ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nivsRnemd/nivsRnemd.bib
Revision: 3588
Committed: Wed Apr 14 22:02:41 2010 UTC (14 years, 5 months ago) by skuang
File size: 55891 byte(s)
Log Message:
more citations.

File Contents

# User Rev Content
1 skuang 3527 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 skuang 3588 %% Created for Shenyu Kuang at 2010-04-14 16:20:32 -0400
6 skuang 3527
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11    
12 skuang 3588 @article{ISI:A1988Q205300014,
13     Address = {{ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE}},
14     Affiliation = {{VOGELSANG, R (Reprint Author), RUHR UNIV BOCHUM,UNIV STR 150,D-4630 BOCHUM,FED REP GER. UNIV DUISBURG,THERMODYNAM,D-4100 DUISBURG,FED REP GER.}},
15     Author = {VOGELSANG, R and HOHEISEL, G and LUCKAS, M},
16     Date-Added = {2010-04-14 16:20:24 -0400},
17     Date-Modified = {2010-04-14 16:20:24 -0400},
18     Doc-Delivery-Number = {{Q2053}},
19     Issn = {{0026-8976}},
20     Journal = {{MOLECULAR PHYSICS}},
21     Journal-Iso = {{Mol. Phys.}},
22     Language = {{English}},
23     Month = {{AUG 20}},
24     Number = {{6}},
25     Number-Of-Cited-References = {{14}},
26     Pages = {{1203-1213}},
27     Publisher = {{TAYLOR \& FRANCIS LTD}},
28     Subject-Category = {{Physics, Atomic, Molecular \& Chemical}},
29     Times-Cited = {{12}},
30     Title = {{SHEAR VISCOSITY AND THERMAL-CONDUCTIVITY OF THE LENNARD-JONES LIQUID COMPUTED USING MOLECULAR-DYNAMICS AND PREDICTED BY A MEMORY FUNCTION MODEL FOR A LARGE NUMBER OF STATES}},
31     Type = {{Article}},
32     Unique-Id = {{ISI:A1988Q205300014}},
33     Volume = {{64}},
34     Year = {{1988}}}
35    
36 skuang 3587 @article{ISI:000261835100054,
37     Abstract = {{Transport properties of liquid methanol and ethanol are predicted by
38     molecular dynamics simulation. The molecular models for the alcohols
39     are rigid, nonpolarizable, and of united-atom type. They were developed
40     in preceding work using experimental vapor-liquid equilibrium data
41     only. Self- and Maxwell-Stefan diffusion coefficients as well as the
42     shear viscosity of methanol, ethanol, and their binary mixture are
43     determined using equilibrium molecular dynamics and the Green-Kubo
44     formalism. Nonequilibrium molecular dynamics is used for predicting the
45     thermal conductivity of the two pure substances. The transport
46     properties of the fluids are calculated over a wide temperature range
47     at ambient pressure and compared with experimental and simulation data
48     from the literature. Overall, a very good agreement with the experiment
49     is found. For instance, the self-diffusion coefficient and the shear
50     viscosity are predicted with average deviations of less than 8\% for
51     the pure alcohols and 12\% for the mixture. The predicted thermal
52     conductivity agrees on average within 5\% with the experimental data.
53     Additionally, some velocity and shear viscosity autocorrelation
54     functions are presented and discussed. Radial distribution functions
55     for ethanol are also presented. The predicted excess volume, excess
56     enthalpy, and the vapor-liquid equilibrium of the binary mixture
57     methanol + ethanol are assessed and agree well with experimental data.}},
58     Address = {{1155 16TH ST, NW, WASHINGTON, DC 20036 USA}},
59     Affiliation = {{Vrabec, J (Reprint Author), Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Vrabec, Jadran] Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Guevara-Carrion, Gabriela; Hasse, Hans] Univ Kaiserslautern, Lab Engn Thermodynam, D-67663 Kaiserslautern, Germany. {[}Nieto-Draghi, Carlos] Inst Francais Petr, F-92852 Rueil Malmaison, France.}},
60     Author = {Guevara-Carrion, Gabriela and Nieto-Draghi, Carlos and Vrabec, Jadran and Hasse, Hans},
61     Author-Email = {{vrabec@itt.uni-stuttgart.de}},
62     Date-Added = {2010-04-14 15:43:29 -0400},
63     Date-Modified = {2010-04-14 15:43:29 -0400},
64     Doc-Delivery-Number = {{385SY}},
65     Doi = {{10.1021/jp805584d}},
66     Issn = {{1520-6106}},
67     Journal = {{JOURNAL OF PHYSICAL CHEMISTRY B}},
68     Journal-Iso = {{J. Phys. Chem. B}},
69     Keywords-Plus = {{STEFAN DIFFUSION-COEFFICIENTS; MONTE-CARLO CALCULATIONS; ATOM FORCE-FIELD; SELF-DIFFUSION; DYNAMICS SIMULATION; PHASE-EQUILIBRIA; LIQUID METHANOL; TEMPERATURE-DEPENDENCE; COMPUTER-SIMULATION; MONOHYDRIC ALCOHOLS}},
70     Language = {{English}},
71     Month = {{DEC 25}},
72     Number = {{51}},
73     Number-Of-Cited-References = {{86}},
74     Pages = {{16664-16674}},
75     Publisher = {{AMER CHEMICAL SOC}},
76     Subject-Category = {{Chemistry, Physical}},
77     Times-Cited = {{5}},
78     Title = {{Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture}},
79     Type = {{Article}},
80     Unique-Id = {{ISI:000261835100054}},
81     Volume = {{112}},
82     Year = {{2008}},
83     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp805584d%7D}}
84    
85     @article{ISI:000258460400020,
86     Abstract = {{Nonequilibrium molecular dynamics simulations with the nonpolarizable
87     SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the
88     polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121,
89     9549) force fields have been employed to calculate the thermal
90     conductivity and other associated properties of methane hydrate over a
91     temperature range from 30 to 260 K. The calculated results are compared
92     to experimental data over this same range. The values of the thermal
93     conductivity calculated with the COS/G2 model are closer to the
94     experimental values than are those calculated with the nonpolarizable
95     SPC/E model. The calculations match the temperature trend in the
96     experimental data at temperatures below 50 K; however, they exhibit a
97     slight decrease in thermal conductivity at higher temperatures in
98     comparison to an opposite trend in the experimental data. The
99     calculated thermal conductivity values are found to be relatively
100     insensitive to the occupancy of the cages except at low (T <= 50 K)
101     temperatures, which indicates that the differences between the two
102     lattice structures may have a more dominant role than generally thought
103     in explaining the low thermal conductivity of methane hydrate compared
104     to ice Ih. The introduction of defects into the water lattice is found
105     to cause a reduction in the thermal conductivity but to have a
106     negligible impact on its temperature dependence.}},
107     Address = {{1155 16TH ST, NW, WASHINGTON, DC 20036 USA}},
108     Affiliation = {{Jordan, KD (Reprint Author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Myshakin, Evgeniy M.; Jordan, Kenneth D.; Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol \& Mat Simulat, Pittsburgh, PA 15260 USA. {[}Myshakin, Evgeniy M.] Parsons Project Serv Inc, South Pk, PA 15129 USA.}},
109     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
110     Date-Added = {2010-04-14 15:38:14 -0400},
111     Date-Modified = {2010-04-14 15:38:14 -0400},
112     Doc-Delivery-Number = {{337UG}},
113     Doi = {{10.1021/jp802942v}},
114     Funding-Acknowledgement = {{E.M.M. ; National Energy Technology Laboratory's Office of Research and Development {[}41817.660.01.03]; ORISE Part-Time Faculty Program ; {[}DE-AM26-04NT41817]; {[}41817.606.06.03]}},
115     Funding-Text = {{We thank Drs. John Tse, Niall English, and Alan McGaughey for their comments. H.J. and K.D.J. performed this work under Contract DE-AM26-04NT41817, Subtask 41817.606.06.03, and E.M.M. performed this work under the same contract, Subtask 41817.660.01.03, in support of the National Energy Technology Laboratory's Office of Research and Development. K.D.J. was also supported at NETL by the ORISE Part-Time Faculty Program during the early stages of this work.}},
116     Issn = {{1520-6106}},
117     Journal = {{JOURNAL OF PHYSICAL CHEMISTRY B}},
118     Journal-Iso = {{J. Phys. Chem. B}},
119     Keywords-Plus = {{LIQUID WATER; CLATHRATE HYDRATE; HEAT-CAPACITY; FORCE-FIELDS; ICE; ANHARMONICITY; SUMMATION; MODELS; SILICA}},
120     Language = {{English}},
121     Month = {{AUG 21}},
122     Number = {{33}},
123     Number-Of-Cited-References = {{51}},
124     Pages = {{10207-10216}},
125     Publisher = {{AMER CHEMICAL SOC}},
126     Subject-Category = {{Chemistry, Physical}},
127     Times-Cited = {{8}},
128     Title = {{Molecular dynamics Simulations of the thermal conductivity of methane hydrate}},
129     Type = {{Article}},
130     Unique-Id = {{ISI:000258460400020}},
131     Volume = {{112}},
132     Year = {{2008}},
133     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp802942v%7D}}
134    
135 skuang 3585 @article{ISI:000184808400018,
136     Abstract = {{A new non-equilibrium molecular dynamics algorithm is presented based
137     on the original work of Willer-Plathe, (1997, J. chem. Phys., 106,
138     6082), for the non-equilibrium simulation of heat transport maintaining
139     fixed the total momentum as well as the total energy of the system. The
140     presented scheme preserves these properties but, unlike the original
141     algorithm, is able to deal with multicomponent systems, that is with
142     particles of different mass independently of their relative
143     concentration. The main idea behind the new procedure is to consider an
144     exchange of momentum and energy between the particles in the hot and
145     cold regions, to maintain the non-equilibrium conditions, as if they
146     undergo a hypothetical elastic collision. The new algorithm can also be
147     employed in multicomponent systems for molecular fluids and in a wide
148     range of thermodynamic conditions.}},
149     Address = {{4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND}},
150     Affiliation = {{Nieto-Draghi, C (Reprint Author), Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain. Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Tarragona 43007, Spain.}},
151     Author = {Nieto-Draghi, C and Avalos, JB},
152     Date-Added = {2010-04-14 12:48:08 -0400},
153     Date-Modified = {2010-04-14 12:48:08 -0400},
154     Doc-Delivery-Number = {{712QM}},
155     Doi = {{10.1080/0026897031000154338}},
156     Issn = {{0026-8976}},
157     Journal = {{MOLECULAR PHYSICS}},
158     Journal-Iso = {{Mol. Phys.}},
159     Keywords-Plus = {{BINARY-LIQUID MIXTURES; THERMAL-CONDUCTIVITY; MATTER TRANSPORT; WATER}},
160     Language = {{English}},
161     Month = {{JUL 20}},
162     Number = {{14}},
163     Number-Of-Cited-References = {{20}},
164     Pages = {{2303-2307}},
165     Publisher = {{TAYLOR \& FRANCIS LTD}},
166     Subject-Category = {{Physics, Atomic, Molecular \& Chemical}},
167     Times-Cited = {{13}},
168     Title = {{Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems}},
169     Type = {{Article}},
170     Unique-Id = {{ISI:000184808400018}},
171     Volume = {{101}},
172     Year = {{2003}},
173     Bdsk-Url-1 = {http://dx.doi.org/10.1080/0026897031000154338%7D}}
174    
175     @article{Bedrov:2000-1,
176     Abstract = {{The thermal conductivity of liquid
177     octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been
178     determined from imposed heat flux non-equilibrium molecular dynamics
179     (NEMD) simulations using a previously published quantum chemistry-based
180     atomistic potential. The thermal conductivity was determined in the
181     temperature domain 550 less than or equal to T less than or equal to
182     800 K, which corresponds approximately to the existence limits of the
183     liquid phase of HMX at atmospheric pressure. The NEMD predictions,
184     which comprise the first reported values for thermal conductivity of
185     HMX liquid, were found to be consistent with measured values for
186     crystalline HMX. The thermal conductivity of liquid HMX was found to
187     exhibit a much weaker temperature dependence than the shear viscosity
188     and self-diffusion coefficients. (C) 2000 Elsevier Science B.V. All
189     rights reserved.}},
190     Address = {{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}},
191     Affiliation = {{Bedrov, D (Reprint Author), Univ Utah, Dept Mat Sci \& Engn, 122 S Cent Campus Dr,Room 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.}},
192     Author = {Bedrov, D and Smith, GD and Sewell, TD},
193     Date-Added = {2010-04-14 12:26:59 -0400},
194     Date-Modified = {2010-04-14 12:27:52 -0400},
195     Doc-Delivery-Number = {{330PF}},
196     Issn = {{0009-2614}},
197     Journal = {{CHEMICAL PHYSICS LETTERS}},
198     Journal-Iso = {{Chem. Phys. Lett.}},
199     Keywords-Plus = {{FORCE-FIELD}},
200     Language = {{English}},
201     Month = {{JUN 30}},
202     Number = {{1-3}},
203     Number-Of-Cited-References = {{17}},
204     Pages = {{64-68}},
205     Publisher = {{ELSEVIER SCIENCE BV}},
206     Subject-Category = {{Chemistry, Physical; Physics, Atomic, Molecular \& Chemical}},
207     Times-Cited = {{19}},
208     Title = {{Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations}},
209     Type = {{Article}},
210     Unique-Id = {{ISI:000087969900011}},
211     Volume = {{324}},
212     Year = {{2000}}}
213    
214     @article{ISI:000258840700015,
215     Abstract = {{By using the embedded-atom method (EAM), a series of molecular dynamics
216     (MD) simulations are carried out to calculate the viscosity and
217     self-diffusion coefficient of liquid copper from the normal to the
218     undercooled states. The simulated results are in reasonable agreement
219     with the experimental values available above the melting temperature
220     that is also predicted from a solid-liquid-solid sandwich structure.
221     The relationship between the viscosity and the self-diffusion
222     coefficient is evaluated. It is found that the Stokes-Einstein and
223     Sutherland-Einstein relations qualitatively describe this relationship
224     within the simulation temperature range. However, the predicted
225     constant from MD simulation is close to 1/(3 pi), which is larger than
226     the constants of the Stokes-Einstein and Sutherland-Einstein relations.}},
227     Address = {{233 SPRING ST, NEW YORK, NY 10013 USA}},
228     Affiliation = {{Chen, M (Reprint Author), Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China. {[}Han, X. J.; Chen, M.; Lue, Y. J.] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.}},
229     Author = {Han, X. J. and Chen, M. and Lue, Y. J.},
230     Author-Email = {{mchen@tsinghua.edu.cn}},
231     Date-Added = {2010-04-14 12:00:38 -0400},
232     Date-Modified = {2010-04-14 12:00:38 -0400},
233     Doc-Delivery-Number = {{343GH}},
234     Doi = {{10.1007/s10765-008-0489-7}},
235     Funding-Acknowledgement = {{China Postdoctoral Science Foundation ; National Natural Science Foundation of China {[}50395101, 50371043]}},
236     Funding-Text = {{This work was financially supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China under grant Nos. of 50395101 and 50371043. The computations are carried out at the Tsinghua National Laboratory for Information Science and Technology, China. The authors are grateful to Mr. D. Q. Yu for valuable discussions.}},
237     Issn = {{0195-928X}},
238     Journal = {{INTERNATIONAL JOURNAL OF THERMOPHYSICS}},
239     Journal-Iso = {{Int. J. Thermophys.}},
240     Keywords = {{copper; molecular simulation; self-diffusion coefficient; viscosity; undercooled}},
241     Keywords-Plus = {{EMBEDDED-ATOM MODEL; THERMOPHYSICAL PROPERTIES; COMPUTER-SIMULATION; TRANSITION-METALS; SHEAR VISCOSITY; ALLOYS; TEMPERATURE; DIFFUSION; BINDING; SURFACE}},
242     Language = {{English}},
243     Month = {{AUG}},
244     Number = {{4}},
245     Number-Of-Cited-References = {{39}},
246     Pages = {{1408-1421}},
247     Publisher = {{SPRINGER/PLENUM PUBLISHERS}},
248     Subject-Category = {{Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied}},
249     Times-Cited = {{2}},
250     Title = {{Transport properties of undercooled liquid copper: A molecular dynamics study}},
251     Type = {{Article}},
252     Unique-Id = {{ISI:000258840700015}},
253     Volume = {{29}},
254     Year = {{2008}},
255     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-008-0489-7%7D}}
256    
257     @article{Muller-Plathe:2008,
258     Abstract = {{Reverse nonequilibrium molecular dynamics and equilibrium molecular
259     dynamics simulations were carried out to compute the shear viscosity of
260     the pure ionic liquid system {[}bmim]{[}PF6] at 300 K. The two methods
261     yielded consistent results which were also compared to experiments. The
262     results showed that the reverse nonequilibrium molecular dynamics
263     (RNEMD) methodology can successfully be applied to computation of
264     highly viscous ionic liquids. Moreover, this study provides a
265     validation of the atomistic force-field developed by Bhargava and
266     Balasubramanian (J. Chem. Phys. 2007, 127, 114510) for dynamic
267     properties.}},
268     Address = {{1155 16TH ST, NW, WASHINGTON, DC 20036 USA}},
269     Affiliation = {{Wei, Z (Reprint Author), Tech Univ Darmstadt, Petersenstr 30, D-64287 Darmstadt, Germany. {[}Wei Zhao; Leroy, Frederic; Mueller-Plathe, Florian] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. {[}Balasubramanian, Sundaram] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chem \& Phys Mat Unit, Bangalore 560064, Karnataka, India.}},
270     Author = {Wei Zhao and Leroy, Frederic and Balasubramanian, Sundaram and Mueller-Plathe, Florian},
271     Author-Email = {{w.zhao@theo.chemie.tu-darmstadt.de}},
272     Date-Added = {2010-04-14 11:53:37 -0400},
273     Date-Modified = {2010-04-14 11:54:20 -0400},
274     Doc-Delivery-Number = {{321VS}},
275     Doi = {{10.1021/jp8017869}},
276     Issn = {{1520-6106}},
277     Journal = {{JOURNAL OF PHYSICAL CHEMISTRY B}},
278     Journal-Iso = {{J. Phys. Chem. B}},
279     Keywords-Plus = {{TRANSPORT-PROPERTIES; FORCE-FIELD; TEMPERATURE; SIMULATION; IMIDAZOLIUM; FLUIDS; MODEL; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; PYRIDINIUM; CHLORIDE}},
280     Language = {{English}},
281     Month = {{JUL 10}},
282     Number = {{27}},
283     Number-Of-Cited-References = {{49}},
284     Pages = {{8129-8133}},
285     Publisher = {{AMER CHEMICAL SOC}},
286     Subject-Category = {{Chemistry, Physical}},
287     Times-Cited = {{2}},
288     Title = {{Shear viscosity of the ionic liquid 1-n-butyl 3-methylimidazolium hexafluorophosphate {[}bmim]{[}PF6] computed by reverse nonequilibrium molecular dynamics}},
289     Type = {{Article}},
290     Unique-Id = {{ISI:000257335200022}},
291     Volume = {{112}},
292     Year = {{2008}},
293     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp8017869%7D}}
294    
295     @article{Muller-Plathe:2002,
296     Abstract = {{The reverse nonequilibrium molecular dynamics {[}F. Muller-Plathe,
297     Phys. Rev. E 49, 359 (1999)] presented for the calculation of the shear
298     viscosity of Lennard-Jones liquids has been extended to atomistic
299     models of molecular liquids. The method is improved to overcome the
300     problems due to the detailed molecular models. The new technique is
301     besides a test with a Lennard-Jones fluid, applied on different
302     realistic systems: liquid nitrogen, water, and hexane, in order to
303     cover a large range of interactions and systems/architectures. We show
304     that all the advantages of the method itemized previously are still
305     valid, and that it has a very good efficiency and accuracy making it
306     very competitive. (C) 2002 American Institute of Physics.}},
307     Address = {{CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA}},
308     Affiliation = {{Bordat, P (Reprint Author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymer Res, D-55128 Mainz, Germany.}},
309     Author = {Bordat, P and Muller-Plathe, F},
310     Date-Added = {2010-04-14 11:34:42 -0400},
311     Date-Modified = {2010-04-14 11:35:35 -0400},
312     Doc-Delivery-Number = {{521QV}},
313     Doi = {{10.1063/1.1436124}},
314     Issn = {{0021-9606}},
315     Journal = {{JOURNAL OF CHEMICAL PHYSICS}},
316     Journal-Iso = {{J. Chem. Phys.}},
317     Keywords-Plus = {{TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; LIQUID ALKANES; N-HEPTADECANE; SIMULATION; WATER; FLOW; MIXTURES; BUTANE; NITROGEN}},
318     Language = {{English}},
319     Month = {{FEB 22}},
320     Number = {{8}},
321     Number-Of-Cited-References = {{47}},
322     Pages = {{3362-3369}},
323     Publisher = {{AMER INST PHYSICS}},
324     Subject-Category = {{Physics, Atomic, Molecular \& Chemical}},
325     Times-Cited = {{33}},
326     Title = {{The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics}},
327     Type = {{Article}},
328     Unique-Id = {{ISI:000173853600023}},
329     Volume = {{116}},
330     Year = {{2002}},
331     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1436124%7D}}
332    
333 skuang 3580 @article{ISI:000207079300006,
334 skuang 3585 Abstract = {Non-equilibrium Molecular Dynamics Simulation
335 gezelter 3583 methods have been used to study the ability of
336     Embedded Atom Method models of the metals copper and
337     gold to reproduce the equilibrium and
338     non-equilibrium behavior of metals at a stationary
339     and at a moving solid/liquid interface. The
340     equilibrium solid/vapor interface was shown to
341     display a simple termination of the bulk until the
342     temperature of the solid reaches approximate to 90\%
343     of the bulk melting point. At and above such
344     temperatures the systems exhibit a surface
345     disodering known as surface melting. Non-equilibrium
346     simulations emulating the action of a picosecond
347     laser on the metal were performed to determine the
348     regrowth velocity. For copper, the action of a 20 ps
349     laser with an absorbed energy of 2-5 mJ/cm(2)
350     produced a regrowth velocity of 83-100 m/s, in
351     reasonable agreement with the value obtained by
352     experiment (>60 m/s). For gold, similar conditions
353     produced a slower regrowth velocity of 63 m/s at an
354     absorbed energy of 5 mJ/cm(2). This is almost a
355     factor of two too low in comparison to experiment
356     (>100 m/s). The regrowth velocities of the metals
357     seems unexpectedly close to experiment considering
358     that the free-electron contribution is ignored in
359     the Embeeded Atom Method models used.},
360 skuang 3585 Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
361     Affiliation = {Clancy, P (Reprint Author), Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA.},
362     Author = {Richardson, Clifton F. and Clancy, Paulette},
363     Date-Added = {2010-04-07 11:24:36 -0400},
364     Date-Modified = {2010-04-07 11:24:36 -0400},
365     Doc-Delivery-Number = {V04SY},
366     Issn = {0892-7022},
367     Journal = {MOLECULAR SIMULATION},
368     Journal-Iso = {Mol. Simul.},
369     Keywords = {Non-equilibrium computer simulation; molecular dynamics; crystal growth; Embedded Atom Method models of metals},
370     Language = {English},
371     Number = {5-6},
372     Number-Of-Cited-References = {36},
373     Pages = {335-355},
374     Publisher = {TAYLOR \& FRANCIS LTD},
375     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
376     Times-Cited = {7},
377     Title = {PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A COMPUTER SIMULATION STUDY},
378     Type = {Article},
379     Unique-Id = {ISI:000207079300006},
380     Volume = {7},
381     Year = {1991}}
382 skuang 3580
383 skuang 3573 @article{ISI:000167766600035,
384 skuang 3585 Abstract = {Molecular dynamics simulations are used to
385 gezelter 3583 investigate the separation of water films adjacent
386     to a hot metal surface. The simulations clearly show
387     that the water layers nearest the surface overheat
388     and undergo explosive boiling. For thick films, the
389     expansion of the vaporized molecules near the
390     surface forces the outer water layers to move away
391     from the surface. These results are of interest for
392     mass spectrometry of biological molecules, steam
393     cleaning of surfaces, and medical procedures.},
394 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
395     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
396     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
397     Date-Added = {2010-03-11 15:32:14 -0500},
398     Date-Modified = {2010-03-11 15:32:14 -0500},
399     Doc-Delivery-Number = {416ED},
400     Issn = {1089-5639},
401     Journal = {J. Phys. Chem. A},
402     Journal-Iso = {J. Phys. Chem. A},
403     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
404     Language = {English},
405     Month = {MAR 29},
406     Number = {12},
407     Number-Of-Cited-References = {65},
408     Pages = {2748-2755},
409     Publisher = {AMER CHEMICAL SOC},
410     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
411     Times-Cited = {66},
412     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
413     Type = {Article},
414     Unique-Id = {ISI:000167766600035},
415     Volume = {105},
416     Year = {2001}}
417 skuang 3573
418 skuang 3585 @article{Maginn:2010,
419     Abstract = {The reverse nonequilibrium molecular dynamics
420 gezelter 3583 (RNEMD) method calculates the shear viscosity of a
421     fluid by imposing a nonphysical exchange of momentum
422     and measuring the resulting shear velocity
423     gradient. In this study we investigate the range of
424     momentum flux values over which RNEMD yields usable
425     (linear) velocity gradients. We find that nonlinear
426     velocity profiles result primarily from gradients in
427     fluid temperature and density. The temperature
428     gradient results from conversion of heat into bulk
429     kinetic energy, which is transformed back into heat
430     elsewhere via viscous heating. An expression is
431     derived to predict the temperature profile resulting
432     from a specified momentum flux for a given fluid and
433     simulation cell. Although primarily bounded above,
434     we also describe milder low-flux limitations. RNEMD
435     results for a Lennard-Jones fluid agree with
436     equilibrium molecular dynamics and conventional
437     nonequilibrium molecular dynamics calculations at
438     low shear, but RNEMD underpredicts viscosity
439     relative to conventional NEMD at high shear.},
440 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
441     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
442     Article-Number = {014103},
443     Author = {Tenney, Craig M. and Maginn, Edward J.},
444     Author-Email = {ed@nd.edu},
445     Date-Added = {2010-03-09 13:08:41 -0500},
446     Date-Modified = {2010-04-14 12:51:13 -0400},
447     Doc-Delivery-Number = {542DQ},
448     Doi = {10.1063/1.3276454},
449     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
450     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
451     Issn = {0021-9606},
452     Journal = {J. Chem. Phys.},
453     Journal-Iso = {J. Chem. Phys.},
454     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
455     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
456     Language = {English},
457     Month = {JAN 7},
458     Number = {1},
459     Number-Of-Cited-References = {20},
460     Publisher = {AMER INST PHYSICS},
461     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
462     Times-Cited = {0},
463     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
464     Type = {Article},
465     Unique-Id = {ISI:000273472300004},
466     Volume = {132},
467     Year = {2010},
468     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
469 skuang 3565
470 skuang 3582 @article{Clancy:1992,
471 skuang 3585 Abstract = {The regrowth velocity of a crystal from a melt
472 gezelter 3583 depends on contributions from the thermal
473     conductivity, heat gradient, and latent heat. The
474     relative contributions of these terms to the
475     regrowth velocity of the pure metals copper and gold
476     during liquid-phase epitaxy are evaluated. These
477     results are used to explain how results from
478     previous nonequilibrium molecular-dynamics
479     simulations using classical potentials are able to
480     predict regrowth velocities that are close to the
481     experimental values. Results from equilibrium
482     molecular dynamics showing the nature of the
483     solid-vapor interface of an
484     embedded-atom-method-modeled Cu57Ni43 alloy at a
485     temperature corresponding to 62\% of the melting
486     point are presented. The regrowth of this alloy
487     following a simulation of a laser-processing
488     experiment is also given, with use of nonequilibrium
489     molecular-dynamics techniques. The thermal
490     conductivity and temperature gradient in the
491     simulation of the alloy are compared to those for
492     the pure metals.},
493 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
494     Affiliation = {CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.},
495     Author = {Richardson, C.~F. and Clancy, P},
496     Date-Added = {2010-01-12 16:17:33 -0500},
497     Date-Modified = {2010-04-08 17:18:25 -0400},
498     Doc-Delivery-Number = {HX378},
499     Issn = {0163-1829},
500     Journal = {Phys. Rev. B},
501     Journal-Iso = {Phys. Rev. B},
502     Keywords-Plus = {SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI},
503     Language = {English},
504     Month = {JUN 1},
505     Number = {21},
506     Number-Of-Cited-References = {24},
507     Pages = {12260-12268},
508     Publisher = {AMERICAN PHYSICAL SOC},
509     Subject-Category = {Physics, Condensed Matter},
510     Times-Cited = {11},
511     Title = {CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS},
512     Type = {Article},
513     Unique-Id = {ISI:A1992HX37800010},
514     Volume = {45},
515     Year = {1992}}
516 skuang 3563
517 skuang 3585 @article{Bedrov:2000,
518     Abstract = {We have applied a new nonequilibrium molecular
519 gezelter 3583 dynamics (NEMD) method {[}F. Muller-Plathe,
520     J. Chem. Phys. 106, 6082 (1997)] previously applied
521     to monatomic Lennard-Jones fluids in the
522     determination of the thermal conductivity of
523     molecular fluids. The method was modified in order
524     to be applicable to systems with holonomic
525     constraints. Because the method involves imposing a
526     known heat flux it is particularly attractive for
527     systems involving long-range and many-body
528     interactions where calculation of the microscopic
529     heat flux is difficult. The predicted thermal
530     conductivities of liquid n-butane and water using
531     the imposed-flux NEMD method were found to be in a
532     good agreement with previous simulations and
533     experiment. (C) 2000 American Institute of
534     Physics. {[}S0021-9606(00)50841-1].},
535 skuang 3585 Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
536     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
537     Author = {Bedrov, D and Smith, GD},
538     Date-Added = {2009-11-05 18:21:18 -0500},
539     Date-Modified = {2010-04-14 11:50:48 -0400},
540     Doc-Delivery-Number = {369BF},
541     Issn = {0021-9606},
542     Journal = {J. Chem. Phys.},
543     Journal-Iso = {J. Chem. Phys.},
544     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
545     Language = {English},
546     Month = {NOV 8},
547     Number = {18},
548     Number-Of-Cited-References = {26},
549     Pages = {8080-8084},
550     Publisher = {AMER INST PHYSICS},
551     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
552     Times-Cited = {23},
553     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
554     Type = {Article},
555     Unique-Id = {ISI:000090151400044},
556     Volume = {113},
557     Year = {2000}}
558 skuang 3563
559     @article{ISI:000231042800044,
560 skuang 3585 Abstract = {The reverse nonequilibrium molecular dynamics
561 gezelter 3583 method for thermal conductivities is adapted to the
562     investigation of molecular fluids. The method
563     generates a heat flux through the system by suitably
564     exchanging velocities of particles located in
565     different regions. From the resulting temperature
566     gradient, the thermal conductivity is then
567     calculated. Different variants of the algorithm and
568     their combinations with other system parameters are
569     tested: exchange of atomic velocities versus
570     exchange of molecular center-of-mass velocities,
571     different exchange frequencies, molecular models
572     with bond constraints versus models with flexible
573     bonds, united-atom versus all-atom models, and
574     presence versus absence of a thermostat. To help
575     establish the range of applicability, the algorithm
576     is tested on different models of benzene,
577     cyclohexane, water, and n-hexane. We find that the
578     algorithm is robust and that the calculated thermal
579     conductivities are insensitive to variations in its
580     control parameters. The force field, in contrast,
581     has a major influence on the value of the thermal
582     conductivity. While calculated and experimental
583     thermal conductivities fall into the same order of
584     magnitude, in most cases the calculated values are
585     systematically larger. United-atom force fields seem
586     to do better than all-atom force fields, possibly
587     because they remove high-frequency degrees of
588     freedom from the simulation, which, in nature, are
589     quantum-mechanical oscillators in their ground state
590     and do not contribute to heat conduction.},
591 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
592     Affiliation = {Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.},
593     Author = {Zhang, MM and Lussetti, E and de Souza, LES and M\"{u}ller-Plathe, F},
594     Date-Added = {2009-11-05 18:17:33 -0500},
595     Date-Modified = {2009-11-05 18:17:33 -0500},
596     Doc-Delivery-Number = {952YQ},
597     Doi = {10.1021/jp0512255},
598     Issn = {1520-6106},
599     Journal = {J. Phys. Chem. B},
600     Journal-Iso = {J. Phys. Chem. B},
601     Keywords-Plus = {LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION},
602     Language = {English},
603     Month = {AUG 11},
604     Number = {31},
605     Number-Of-Cited-References = {42},
606     Pages = {15060-15067},
607     Publisher = {AMER CHEMICAL SOC},
608     Subject-Category = {Chemistry, Physical},
609     Times-Cited = {17},
610     Title = {Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics},
611     Type = {Article},
612     Unique-Id = {ISI:000231042800044},
613     Volume = {109},
614     Year = {2005},
615     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
616 skuang 3563
617     @article{ISI:A1997YC32200056,
618 skuang 3585 Abstract = {Equilibrium molecular dynamics simulations have
619 gezelter 3583 been carried out in the microcanonical ensemble at
620     300 and 255 K on the extended simple point charge
621     (SPC/E) model of water {[}Berendsen et al.,
622     J. Phys. Chem. 91, 6269 (1987)]. In addition to a
623     number of static and dynamic properties, thermal
624     conductivity lambda has been calculated via
625     Green-Kubo integration of the heat current time
626     correlation functions (CF's) in the atomic and
627     molecular formalism, at wave number k=0. The
628     calculated values (0.67 +/- 0.04 W/mK at 300 K and
629     0.52 +/- 0.03 W/mK at 255 K) are in good agreement
630     with the experimental data (0.61 W/mK at 300 K and
631     0.49 W/mK at 255 K). A negative long-time tail of
632     the heat current CF, more apparent at 255 K, is
633     responsible for the anomalous decrease of lambda
634     with temperature. An analysis of the dynamical modes
635     contributing to lambda has shown that its value is
636     due to two low-frequency exponential-like modes, a
637     faster collisional mode, with positive contribution,
638     and a slower one, which determines the negative
639     long-time tail. A comparison of the molecular and
640     atomic spectra of the heat current CF has suggested
641     that higher-frequency modes should not contribute to
642     lambda in this temperature range. Generalized
643     thermal diffusivity D-T(k) decreases as a function
644     of k, after an initial minor increase at k =
645     k(min). The k dependence of the generalized
646     thermodynamic properties has been calculated in the
647     atomic and molecular formalisms. The observed
648     differences have been traced back to intramolecular
649     or intermolecular rotational effects and related to
650     the partial structure functions. Finally, from the
651     results we calculated it appears that the SPC/E
652     model gives results in better agreement with
653     experimental data than the transferable
654     intermolecular potential with four points TIP4P
655     water model {[}Jorgensen et al., J. Chem. Phys. 79,
656     926 (1983)], with a larger improvement for, e.g.,
657     diffusion, viscosities, and dielectric properties
658     and a smaller one for thermal conductivity. The
659     SPC/E model shares, to a smaller extent, the
660     insufficient slowing down of dynamics at low
661     temperature already found for the TIP4P water
662     model.},
663 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
664     Affiliation = {UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.},
665     Author = {Bertolini, D and Tani, A},
666     Date-Added = {2009-10-30 15:41:21 -0400},
667     Date-Modified = {2009-10-30 15:41:21 -0400},
668     Doc-Delivery-Number = {YC322},
669     Issn = {1063-651X},
670     Journal = {Phys. Rev. E},
671     Journal-Iso = {Phys. Rev. E},
672     Keywords-Plus = {TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS},
673     Language = {English},
674     Month = {OCT},
675     Number = {4},
676     Number-Of-Cited-References = {35},
677     Pages = {4135-4151},
678     Publisher = {AMERICAN PHYSICAL SOC},
679     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
680     Times-Cited = {18},
681     Title = {Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results},
682     Type = {Article},
683     Unique-Id = {ISI:A1997YC32200056},
684     Volume = {56},
685     Year = {1997}}
686 skuang 3563
687 skuang 3532 @article{Meineke:2005gd,
688 skuang 3585 Abstract = {OOPSE is a new molecular dynamics simulation program
689 gezelter 3583 that is capable of efficiently integrating equations
690     of motion for atom types with orientational degrees
691     of freedom (e.g. #sticky# atoms and point
692     dipoles). Transition metals can also be simulated
693     using the embedded atom method (EAM) potential
694     included in the code. Parallel simulations are
695     carried out using the force-based decomposition
696     method. Simulations are specified using a very
697     simple C-based meta-data language. A number of
698     advanced integrators are included, and the basic
699     integrator for orientational dynamics provides
700     substantial improvements over older quaternion-based
701     schemes.},
702 skuang 3585 Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
703     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
704     Date-Added = {2009-10-01 18:43:03 -0400},
705     Date-Modified = {2010-04-13 09:11:16 -0400},
706     Doi = {DOI 10.1002/jcc.20161},
707     Isi = {000226558200006},
708     Isi-Recid = {142688207},
709     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
710     Journal = {J. Comp. Chem.},
711     Keywords = {OOPSE; molecular dynamics},
712     Month = feb,
713     Number = {3},
714     Pages = {252-271},
715     Publisher = {JOHN WILEY \& SONS INC},
716     Times-Cited = {9},
717     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
718     Volume = {26},
719     Year = {2005},
720     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
721     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
722 skuang 3532
723     @article{ISI:000080382700030,
724 skuang 3585 Abstract = {A nonequilibrium method for calculating the shear
725 gezelter 3583 viscosity is presented. It reverses the
726     cause-and-effect picture customarily used in
727     nonequilibrium molecular dynamics: the effect, the
728     momentum flux or stress, is imposed, whereas the
729     cause, the velocity gradient or shear rate, is
730     obtained from the simulation. It differs from other
731     Norton-ensemble methods by the way in which the
732     steady-state momentum flux is maintained. This
733     method involves a simple exchange of particle
734     momenta, which is easy to implement. Moreover, it
735     can be made to conserve the total energy as well as
736     the total linear momentum, so no coupling to an
737     external temperature bath is needed. The resulting
738     raw data, the velocity profile, is a robust and
739     rapidly converging property. The method is tested on
740     the Lennard-Jones fluid near its triple point. It
741     yields a viscosity of 3.2-3.3, in Lennard-Jones
742     reduced units, in agreement with literature
743     results. {[}S1063-651X(99)03105-0].},
744 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
745     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
746     Author = {M\"{u}ller-Plathe, F},
747     Date-Added = {2009-10-01 14:07:30 -0400},
748     Date-Modified = {2009-10-01 14:07:30 -0400},
749     Doc-Delivery-Number = {197TX},
750     Issn = {1063-651X},
751     Journal = {Phys. Rev. E},
752     Journal-Iso = {Phys. Rev. E},
753     Language = {English},
754     Month = {MAY},
755     Number = {5, Part A},
756     Number-Of-Cited-References = {17},
757     Pages = {4894-4898},
758     Publisher = {AMERICAN PHYSICAL SOC},
759     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
760     Times-Cited = {57},
761     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
762     Type = {Article},
763     Unique-Id = {ISI:000080382700030},
764     Volume = {59},
765     Year = {1999}}
766 skuang 3532
767 skuang 3585 @article{Maginn:2007,
768     Abstract = {Atomistic simulations are conducted to examine the
769 gezelter 3583 dependence of the viscosity of
770     1-ethyl-3-methylimidazolium
771     bis(trifluoromethanesulfonyl)imide on temperature
772     and water content. A nonequilibrium molecular
773     dynamics procedure is utilized along with an
774     established fixed charge force field. It is found
775     that the simulations quantitatively capture the
776     temperature dependence of the viscosity as well as
777     the drop in viscosity that occurs with increasing
778     water content. Using mixture viscosity models, we
779     show that the relative drop in viscosity with water
780     content is actually less than that that would be
781     predicted for an ideal system. This finding is at
782     odds with the popular notion that small amounts of
783     water cause an unusually large drop in the viscosity
784     of ionic liquids. The simulations suggest that, due
785     to preferential association of water with anions and
786     the formation of water clusters, the excess molar
787     volume is negative. This means that dissolved water
788     is actually less effective at lowering the viscosity
789     of these mixtures when compared to a solute obeying
790     ideal mixing behavior. The use of a nonequilibrium
791     simulation technique enables diffusive behavior to
792     be observed on the time scale of the simulations,
793     and standard equilibrium molecular dynamics resulted
794     in sub-diffusive behavior even over 2 ns of
795     simulation time.},
796 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
797     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
798     Author = {Kelkar, Manish S. and Maginn, Edward J.},
799     Author-Email = {ed@nd.edu},
800     Date-Added = {2009-09-29 17:07:17 -0400},
801     Date-Modified = {2010-04-14 12:51:02 -0400},
802     Doc-Delivery-Number = {163VA},
803     Doi = {10.1021/jp0686893},
804     Issn = {1520-6106},
805     Journal = {J. Phys. Chem. B},
806     Journal-Iso = {J. Phys. Chem. B},
807     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
808     Language = {English},
809     Month = {MAY 10},
810     Number = {18},
811     Number-Of-Cited-References = {57},
812     Pages = {4867-4876},
813     Publisher = {AMER CHEMICAL SOC},
814     Subject-Category = {Chemistry, Physical},
815     Times-Cited = {35},
816     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
817     Type = {Article},
818     Unique-Id = {ISI:000246190100032},
819     Volume = {111},
820     Year = {2007},
821     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D},
822     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0686893}}
823 skuang 3528
824 skuang 3527 @article{MullerPlathe:1997xw,
825 skuang 3585 Abstract = {A nonequilibrium molecular dynamics method for
826 gezelter 3583 calculating the thermal conductivity is
827     presented. It reverses the usual cause and effect
828     picture. The ''effect,'' the heat flux, is imposed
829     on the system and the ''cause,'' the temperature
830     gradient is obtained from the simulation. Besides
831     being very simple to implement, the scheme offers
832     several advantages such as compatibility with
833     periodic boundary conditions, conservation of total
834     energy and total linear momentum, and the sampling
835     of a rapidly converging quantity (temperature
836     gradient) rather than a slowly converging one (heat
837     flux). The scheme is tested on the Lennard-Jones
838     fluid. (C) 1997 American Institute of Physics.},
839 skuang 3585 Address = {WOODBURY},
840     Author = {M\"{u}ller-Plathe, F.},
841     Cited-Reference-Count = {13},
842     Date = {APR 8},
843     Date-Added = {2009-09-21 16:51:21 -0400},
844     Date-Modified = {2009-09-21 16:51:21 -0400},
845     Document-Type = {Article},
846     Isi = {ISI:A1997WR62000032},
847     Isi-Document-Delivery-Number = {WR620},
848     Iso-Source-Abbreviation = {J. Chem. Phys.},
849     Issn = {0021-9606},
850     Journal = {J. Chem. Phys.},
851     Language = {English},
852     Month = {Apr},
853     Number = {14},
854     Page-Count = {4},
855     Pages = {6082--6085},
856     Publication-Type = {J},
857     Publisher = {AMER INST PHYSICS},
858     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
859     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
860     Source = {J CHEM PHYS},
861     Subject-Category = {Physics, Atomic, Molecular & Chemical},
862     Times-Cited = {106},
863     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
864     Volume = {106},
865     Year = {1997}}
866 skuang 3527
867     @article{Muller-Plathe:1999ek,
868 skuang 3585 Abstract = {A novel non-equilibrium method for calculating
869 gezelter 3583 transport coefficients is presented. It reverses the
870     experimental cause-and-effect picture, e.g. for the
871     calculation of viscosities: the effect, the momentum
872     flux or stress, is imposed, whereas the cause, the
873     velocity gradient or shear rates, is obtained from
874     the simulation. It differs from other
875     Norton-ensemble methods by the way, in which the
876     steady-state fluxes are maintained. This method
877     involves a simple exchange of particle momenta,
878     which is easy to implement and to analyse. Moreover,
879     it can be made to conserve the total energy as well
880     as the total linear momentum, so no thermostatting
881     is needed. The resulting raw data are robust and
882     rapidly converging. The method is tested on the
883     calculation of the shear viscosity, the thermal
884     conductivity and the Soret coefficient (thermal
885     diffusion) for the Lennard-Jones (LJ) fluid near its
886     triple point. Possible applications to other
887     transport coefficients and more complicated systems
888     are discussed. (C) 1999 Elsevier Science Ltd. All
889     rights reserved.},
890 skuang 3585 Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
891     Author = {M\"{u}ller-Plathe, F and Reith, D},
892     Date-Added = {2009-09-21 16:47:07 -0400},
893     Date-Modified = {2009-09-21 16:47:07 -0400},
894     Isi = {000082266500004},
895     Isi-Recid = {111564960},
896     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
897     Journal = {Computational and Theoretical Polymer Science},
898     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
899     Number = {3-4},
900     Pages = {203-209},
901     Publisher = {ELSEVIER SCI LTD},
902     Times-Cited = {15},
903     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
904     Volume = {9},
905     Year = {1999},
906     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
907 skuang 3527
908     @article{Viscardy:2007lq,
909 skuang 3585 Abstract = {The thermal conductivity is calculated with the
910 gezelter 3583 Helfand-moment method in the Lennard-Jones fluid
911     near the triple point. The Helfand moment of thermal
912     conductivity is here derived for molecular dynamics
913     with periodic boundary conditions. Thermal
914     conductivity is given by a generalized Einstein
915     relation with this Helfand moment. The authors
916     compute thermal conductivity by this new method and
917     compare it with their own values obtained by the
918     standard Green-Kubo method. The agreement is
919     excellent. (C) 2007 American Institute of Physics.},
920 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
921     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
922     Date-Added = {2009-09-21 16:37:20 -0400},
923     Date-Modified = {2009-09-21 16:37:20 -0400},
924     Doi = {DOI 10.1063/1.2724821},
925     Isi = {000246453900035},
926     Isi-Recid = {156192451},
927     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
928     Journal = {J. Chem. Phys.},
929     Month = may,
930     Number = {18},
931     Publisher = {AMER INST PHYSICS},
932     Times-Cited = {3},
933     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
934     Volume = {126},
935     Year = {2007},
936     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035},
937     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724821}}
938 skuang 3527
939     @article{Viscardy:2007bh,
940 skuang 3585 Abstract = {The authors propose a new method, the Helfand-moment
941 gezelter 3583 method, to compute the shear viscosity by
942     equilibrium molecular dynamics in periodic
943     systems. In this method, the shear viscosity is
944     written as an Einstein-type relation in terms of the
945     variance of the so-called Helfand moment. This
946     quantity is modified in order to satisfy systems
947     with periodic boundary conditions usually considered
948     in molecular dynamics. They calculate the shear
949     viscosity in the Lennard-Jones fluid near the triple
950     point thanks to this new technique. They show that
951     the results of the Helfand-moment method are in
952     excellent agreement with the results of the standard
953     Green-Kubo method. (C) 2007 American Institute of
954     Physics.},
955 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
956     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
957     Date-Added = {2009-09-21 16:37:19 -0400},
958     Date-Modified = {2009-09-21 16:37:19 -0400},
959     Doi = {DOI 10.1063/1.2724820},
960     Isi = {000246453900034},
961     Isi-Recid = {156192449},
962     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
963     Journal = {J. Chem. Phys.},
964     Month = may,
965     Number = {18},
966     Publisher = {AMER INST PHYSICS},
967     Times-Cited = {1},
968     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
969     Volume = {126},
970     Year = {2007},
971     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034},
972     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724820}}