a
502     known heat flux it is particularly attractive for
503     systems involving long-range and many-body
504     interactions where calculation of the microscopic
505     heat flux is difficult. The predicted thermal
506     conductivities of liquid n-butane and water using
507     the imposed-flux NEMD method were found to be in a
508     good agreement with previous simulations and
509     experiment. (C) 2000 American Institute of
510     Physics. {[}S0021-9606(00)50841-1].},
511 skuang 3585 Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
512     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
513     Author = {Bedrov, D and Smith, GD},
514     Date-Added = {2009-11-05 18:21:18 -0500},
515     Date-Modified = {2010-04-14 11:50:48 -0400},
516     Doc-Delivery-Number = {369BF},
517     Issn = {0021-9606},
518     Journal = {J. Chem. Phys.},
519     Journal-Iso = {J. Chem. Phys.},
520     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
521     Language = {English},
522     Month = {NOV 8},
523     Number = {18},
524     Number-Of-Cited-References = {26},
525     Pages = {8080-8084},
526     Publisher = {AMER INST PHYSICS},
527     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
528     Times-Cited = {23},
529     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
530     Type = {Article},
531     Unique-Id = {ISI:000090151400044},
532     Volume = {113},
533     Year = {2000}}
534 skuang 3563
535     @article{ISI:000231042800044,
536 skuang 3585 Abstract = {The reverse nonequilibrium molecular dynamics
537 gezelter 3583 method for thermal conductivities is adapted to the
538     investigation of molecular fluids. The method
539     generates a heat flux through the system by suitably
540     exchanging velocities of particles located in
541     different regions. From the resulting temperature
542     gradient, the thermal conductivity is then
543     calculated. Different variants of the algorithm and
544     their combinations with other system parameters are
545     tested: exchange of atomic velocities versus
546     exchange of molecular center-of-mass velocities,
547     different exchange frequencies, molecular models
548     with bond constraints versus models with flexible
549     bonds, united-atom versus all-atom models, and
550     presence versus absence of a thermostat. To help
551     establish the range of applicability, the algorithm
552     is tested on different models of benzene,
553     cyclohexane, water, and n-hexane. We find that the
554     algorithm is robust and that the calculated thermal
555     conductivities are insensitive to variations in its
556     control parameters. The force field, in contrast,
557     has a major influence on the value of the thermal
558     conductivity. While calculated and experimental
559     thermal conductivities fall into the same order of
560     magnitude, in most cases the calculated values are
561     systematically larger. United-atom force fields seem
562     to do better than all-atom force fields, possibly
563     because they remove high-frequency degrees of
564     freedom from the simulation, which, in nature, are
565     quantum-mechanical oscillators in their ground state
566     and do not contribute to heat conduction.},
567 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
568     Affiliation = {Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.},
569     Author = {Zhang, MM and Lussetti, E and de Souza, LES and M\"{u}ller-Plathe, F},
570     Date-Added = {2009-11-05 18:17:33 -0500},
571     Date-Modified = {2009-11-05 18:17:33 -0500},
572     Doc-Delivery-Number = {952YQ},
573     Doi = {10.1021/jp0512255},
574     Issn = {1520-6106},
575     Journal = {J. Phys. Chem. B},
576     Journal-Iso = {J. Phys. Chem. B},
577     Keywords-Plus = {LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION},
578     Language = {English},
579     Month = {AUG 11},
580     Number = {31},
581     Number-Of-Cited-References = {42},
582     Pages = {15060-15067},
583     Publisher = {AMER CHEMICAL SOC},
584     Subject-Category = {Chemistry, Physical},
585     Times-Cited = {17},
586     Title = {Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics},
587     Type = {Article},
588     Unique-Id = {ISI:000231042800044},
589     Volume = {109},
590     Year = {2005},
591     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
592 skuang 3563
593     @article{ISI:A1997YC32200056,
594 skuang 3585 Abstract = {Equilibrium molecular dynamics simulations have
595 gezelter 3583 been carried out in the microcanonical ensemble at
596     300 and 255 K on the extended simple point charge
597     (SPC/E) model of water {[}Berendsen et al.,
598     J. Phys. Chem. 91, 6269 (1987)]. In addition to a
599     number of static and dynamic properties, thermal
600     conductivity lambda has been calculated via
601     Green-Kubo integration of the heat current time
602     correlation functions (CF's) in the atomic and
603     molecular formalism, at wave number k=0. The
604     calculated values (0.67 +/- 0.04 W/mK at 300 K and
605     0.52 +/- 0.03 W/mK at 255 K) are in good agreement
606     with the experimental data (0.61 W/mK at 300 K and
607     0.49 W/mK at 255 K). A negative long-time tail of
608     the heat current CF, more apparent at 255 K, is
609     responsible for the anomalous decrease of lambda
610     with temperature. An analysis of the dynamical modes
611     contributing to lambda has shown that its value is
612     due to two low-frequency exponential-like modes, a
613     faster collisional mode, with positive contribution,
614     and a slower one, which determines the negative
615     long-time tail. A comparison of the molecular and
616     atomic spectra of the heat current CF has suggested
617     that higher-frequency modes should not contribute to
618     lambda in this temperature range. Generalized
619     thermal diffusivity D-T(k) decreases as a function
620     of k, after an initial minor increase at k =
621     k(min). The k dependence of the generalized
622     thermodynamic properties has been calculated in the
623     atomic and molecular formalisms. The observed
624     differences have been traced back to intramolecular
625     or intermolecular rotational effects and related to
626     the partial structure functions. Finally, from the
627     results we calculated it appears that the SPC/E
628     model gives results in better agreement with
629     experimental data than the transferable
630     intermolecular potential with four points TIP4P
631     water model {[}Jorgensen et al., J. Chem. Phys. 79,
632     926 (1983)], with a larger improvement for, e.g.,
633     diffusion, viscosities, and dielectric properties
634     and a smaller one for thermal conductivity. The
635     SPC/E model shares, to a smaller extent, the
636     insufficient slowing down of dynamics at low
637     temperature already found for the TIP4P water
638     model.},
639 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
640     Affiliation = {UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.},
641     Author = {Bertolini, D and Tani, A},
642     Date-Added = {2009-10-30 15:41:21 -0400},
643     Date-Modified = {2009-10-30 15:41:21 -0400},
644     Doc-Delivery-Number = {YC322},
645     Issn = {1063-651X},
646     Journal = {Phys. Rev. E},
647     Journal-Iso = {Phys. Rev. E},
648     Keywords-Plus = {TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS},
649     Language = {English},
650     Month = {OCT},
651     Number = {4},
652     Number-Of-Cited-References = {35},
653     Pages = {4135-4151},
654     Publisher = {AMERICAN PHYSICAL SOC},
655     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
656     Times-Cited = {18},
657     Title = {Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results},
658     Type = {Article},
659     Unique-Id = {ISI:A1997YC32200056},
660     Volume = {56},
661     Year = {1997}}
662 skuang 3563
663 skuang 3532 @article{Meineke:2005gd,
664 skuang 3585 Abstract = {OOPSE is a new molecular dynamics simulation program
665 gezelter 3583 that is capable of efficiently integrating equations
666     of motion for atom types with orientational degrees
667     of freedom (e.g. #sticky# atoms and point
668     dipoles). Transition metals can also be simulated
669     using the embedded atom method (EAM) potential
670     included in the code. Parallel simulations are
671     carried out using the force-based decomposition
672     method. Simulations are specified using a very
673     simple C-based meta-data language. A number of
674     advanced integrators are included, and the basic
675     integrator for orientational dynamics provides
676     substantial improvements over older quaternion-based
677     schemes.},
678 skuang 3585 Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
679     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
680     Date-Added = {2009-10-01 18:43:03 -0400},
681     Date-Modified = {2010-04-13 09:11:16 -0400},
682     Doi = {DOI 10.1002/jcc.20161},
683     Isi = {000226558200006},
684     Isi-Recid = {142688207},
685     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
686     Journal = {J. Comp. Chem.},
687     Keywords = {OOPSE; molecular dynamics},
688     Month = feb,
689     Number = {3},
690     Pages = {252-271},
691     Publisher = {JOHN WILEY \& SONS INC},
692     Times-Cited = {9},
693     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
694     Volume = {26},
695     Year = {2005},
696     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
697     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
698 skuang 3532
699     @article{ISI:000080382700030,
700 skuang 3585 Abstract = {A nonequilibrium method for calculating the shear
701 gezelter 3583 viscosity is presented. It reverses the
702     cause-and-effect picture customarily used in
703     nonequilibrium molecular dynamics: the effect, the
704     momentum flux or stress, is imposed, whereas the
705     cause, the velocity gradient or shear rate, is
706     obtained from the simulation. It differs from other
707     Norton-ensemble methods by the way in which the
708     steady-state momentum flux is maintained. This
709     method involves a simple exchange of particle
710     momenta, which is easy to implement. Moreover, it
711     can be made to conserve the total energy as well as
712     the total linear momentum, so no coupling to an
713     external temperature bath is needed. The resulting
714     raw data, the velocity profile, is a robust and
715     rapidly converging property. The method is tested on
716     the Lennard-Jones fluid near its triple point. It
717     yields a viscosity of 3.2-3.3, in Lennard-Jones
718     reduced units, in agreement with literature
719     results. {[}S1063-651X(99)03105-0].},
720 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
721     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
722     Author = {M\"{u}ller-Plathe, F},
723     Date-Added = {2009-10-01 14:07:30 -0400},
724     Date-Modified = {2009-10-01 14:07:30 -0400},
725     Doc-Delivery-Number = {197TX},
726     Issn = {1063-651X},
727     Journal = {Phys. Rev. E},
728     Journal-Iso = {Phys. Rev. E},
729     Language = {English},
730     Month = {MAY},
731     Number = {5, Part A},
732     Number-Of-Cited-References = {17},
733     Pages = {4894-4898},
734     Publisher = {AMERICAN PHYSICAL SOC},
735     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
736     Times-Cited = {57},
737     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
738     Type = {Article},
739     Unique-Id = {ISI:000080382700030},
740     Volume = {59},
741     Year = {1999}}
742 skuang 3532
743 skuang 3585 @article{Maginn:2007,
744     Abstract = {Atomistic simulations are conducted to examine the
745 gezelter 3583 dependence of the viscosity of
746     1-ethyl-3-methylimidazolium
747     bis(trifluoromethanesulfonyl)imide on temperature
748     and water content. A nonequilibrium molecular
749     dynamics procedure is utilized along with an
750     established fixed charge force field. It is found
751     that the simulations quantitatively capture the
752     temperature dependence of the viscosity as well as
753     the drop in viscosity that occurs with increasing
754     water content. Using mixture viscosity models, we
755     show that the relative drop in viscosity with water
756     content is actually less than that that would be
757     predicted for an ideal system. This finding is at
758     odds with the popular notion that small amounts of
759     water cause an unusually large drop in the viscosity
760     of ionic liquids. The simulations suggest that, due
761     to preferential association of water with anions and
762     the formation of water clusters, the excess molar
763     volume is negative. This means that dissolved water
764     is actually less effective at lowering the viscosity
765     of these mixtures when compared to a solute obeying
766     ideal mixing behavior. The use of a nonequilibrium
767     simulation technique enables diffusive behavior to
768     be observed on the time scale of the simulations,
769     and standard equilibrium molecular dynamics resulted
770     in sub-diffusive behavior even over 2 ns of
771     simulation time.},
772 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
773     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
774     Author = {Kelkar, Manish S. and Maginn, Edward J.},
775     Author-Email = {ed@nd.edu},
776     Date-Added = {2009-09-29 17:07:17 -0400},
777     Date-Modified = {2010-04-14 12:51:02 -0400},
778     Doc-Delivery-Number = {163VA},
779     Doi = {10.1021/jp0686893},
780     Issn = {1520-6106},
781     Journal = {J. Phys. Chem. B},
782     Journal-Iso = {J. Phys. Chem. B},
783     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
784     Language = {English},
785     Month = {MAY 10},
786     Number = {18},
787     Number-Of-Cited-References = {57},
788     Pages = {4867-4876},
789     Publisher = {AMER CHEMICAL SOC},
790     Subject-Category = {Chemistry, Physical},
791     Times-Cited = {35},
792     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
793     Type = {Article},
794     Unique-Id = {ISI:000246190100032},
795     Volume = {111},
796     Year = {2007},
797     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D},
798     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0686893}}
799 skuang 3528
800 skuang 3527 @article{MullerPlathe:1997xw,
801 skuang 3585 Abstract = {A nonequilibrium molecular dynamics method for
802 gezelter 3583 calculating the thermal conductivity is
803     presented. It reverses the usual cause and effect
804     picture. The ''effect,'' the heat flux, is imposed
805     on the system and the ''cause,'' the temperature
806     gradient is obtained from the simulation. Besides
807     being very simple to implement, the scheme offers
808     several advantages such as compatibility with
809     periodic boundary conditions, conservation of total
810     energy and total linear momentum, and the sampling
811     of a rapidly converging quantity (temperature
812     gradient) rather than a slowly converging one (heat
813     flux). The scheme is tested on the Lennard-Jones
814     fluid. (C) 1997 American Institute of Physics.},
815 skuang 3585 Address = {WOODBURY},
816     Author = {M\"{u}ller-Plathe, F.},
817     Cited-Reference-Count = {13},
818     Date = {APR 8},
819     Date-Added = {2009-09-21 16:51:21 -0400},
820     Date-Modified = {2009-09-21 16:51:21 -0400},
821     Document-Type = {Article},
822     Isi = {ISI:A1997WR62000032},
823     Isi-Document-Delivery-Number = {WR620},
824     Iso-Source-Abbreviation = {J. Chem. Phys.},
825     Issn = {0021-9606},
826     Journal = {J. Chem. Phys.},
827     Language = {English},
828     Month = {Apr},
829     Number = {14},
830     Page-Count = {4},
831     Pages = {6082--6085},
832     Publication-Type = {J},
833     Publisher = {AMER INST PHYSICS},
834     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
835     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
836     Source = {J CHEM PHYS},
837     Subject-Category = {Physics, Atomic, Molecular & Chemical},
838     Times-Cited = {106},
839     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
840     Volume = {106},
841     Year = {1997}}
842 skuang 3527
843     @article{Muller-Plathe:1999ek,
844 skuang 3585 Abstract = {A novel non-equilibrium method for calculating
845 gezelter 3583 transport coefficients is presented. It reverses the
846     experimental cause-and-effect picture, e.g. for the
847     calculation of viscosities: the effect, the momentum
848     flux or stress, is imposed, whereas the cause, the
849     velocity gradient or shear rates, is obtained from
850     the simulation. It differs from other
851     Norton-ensemble methods by the way, in which the
852     steady-state fluxes are maintained. This method
853     involves a simple exchange of particle momenta,
854     which is easy to implement and to analyse. Moreover,
855     it can be made to conserve the total energy as well
856     as the total linear momentum, so no thermostatting
857     is needed. The resulting raw data are robust and
858     rapidly converging. The method is tested on the
859     calculation of the shear viscosity, the thermal
860     conductivity and the Soret coefficient (thermal
861     diffusion) for the Lennard-Jones (LJ) fluid near its
862     triple point. Possible applications to other
863     transport coefficients and more complicated systems
864     are discussed. (C) 1999 Elsevier Science Ltd. All
865     rights reserved.},
866 skuang 3585 Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
867     Author = {M\"{u}ller-Plathe, F and Reith, D},
868     Date-Added = {2009-09-21 16:47:07 -0400},
869     Date-Modified = {2009-09-21 16:47:07 -0400},
870     Isi = {000082266500004},
871     Isi-Recid = {111564960},
872     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
873     Journal = {Computational and Theoretical Polymer Science},
874     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
875     Number = {3-4},
876     Pages = {203-209},
877     Publisher = {ELSEVIER SCI LTD},
878     Times-Cited = {15},
879     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
880     Volume = {9},
881     Year = {1999},
882     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
883 skuang 3527
884     @article{Viscardy:2007lq,
885 skuang 3585 Abstract = {The thermal conductivity is calculated with the
886 gezelter 3583 Helfand-moment method in the Lennard-Jones fluid
887     near the triple point. The Helfand moment of thermal
888     conductivity is here derived for molecular dynamics
889     with periodic boundary conditions. Thermal
890     conductivity is given by a generalized Einstein
891     relation with this Helfand moment. The authors
892     compute thermal conductivity by this new method and
893     compare it with their own values obtained by the
894     standard Green-Kubo method. The agreement is
895     excellent. (C) 2007 American Institute of Physics.},
896 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
897     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
898     Date-Added = {2009-09-21 16:37:20 -0400},
899     Date-Modified = {2009-09-21 16:37:20 -0400},
900     Doi = {DOI 10.1063/1.2724821},
901     Isi = {000246453900035},
902     Isi-Recid = {156192451},
903     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
904     Journal = {J. Chem. Phys.},
905     Month = may,
906     Number = {18},
907     Publisher = {AMER INST PHYSICS},
908     Times-Cited = {3},
909     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
910     Volume = {126},
911     Year = {2007},
912     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035},
913     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724821}}
914 skuang 3527
915     @article{Viscardy:2007bh,
916 skuang 3585 Abstract = {The authors propose a new method, the Helfand-moment
917 gezelter 3583 method, to compute the shear viscosity by
918     equilibrium molecular dynamics in periodic
919     systems. In this method, the shear viscosity is
920     written as an Einstein-type relation in terms of the
921     variance of the so-called Helfand moment. This
922     quantity is modified in order to satisfy systems
923     with periodic boundary conditions usually considered
924     in molecular dynamics. They calculate the shear
925     viscosity in the Lennard-Jones fluid near the triple
926     point thanks to this new technique. They show that
927     the results of the Helfand-moment method are in
928     excellent agreement with the results of the standard
929     Green-Kubo method. (C) 2007 American Institute of
930     Physics.},
931 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
932     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
933     Date-Added = {2009-09-21 16:37:19 -0400},
934     Date-Modified = {2009-09-21 16:37:19 -0400},
935     Doi = {DOI 10.1063/1.2724820},
936     Isi = {000246453900034},
937     Isi-Recid = {156192449},
938     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
939     Journal = {J. Chem. Phys.},
940     Month = may,
941     Number = {18},
942     Publisher = {AMER INST PHYSICS},
943     Times-Cited = {1},
944     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
945     Volume = {126},
946     Year = {2007},
947     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034},
948     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724820}}