ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nivsRnemd/nivsRnemd.bib
Revision: 3592
Committed: Fri Apr 16 17:25:12 2010 UTC (14 years, 2 months ago) by skuang
File size: 62938 byte(s)
Log Message:
add more citations.

File Contents

# User Rev Content
1 skuang 3527 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 skuang 3592 %% Created for Shenyu Kuang at 2010-04-16 13:19:19 -0400
6 skuang 3527
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11    
12 skuang 3592 @article{ISI:000266247600008,
13     Abstract = {{Temperature dependence of viscosity of butyl-3-methylimidazolium
14     hexafluorophosphate is investigated by non-equilibrium molecular
15     dynamics simulations with cosine-modulated force in the temperature
16     range from 360 to 480K. It is shown that this method is able to
17     correctly predict the shear viscosity. The simulation setting and
18     choice of the force field are discussed in detail. The all-atom force
19     field exhibits a bad convergence and the shear viscosity is
20     overestimated, while the simple united atom model predicts the kinetics
21     very well. The results are compared with the equilibrium molecular
22     dynamics simulations. The relationship between the diffusion
23     coefficient and viscosity is examined by means of the hydrodynamic
24     radii calculated from the Stokes-Einstein equation and the solvation
25     properties are discussed.}},
26     Address = {{4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND}},
27     Affiliation = {{Kolafa, J (Reprint Author), Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic. {[}Picalek, Jan; Kolafa, Jiri] Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic.}},
28     Author = {Picalek, Jan and Kolafa, Jiri},
29     Author-Email = {{jiri.kolafa@vscht.cz}},
30     Date-Added = {2010-04-16 13:19:12 -0400},
31     Date-Modified = {2010-04-16 13:19:12 -0400},
32     Doc-Delivery-Number = {{448FD}},
33     Doi = {{10.1080/08927020802680703}},
34     Funding-Acknowledgement = {{Czech Science Foundation {[}203/07/1006]; Czech Ministry of Education {[}LC512]}},
35     Funding-Text = {{We gratefully acknowledge a support from the Czech Science Foundation (project 203/07/1006) and the computing facilities from the Czech Ministry of Education (Center for Biomolecules and Complex Molecular Systems, project LC512).}},
36     Issn = {{0892-7022}},
37     Journal = {{MOLECULAR SIMULATION}},
38     Journal-Iso = {{Mol. Simul.}},
39     Keywords = {{room temperature ionic liquids; viscosity; non-equilibrium molecular dynamics; solvation; imidazolium}},
40     Keywords-Plus = {{1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICOCHEMICAL PROPERTIES; COMPUTER-SIMULATION; PHYSICAL-PROPERTIES; IMIDAZOLIUM CATION; FORCE-FIELD; AB-INITIO; TEMPERATURE; CHLORIDE; CONDUCTIVITY}},
41     Language = {{English}},
42     Number = {{8}},
43     Number-Of-Cited-References = {{50}},
44     Pages = {{685-690}},
45     Publisher = {{TAYLOR \& FRANCIS LTD}},
46     Subject-Category = {{Chemistry, Physical; Physics, Atomic, Molecular \& Chemical}},
47     Times-Cited = {{2}},
48     Title = {{Shear viscosity of ionic liquids from non-equilibrium molecular dynamics simulation}},
49     Type = {{Article}},
50     Unique-Id = {{ISI:000266247600008}},
51     Volume = {{35}},
52     Year = {{2009}},
53     Bdsk-Url-1 = {http://dx.doi.org/10.1080/08927020802680703%7D}}
54    
55     @article{Vasquez:2004fk,
56     Abstract = {A method for fast calculation of viscosity from molecular dynamics simulation is revisited. The method consists of using a steady-state periodic perturbation. A methodology to choose the amplitude of the external perturbation, which is one of the major practical issues in the original technique of Gosling et al. {$[$}Mol. Phys. 26: 1475 (1973){$]$} is proposed. The amplitude of the perturbation required for fast caculations and the viscosity values for wide ranges of temperature and density of the Lennard-Jones (LJ) model fluid are reported. The viscosity results are in agreement with recent LJ viscosity calculations. Additionally, the simulations demonstrate that the proposed approach is suitable to efficiently generate viscosity data of good quality.},
57     Author = {Vasquez, V. R. and Macedo, E. A. and Zabaloy, M. S.},
58     Date = {2004/11/02/},
59     Date-Added = {2010-04-16 13:18:48 -0400},
60     Date-Modified = {2010-04-16 13:18:48 -0400},
61     Day = {02},
62     Journal = {International Journal of Thermophysics},
63     M3 = {10.1007/s10765-004-7736-3},
64     Month = {11},
65     Number = {6},
66     Pages = {1799--1818},
67     Title = {Lennard-Jones Viscosities in Wide Ranges of Temperature and Density: Fast Calculations Using a Steady--State Periodic Perturbation Method},
68     Ty = {JOUR},
69     Url = {http://dx.doi.org/10.1007/s10765-004-7736-3},
70     Volume = {25},
71     Year = {2004},
72     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-004-7736-3}}
73    
74 skuang 3591 @article{hess:209,
75     Author = {Berk Hess},
76     Date-Added = {2010-04-16 12:37:37 -0400},
77     Date-Modified = {2010-04-16 12:37:37 -0400},
78     Doi = {10.1063/1.1421362},
79     Journal = {The Journal of Chemical Physics},
80     Keywords = {viscosity; molecular dynamics method; liquid theory; shear flow},
81     Number = {1},
82     Pages = {209-217},
83     Publisher = {AIP},
84     Title = {Determining the shear viscosity of model liquids from molecular dynamics simulations},
85     Url = {http://link.aip.org/link/?JCP/116/209/1},
86     Volume = {116},
87     Year = {2002},
88     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/116/209/1},
89     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1421362}}
90    
91     @article{backer:154503,
92     Author = {J. A. Backer and C. P. Lowe and H. C. J. Hoefsloot and P. D. Iedema},
93     Date-Added = {2010-04-16 12:37:37 -0400},
94     Date-Modified = {2010-04-16 12:37:37 -0400},
95     Doi = {10.1063/1.1883163},
96     Eid = {154503},
97     Journal = {The Journal of Chemical Physics},
98     Keywords = {Poiseuille flow; flow simulation; Lennard-Jones potential; viscosity; boundary layers; computational fluid dynamics},
99     Number = {15},
100     Numpages = {6},
101     Pages = {154503},
102     Publisher = {AIP},
103     Title = {Poiseuille flow to measure the viscosity of particle model fluids},
104     Url = {http://link.aip.org/link/?JCP/122/154503/1},
105     Volume = {122},
106     Year = {2005},
107     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/122/154503/1},
108     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1883163}}
109    
110     @article{daivis:541,
111     Author = {Peter J. Daivis and Denis J. Evans},
112     Date-Added = {2010-04-16 12:05:36 -0400},
113     Date-Modified = {2010-04-16 12:05:36 -0400},
114     Doi = {10.1063/1.466970},
115     Journal = {The Journal of Chemical Physics},
116     Keywords = {SHEAR; DECANE; FLOW MODELS; VOLUME; PRESSURE; NONEQUILIBRIUM; MOLECULAR DYNAMICS CALCULATIONS; COMPARATIVE EVALUATIONS; SIMULATION; STRAIN RATE; VISCOSITY; KUBO FORMULA},
117     Number = {1},
118     Pages = {541-547},
119     Publisher = {AIP},
120     Title = {Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane},
121     Url = {http://link.aip.org/link/?JCP/100/541/1},
122     Volume = {100},
123     Year = {1994},
124     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/100/541/1},
125     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.466970}}
126    
127     @article{mondello:9327,
128     Author = {Maurizio Mondello and Gary S. Grest},
129     Date-Added = {2010-04-16 12:05:36 -0400},
130     Date-Modified = {2010-04-16 12:05:36 -0400},
131     Doi = {10.1063/1.474002},
132     Journal = {The Journal of Chemical Physics},
133     Keywords = {organic compounds; viscosity; digital simulation; molecular dynamics method},
134     Number = {22},
135     Pages = {9327-9336},
136     Publisher = {AIP},
137     Title = {Viscosity calculations of [bold n]-alkanes by equilibrium molecular dynamics},
138     Url = {http://link.aip.org/link/?JCP/106/9327/1},
139     Volume = {106},
140     Year = {1997},
141     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/106/9327/1},
142     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.474002}}
143    
144 skuang 3588 @article{ISI:A1988Q205300014,
145     Address = {{ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE}},
146     Affiliation = {{VOGELSANG, R (Reprint Author), RUHR UNIV BOCHUM,UNIV STR 150,D-4630 BOCHUM,FED REP GER. UNIV DUISBURG,THERMODYNAM,D-4100 DUISBURG,FED REP GER.}},
147     Author = {VOGELSANG, R and HOHEISEL, G and LUCKAS, M},
148     Date-Added = {2010-04-14 16:20:24 -0400},
149     Date-Modified = {2010-04-14 16:20:24 -0400},
150     Doc-Delivery-Number = {{Q2053}},
151     Issn = {{0026-8976}},
152     Journal = {{MOLECULAR PHYSICS}},
153     Journal-Iso = {{Mol. Phys.}},
154     Language = {{English}},
155     Month = {{AUG 20}},
156     Number = {{6}},
157     Number-Of-Cited-References = {{14}},
158     Pages = {{1203-1213}},
159     Publisher = {{TAYLOR \& FRANCIS LTD}},
160     Subject-Category = {{Physics, Atomic, Molecular \& Chemical}},
161     Times-Cited = {{12}},
162     Title = {{SHEAR VISCOSITY AND THERMAL-CONDUCTIVITY OF THE LENNARD-JONES LIQUID COMPUTED USING MOLECULAR-DYNAMICS AND PREDICTED BY A MEMORY FUNCTION MODEL FOR A LARGE NUMBER OF STATES}},
163     Type = {{Article}},
164     Unique-Id = {{ISI:A1988Q205300014}},
165     Volume = {{64}},
166     Year = {{1988}}}
167    
168 skuang 3587 @article{ISI:000261835100054,
169     Abstract = {{Transport properties of liquid methanol and ethanol are predicted by
170     molecular dynamics simulation. The molecular models for the alcohols
171     are rigid, nonpolarizable, and of united-atom type. They were developed
172     in preceding work using experimental vapor-liquid equilibrium data
173     only. Self- and Maxwell-Stefan diffusion coefficients as well as the
174     shear viscosity of methanol, ethanol, and their binary mixture are
175     determined using equilibrium molecular dynamics and the Green-Kubo
176     formalism. Nonequilibrium molecular dynamics is used for predicting the
177     thermal conductivity of the two pure substances. The transport
178     properties of the fluids are calculated over a wide temperature range
179     at ambient pressure and compared with experimental and simulation data
180     from the literature. Overall, a very good agreement with the experiment
181     is found. For instance, the self-diffusion coefficient and the shear
182     viscosity are predicted with average deviations of less than 8\% for
183     the pure alcohols and 12\% for the mixture. The predicted thermal
184     conductivity agrees on average within 5\% with the experimental data.
185     Additionally, some velocity and shear viscosity autocorrelation
186     functions are presented and discussed. Radial distribution functions
187     for ethanol are also presented. The predicted excess volume, excess
188     enthalpy, and the vapor-liquid equilibrium of the binary mixture
189     methanol + ethanol are assessed and agree well with experimental data.}},
190     Address = {{1155 16TH ST, NW, WASHINGTON, DC 20036 USA}},
191     Affiliation = {{Vrabec, J (Reprint Author), Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Vrabec, Jadran] Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Guevara-Carrion, Gabriela; Hasse, Hans] Univ Kaiserslautern, Lab Engn Thermodynam, D-67663 Kaiserslautern, Germany. {[}Nieto-Draghi, Carlos] Inst Francais Petr, F-92852 Rueil Malmaison, France.}},
192     Author = {Guevara-Carrion, Gabriela and Nieto-Draghi, Carlos and Vrabec, Jadran and Hasse, Hans},
193     Author-Email = {{vrabec@itt.uni-stuttgart.de}},
194     Date-Added = {2010-04-14 15:43:29 -0400},
195     Date-Modified = {2010-04-14 15:43:29 -0400},
196     Doc-Delivery-Number = {{385SY}},
197     Doi = {{10.1021/jp805584d}},
198     Issn = {{1520-6106}},
199     Journal = {{JOURNAL OF PHYSICAL CHEMISTRY B}},
200     Journal-Iso = {{J. Phys. Chem. B}},
201     Keywords-Plus = {{STEFAN DIFFUSION-COEFFICIENTS; MONTE-CARLO CALCULATIONS; ATOM FORCE-FIELD; SELF-DIFFUSION; DYNAMICS SIMULATION; PHASE-EQUILIBRIA; LIQUID METHANOL; TEMPERATURE-DEPENDENCE; COMPUTER-SIMULATION; MONOHYDRIC ALCOHOLS}},
202     Language = {{English}},
203     Month = {{DEC 25}},
204     Number = {{51}},
205     Number-Of-Cited-References = {{86}},
206     Pages = {{16664-16674}},
207     Publisher = {{AMER CHEMICAL SOC}},
208     Subject-Category = {{Chemistry, Physical}},
209     Times-Cited = {{5}},
210     Title = {{Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture}},
211     Type = {{Article}},
212     Unique-Id = {{ISI:000261835100054}},
213     Volume = {{112}},
214     Year = {{2008}},
215     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp805584d%7D}}
216    
217     @article{ISI:000258460400020,
218     Abstract = {{Nonequilibrium molecular dynamics simulations with the nonpolarizable
219     SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the
220     polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121,
221     9549) force fields have been employed to calculate the thermal
222     conductivity and other associated properties of methane hydrate over a
223     temperature range from 30 to 260 K. The calculated results are compared
224     to experimental data over this same range. The values of the thermal
225     conductivity calculated with the COS/G2 model are closer to the
226     experimental values than are those calculated with the nonpolarizable
227     SPC/E model. The calculations match the temperature trend in the
228     experimental data at temperatures below 50 K; however, they exhibit a
229     slight decrease in thermal conductivity at higher temperatures in
230     comparison to an opposite trend in the experimental data. The
231     calculated thermal conductivity values are found to be relatively
232     insensitive to the occupancy of the cages except at low (T <= 50 K)
233     temperatures, which indicates that the differences between the two
234     lattice structures may have a more dominant role than generally thought
235     in explaining the low thermal conductivity of methane hydrate compared
236     to ice Ih. The introduction of defects into the water lattice is found
237     to cause a reduction in the thermal conductivity but to have a
238     negligible impact on its temperature dependence.}},
239     Address = {{1155 16TH ST, NW, WASHINGTON, DC 20036 USA}},
240     Affiliation = {{Jordan, KD (Reprint Author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Myshakin, Evgeniy M.; Jordan, Kenneth D.; Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol \& Mat Simulat, Pittsburgh, PA 15260 USA. {[}Myshakin, Evgeniy M.] Parsons Project Serv Inc, South Pk, PA 15129 USA.}},
241     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
242     Date-Added = {2010-04-14 15:38:14 -0400},
243     Date-Modified = {2010-04-14 15:38:14 -0400},
244     Doc-Delivery-Number = {{337UG}},
245     Doi = {{10.1021/jp802942v}},
246     Funding-Acknowledgement = {{E.M.M. ; National Energy Technology Laboratory's Office of Research and Development {[}41817.660.01.03]; ORISE Part-Time Faculty Program ; {[}DE-AM26-04NT41817]; {[}41817.606.06.03]}},
247     Funding-Text = {{We thank Drs. John Tse, Niall English, and Alan McGaughey for their comments. H.J. and K.D.J. performed this work under Contract DE-AM26-04NT41817, Subtask 41817.606.06.03, and E.M.M. performed this work under the same contract, Subtask 41817.660.01.03, in support of the National Energy Technology Laboratory's Office of Research and Development. K.D.J. was also supported at NETL by the ORISE Part-Time Faculty Program during the early stages of this work.}},
248     Issn = {{1520-6106}},
249     Journal = {{JOURNAL OF PHYSICAL CHEMISTRY B}},
250     Journal-Iso = {{J. Phys. Chem. B}},
251     Keywords-Plus = {{LIQUID WATER; CLATHRATE HYDRATE; HEAT-CAPACITY; FORCE-FIELDS; ICE; ANHARMONICITY; SUMMATION; MODELS; SILICA}},
252     Language = {{English}},
253     Month = {{AUG 21}},
254     Number = {{33}},
255     Number-Of-Cited-References = {{51}},
256     Pages = {{10207-10216}},
257     Publisher = {{AMER CHEMICAL SOC}},
258     Subject-Category = {{Chemistry, Physical}},
259     Times-Cited = {{8}},
260     Title = {{Molecular dynamics Simulations of the thermal conductivity of methane hydrate}},
261     Type = {{Article}},
262     Unique-Id = {{ISI:000258460400020}},
263     Volume = {{112}},
264     Year = {{2008}},
265     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp802942v%7D}}
266    
267 skuang 3585 @article{ISI:000184808400018,
268     Abstract = {{A new non-equilibrium molecular dynamics algorithm is presented based
269     on the original work of Willer-Plathe, (1997, J. chem. Phys., 106,
270     6082), for the non-equilibrium simulation of heat transport maintaining
271     fixed the total momentum as well as the total energy of the system. The
272     presented scheme preserves these properties but, unlike the original
273     algorithm, is able to deal with multicomponent systems, that is with
274     particles of different mass independently of their relative
275     concentration. The main idea behind the new procedure is to consider an
276     exchange of momentum and energy between the particles in the hot and
277     cold regions, to maintain the non-equilibrium conditions, as if they
278     undergo a hypothetical elastic collision. The new algorithm can also be
279     employed in multicomponent systems for molecular fluids and in a wide
280     range of thermodynamic conditions.}},
281     Address = {{4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND}},
282     Affiliation = {{Nieto-Draghi, C (Reprint Author), Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain. Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Tarragona 43007, Spain.}},
283     Author = {Nieto-Draghi, C and Avalos, JB},
284     Date-Added = {2010-04-14 12:48:08 -0400},
285     Date-Modified = {2010-04-14 12:48:08 -0400},
286     Doc-Delivery-Number = {{712QM}},
287     Doi = {{10.1080/0026897031000154338}},
288     Issn = {{0026-8976}},
289     Journal = {{MOLECULAR PHYSICS}},
290     Journal-Iso = {{Mol. Phys.}},
291     Keywords-Plus = {{BINARY-LIQUID MIXTURES; THERMAL-CONDUCTIVITY; MATTER TRANSPORT; WATER}},
292     Language = {{English}},
293     Month = {{JUL 20}},
294     Number = {{14}},
295     Number-Of-Cited-References = {{20}},
296     Pages = {{2303-2307}},
297     Publisher = {{TAYLOR \& FRANCIS LTD}},
298     Subject-Category = {{Physics, Atomic, Molecular \& Chemical}},
299     Times-Cited = {{13}},
300     Title = {{Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems}},
301     Type = {{Article}},
302     Unique-Id = {{ISI:000184808400018}},
303     Volume = {{101}},
304     Year = {{2003}},
305     Bdsk-Url-1 = {http://dx.doi.org/10.1080/0026897031000154338%7D}}
306    
307     @article{Bedrov:2000-1,
308     Abstract = {{The thermal conductivity of liquid
309     octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been
310     determined from imposed heat flux non-equilibrium molecular dynamics
311     (NEMD) simulations using a previously published quantum chemistry-based
312     atomistic potential. The thermal conductivity was determined in the
313     temperature domain 550 less than or equal to T less than or equal to
314     800 K, which corresponds approximately to the existence limits of the
315     liquid phase of HMX at atmospheric pressure. The NEMD predictions,
316     which comprise the first reported values for thermal conductivity of
317     HMX liquid, were found to be consistent with measured values for
318     crystalline HMX. The thermal conductivity of liquid HMX was found to
319     exhibit a much weaker temperature dependence than the shear viscosity
320     and self-diffusion coefficients. (C) 2000 Elsevier Science B.V. All
321     rights reserved.}},
322     Address = {{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}},
323     Affiliation = {{Bedrov, D (Reprint Author), Univ Utah, Dept Mat Sci \& Engn, 122 S Cent Campus Dr,Room 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.}},
324     Author = {Bedrov, D and Smith, GD and Sewell, TD},
325     Date-Added = {2010-04-14 12:26:59 -0400},
326     Date-Modified = {2010-04-14 12:27:52 -0400},
327     Doc-Delivery-Number = {{330PF}},
328     Issn = {{0009-2614}},
329     Journal = {{CHEMICAL PHYSICS LETTERS}},
330     Journal-Iso = {{Chem. Phys. Lett.}},
331     Keywords-Plus = {{FORCE-FIELD}},
332     Language = {{English}},
333     Month = {{JUN 30}},
334     Number = {{1-3}},
335     Number-Of-Cited-References = {{17}},
336     Pages = {{64-68}},
337     Publisher = {{ELSEVIER SCIENCE BV}},
338     Subject-Category = {{Chemistry, Physical; Physics, Atomic, Molecular \& Chemical}},
339     Times-Cited = {{19}},
340     Title = {{Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations}},
341     Type = {{Article}},
342     Unique-Id = {{ISI:000087969900011}},
343     Volume = {{324}},
344     Year = {{2000}}}
345    
346     @article{ISI:000258840700015,
347     Abstract = {{By using the embedded-atom method (EAM), a series of molecular dynamics
348     (MD) simulations are carried out to calculate the viscosity and
349     self-diffusion coefficient of liquid copper from the normal to the
350     undercooled states. The simulated results are in reasonable agreement
351     with the experimental values available above the melting temperature
352     that is also predicted from a solid-liquid-solid sandwich structure.
353     The relationship between the viscosity and the self-diffusion
354     coefficient is evaluated. It is found that the Stokes-Einstein and
355     Sutherland-Einstein relations qualitatively describe this relationship
356     within the simulation temperature range. However, the predicted
357     constant from MD simulation is close to 1/(3 pi), which is larger than
358     the constants of the Stokes-Einstein and Sutherland-Einstein relations.}},
359     Address = {{233 SPRING ST, NEW YORK, NY 10013 USA}},
360     Affiliation = {{Chen, M (Reprint Author), Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China. {[}Han, X. J.; Chen, M.; Lue, Y. J.] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.}},
361     Author = {Han, X. J. and Chen, M. and Lue, Y. J.},
362     Author-Email = {{mchen@tsinghua.edu.cn}},
363     Date-Added = {2010-04-14 12:00:38 -0400},
364     Date-Modified = {2010-04-14 12:00:38 -0400},
365     Doc-Delivery-Number = {{343GH}},
366     Doi = {{10.1007/s10765-008-0489-7}},
367     Funding-Acknowledgement = {{China Postdoctoral Science Foundation ; National Natural Science Foundation of China {[}50395101, 50371043]}},
368     Funding-Text = {{This work was financially supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China under grant Nos. of 50395101 and 50371043. The computations are carried out at the Tsinghua National Laboratory for Information Science and Technology, China. The authors are grateful to Mr. D. Q. Yu for valuable discussions.}},
369     Issn = {{0195-928X}},
370     Journal = {{INTERNATIONAL JOURNAL OF THERMOPHYSICS}},
371     Journal-Iso = {{Int. J. Thermophys.}},
372     Keywords = {{copper; molecular simulation; self-diffusion coefficient; viscosity; undercooled}},
373     Keywords-Plus = {{EMBEDDED-ATOM MODEL; THERMOPHYSICAL PROPERTIES; COMPUTER-SIMULATION; TRANSITION-METALS; SHEAR VISCOSITY; ALLOYS; TEMPERATURE; DIFFUSION; BINDING; SURFACE}},
374     Language = {{English}},
375     Month = {{AUG}},
376     Number = {{4}},
377     Number-Of-Cited-References = {{39}},
378     Pages = {{1408-1421}},
379     Publisher = {{SPRINGER/PLENUM PUBLISHERS}},
380     Subject-Category = {{Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied}},
381     Times-Cited = {{2}},
382     Title = {{Transport properties of undercooled liquid copper: A molecular dynamics study}},
383     Type = {{Article}},
384     Unique-Id = {{ISI:000258840700015}},
385     Volume = {{29}},
386     Year = {{2008}},
387     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-008-0489-7%7D}}
388    
389     @article{Muller-Plathe:2008,
390     Abstract = {{Reverse nonequilibrium molecular dynamics and equilibrium molecular
391     dynamics simulations were carried out to compute the shear viscosity of
392     the pure ionic liquid system {[}bmim]{[}PF6] at 300 K. The two methods
393     yielded consistent results which were also compared to experiments. The
394     results showed that the reverse nonequilibrium molecular dynamics
395     (RNEMD) methodology can successfully be applied to computation of
396     highly viscous ionic liquids. Moreover, this study provides a
397     validation of the atomistic force-field developed by Bhargava and
398     Balasubramanian (J. Chem. Phys. 2007, 127, 114510) for dynamic
399     properties.}},
400     Address = {{1155 16TH ST, NW, WASHINGTON, DC 20036 USA}},
401     Affiliation = {{Wei, Z (Reprint Author), Tech Univ Darmstadt, Petersenstr 30, D-64287 Darmstadt, Germany. {[}Wei Zhao; Leroy, Frederic; Mueller-Plathe, Florian] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. {[}Balasubramanian, Sundaram] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chem \& Phys Mat Unit, Bangalore 560064, Karnataka, India.}},
402     Author = {Wei Zhao and Leroy, Frederic and Balasubramanian, Sundaram and Mueller-Plathe, Florian},
403     Author-Email = {{w.zhao@theo.chemie.tu-darmstadt.de}},
404     Date-Added = {2010-04-14 11:53:37 -0400},
405     Date-Modified = {2010-04-14 11:54:20 -0400},
406     Doc-Delivery-Number = {{321VS}},
407     Doi = {{10.1021/jp8017869}},
408     Issn = {{1520-6106}},
409     Journal = {{JOURNAL OF PHYSICAL CHEMISTRY B}},
410     Journal-Iso = {{J. Phys. Chem. B}},
411     Keywords-Plus = {{TRANSPORT-PROPERTIES; FORCE-FIELD; TEMPERATURE; SIMULATION; IMIDAZOLIUM; FLUIDS; MODEL; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; PYRIDINIUM; CHLORIDE}},
412     Language = {{English}},
413     Month = {{JUL 10}},
414     Number = {{27}},
415     Number-Of-Cited-References = {{49}},
416     Pages = {{8129-8133}},
417     Publisher = {{AMER CHEMICAL SOC}},
418     Subject-Category = {{Chemistry, Physical}},
419     Times-Cited = {{2}},
420     Title = {{Shear viscosity of the ionic liquid 1-n-butyl 3-methylimidazolium hexafluorophosphate {[}bmim]{[}PF6] computed by reverse nonequilibrium molecular dynamics}},
421     Type = {{Article}},
422     Unique-Id = {{ISI:000257335200022}},
423     Volume = {{112}},
424     Year = {{2008}},
425     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp8017869%7D}}
426    
427     @article{Muller-Plathe:2002,
428     Abstract = {{The reverse nonequilibrium molecular dynamics {[}F. Muller-Plathe,
429     Phys. Rev. E 49, 359 (1999)] presented for the calculation of the shear
430     viscosity of Lennard-Jones liquids has been extended to atomistic
431     models of molecular liquids. The method is improved to overcome the
432     problems due to the detailed molecular models. The new technique is
433     besides a test with a Lennard-Jones fluid, applied on different
434     realistic systems: liquid nitrogen, water, and hexane, in order to
435     cover a large range of interactions and systems/architectures. We show
436     that all the advantages of the method itemized previously are still
437     valid, and that it has a very good efficiency and accuracy making it
438     very competitive. (C) 2002 American Institute of Physics.}},
439     Address = {{CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA}},
440     Affiliation = {{Bordat, P (Reprint Author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymer Res, D-55128 Mainz, Germany.}},
441     Author = {Bordat, P and Muller-Plathe, F},
442     Date-Added = {2010-04-14 11:34:42 -0400},
443     Date-Modified = {2010-04-14 11:35:35 -0400},
444     Doc-Delivery-Number = {{521QV}},
445     Doi = {{10.1063/1.1436124}},
446     Issn = {{0021-9606}},
447     Journal = {{JOURNAL OF CHEMICAL PHYSICS}},
448     Journal-Iso = {{J. Chem. Phys.}},
449     Keywords-Plus = {{TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; LIQUID ALKANES; N-HEPTADECANE; SIMULATION; WATER; FLOW; MIXTURES; BUTANE; NITROGEN}},
450     Language = {{English}},
451     Month = {{FEB 22}},
452     Number = {{8}},
453     Number-Of-Cited-References = {{47}},
454     Pages = {{3362-3369}},
455     Publisher = {{AMER INST PHYSICS}},
456     Subject-Category = {{Physics, Atomic, Molecular \& Chemical}},
457     Times-Cited = {{33}},
458     Title = {{The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics}},
459     Type = {{Article}},
460     Unique-Id = {{ISI:000173853600023}},
461     Volume = {{116}},
462     Year = {{2002}},
463     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1436124%7D}}
464    
465 skuang 3580 @article{ISI:000207079300006,
466 skuang 3585 Abstract = {Non-equilibrium Molecular Dynamics Simulation
467 gezelter 3583 methods have been used to study the ability of
468     Embedded Atom Method models of the metals copper and
469     gold to reproduce the equilibrium and
470     non-equilibrium behavior of metals at a stationary
471     and at a moving solid/liquid interface. The
472     equilibrium solid/vapor interface was shown to
473     display a simple termination of the bulk until the
474     temperature of the solid reaches approximate to 90\%
475     of the bulk melting point. At and above such
476     temperatures the systems exhibit a surface
477     disodering known as surface melting. Non-equilibrium
478     simulations emulating the action of a picosecond
479     laser on the metal were performed to determine the
480     regrowth velocity. For copper, the action of a 20 ps
481     laser with an absorbed energy of 2-5 mJ/cm(2)
482     produced a regrowth velocity of 83-100 m/s, in
483     reasonable agreement with the value obtained by
484     experiment (>60 m/s). For gold, similar conditions
485     produced a slower regrowth velocity of 63 m/s at an
486     absorbed energy of 5 mJ/cm(2). This is almost a
487     factor of two too low in comparison to experiment
488     (>100 m/s). The regrowth velocities of the metals
489     seems unexpectedly close to experiment considering
490     that the free-electron contribution is ignored in
491     the Embeeded Atom Method models used.},
492 skuang 3585 Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
493     Affiliation = {Clancy, P (Reprint Author), Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA.},
494     Author = {Richardson, Clifton F. and Clancy, Paulette},
495     Date-Added = {2010-04-07 11:24:36 -0400},
496     Date-Modified = {2010-04-07 11:24:36 -0400},
497     Doc-Delivery-Number = {V04SY},
498     Issn = {0892-7022},
499     Journal = {MOLECULAR SIMULATION},
500     Journal-Iso = {Mol. Simul.},
501     Keywords = {Non-equilibrium computer simulation; molecular dynamics; crystal growth; Embedded Atom Method models of metals},
502     Language = {English},
503     Number = {5-6},
504     Number-Of-Cited-References = {36},
505     Pages = {335-355},
506     Publisher = {TAYLOR \& FRANCIS LTD},
507     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
508     Times-Cited = {7},
509     Title = {PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A COMPUTER SIMULATION STUDY},
510     Type = {Article},
511     Unique-Id = {ISI:000207079300006},
512     Volume = {7},
513     Year = {1991}}
514 skuang 3580
515 skuang 3573 @article{ISI:000167766600035,
516 skuang 3585 Abstract = {Molecular dynamics simulations are used to
517 gezelter 3583 investigate the separation of water films adjacent
518     to a hot metal surface. The simulations clearly show
519     that the water layers nearest the surface overheat
520     and undergo explosive boiling. For thick films, the
521     expansion of the vaporized molecules near the
522     surface forces the outer water layers to move away
523     from the surface. These results are of interest for
524     mass spectrometry of biological molecules, steam
525     cleaning of surfaces, and medical procedures.},
526 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
527     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
528     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
529     Date-Added = {2010-03-11 15:32:14 -0500},
530     Date-Modified = {2010-03-11 15:32:14 -0500},
531     Doc-Delivery-Number = {416ED},
532     Issn = {1089-5639},
533     Journal = {J. Phys. Chem. A},
534     Journal-Iso = {J. Phys. Chem. A},
535     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
536     Language = {English},
537     Month = {MAR 29},
538     Number = {12},
539     Number-Of-Cited-References = {65},
540     Pages = {2748-2755},
541     Publisher = {AMER CHEMICAL SOC},
542     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
543     Times-Cited = {66},
544     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
545     Type = {Article},
546     Unique-Id = {ISI:000167766600035},
547     Volume = {105},
548     Year = {2001}}
549 skuang 3573
550 skuang 3585 @article{Maginn:2010,
551     Abstract = {The reverse nonequilibrium molecular dynamics
552 gezelter 3583 (RNEMD) method calculates the shear viscosity of a
553     fluid by imposing a nonphysical exchange of momentum
554     and measuring the resulting shear velocity
555     gradient. In this study we investigate the range of
556     momentum flux values over which RNEMD yields usable
557     (linear) velocity gradients. We find that nonlinear
558     velocity profiles result primarily from gradients in
559     fluid temperature and density. The temperature
560     gradient results from conversion of heat into bulk
561     kinetic energy, which is transformed back into heat
562     elsewhere via viscous heating. An expression is
563     derived to predict the temperature profile resulting
564     from a specified momentum flux for a given fluid and
565     simulation cell. Although primarily bounded above,
566     we also describe milder low-flux limitations. RNEMD
567     results for a Lennard-Jones fluid agree with
568     equilibrium molecular dynamics and conventional
569     nonequilibrium molecular dynamics calculations at
570     low shear, but RNEMD underpredicts viscosity
571     relative to conventional NEMD at high shear.},
572 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
573     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
574     Article-Number = {014103},
575     Author = {Tenney, Craig M. and Maginn, Edward J.},
576     Author-Email = {ed@nd.edu},
577     Date-Added = {2010-03-09 13:08:41 -0500},
578     Date-Modified = {2010-04-14 12:51:13 -0400},
579     Doc-Delivery-Number = {542DQ},
580     Doi = {10.1063/1.3276454},
581     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
582     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
583     Issn = {0021-9606},
584     Journal = {J. Chem. Phys.},
585     Journal-Iso = {J. Chem. Phys.},
586     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
587     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
588     Language = {English},
589     Month = {JAN 7},
590     Number = {1},
591     Number-Of-Cited-References = {20},
592     Publisher = {AMER INST PHYSICS},
593     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
594     Times-Cited = {0},
595     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
596     Type = {Article},
597     Unique-Id = {ISI:000273472300004},
598     Volume = {132},
599     Year = {2010},
600     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
601 skuang 3565
602 skuang 3582 @article{Clancy:1992,
603 skuang 3585 Abstract = {The regrowth velocity of a crystal from a melt
604 gezelter 3583 depends on contributions from the thermal
605     conductivity, heat gradient, and latent heat. The
606     relative contributions of these terms to the
607     regrowth velocity of the pure metals copper and gold
608     during liquid-phase epitaxy are evaluated. These
609     results are used to explain how results from
610     previous nonequilibrium molecular-dynamics
611     simulations using classical potentials are able to
612     predict regrowth velocities that are close to the
613     experimental values. Results from equilibrium
614     molecular dynamics showing the nature of the
615     solid-vapor interface of an
616     embedded-atom-method-modeled Cu57Ni43 alloy at a
617     temperature corresponding to 62\% of the melting
618     point are presented. The regrowth of this alloy
619     following a simulation of a laser-processing
620     experiment is also given, with use of nonequilibrium
621     molecular-dynamics techniques. The thermal
622     conductivity and temperature gradient in the
623     simulation of the alloy are compared to those for
624     the pure metals.},
625 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
626     Affiliation = {CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.},
627     Author = {Richardson, C.~F. and Clancy, P},
628     Date-Added = {2010-01-12 16:17:33 -0500},
629     Date-Modified = {2010-04-08 17:18:25 -0400},
630     Doc-Delivery-Number = {HX378},
631     Issn = {0163-1829},
632     Journal = {Phys. Rev. B},
633     Journal-Iso = {Phys. Rev. B},
634     Keywords-Plus = {SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI},
635     Language = {English},
636     Month = {JUN 1},
637     Number = {21},
638     Number-Of-Cited-References = {24},
639     Pages = {12260-12268},
640     Publisher = {AMERICAN PHYSICAL SOC},
641     Subject-Category = {Physics, Condensed Matter},
642     Times-Cited = {11},
643     Title = {CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS},
644     Type = {Article},
645     Unique-Id = {ISI:A1992HX37800010},
646     Volume = {45},
647     Year = {1992}}
648 skuang 3563
649 skuang 3585 @article{Bedrov:2000,
650     Abstract = {We have applied a new nonequilibrium molecular
651 gezelter 3583 dynamics (NEMD) method {[}F. Muller-Plathe,
652     J. Chem. Phys. 106, 6082 (1997)] previously applied
653     to monatomic Lennard-Jones fluids in the
654     determination of the thermal conductivity of
655     molecular fluids. The method was modified in order
656     to be applicable to systems with holonomic
657     constraints. Because the method involves imposing a
658     known heat flux it is particularly attractive for
659     systems involving long-range and many-body
660     interactions where calculation of the microscopic
661     heat flux is difficult. The predicted thermal
662     conductivities of liquid n-butane and water using
663     the imposed-flux NEMD method were found to be in a
664     good agreement with previous simulations and
665     experiment. (C) 2000 American Institute of
666     Physics. {[}S0021-9606(00)50841-1].},
667 skuang 3585 Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
668     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
669     Author = {Bedrov, D and Smith, GD},
670     Date-Added = {2009-11-05 18:21:18 -0500},
671     Date-Modified = {2010-04-14 11:50:48 -0400},
672     Doc-Delivery-Number = {369BF},
673     Issn = {0021-9606},
674     Journal = {J. Chem. Phys.},
675     Journal-Iso = {J. Chem. Phys.},
676     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
677     Language = {English},
678     Month = {NOV 8},
679     Number = {18},
680     Number-Of-Cited-References = {26},
681     Pages = {8080-8084},
682     Publisher = {AMER INST PHYSICS},
683     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
684     Times-Cited = {23},
685     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
686     Type = {Article},
687     Unique-Id = {ISI:000090151400044},
688     Volume = {113},
689     Year = {2000}}
690 skuang 3563
691     @article{ISI:000231042800044,
692 skuang 3585 Abstract = {The reverse nonequilibrium molecular dynamics
693 gezelter 3583 method for thermal conductivities is adapted to the
694     investigation of molecular fluids. The method
695     generates a heat flux through the system by suitably
696     exchanging velocities of particles located in
697     different regions. From the resulting temperature
698     gradient, the thermal conductivity is then
699     calculated. Different variants of the algorithm and
700     their combinations with other system parameters are
701     tested: exchange of atomic velocities versus
702     exchange of molecular center-of-mass velocities,
703     different exchange frequencies, molecular models
704     with bond constraints versus models with flexible
705     bonds, united-atom versus all-atom models, and
706     presence versus absence of a thermostat. To help
707     establish the range of applicability, the algorithm
708     is tested on different models of benzene,
709     cyclohexane, water, and n-hexane. We find that the
710     algorithm is robust and that the calculated thermal
711     conductivities are insensitive to variations in its
712     control parameters. The force field, in contrast,
713     has a major influence on the value of the thermal
714     conductivity. While calculated and experimental
715     thermal conductivities fall into the same order of
716     magnitude, in most cases the calculated values are
717     systematically larger. United-atom force fields seem
718     to do better than all-atom force fields, possibly
719     because they remove high-frequency degrees of
720     freedom from the simulation, which, in nature, are
721     quantum-mechanical oscillators in their ground state
722     and do not contribute to heat conduction.},
723 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
724     Affiliation = {Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.},
725     Author = {Zhang, MM and Lussetti, E and de Souza, LES and M\"{u}ller-Plathe, F},
726     Date-Added = {2009-11-05 18:17:33 -0500},
727     Date-Modified = {2009-11-05 18:17:33 -0500},
728     Doc-Delivery-Number = {952YQ},
729     Doi = {10.1021/jp0512255},
730     Issn = {1520-6106},
731     Journal = {J. Phys. Chem. B},
732     Journal-Iso = {J. Phys. Chem. B},
733     Keywords-Plus = {LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION},
734     Language = {English},
735     Month = {AUG 11},
736     Number = {31},
737     Number-Of-Cited-References = {42},
738     Pages = {15060-15067},
739     Publisher = {AMER CHEMICAL SOC},
740     Subject-Category = {Chemistry, Physical},
741     Times-Cited = {17},
742     Title = {Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics},
743     Type = {Article},
744     Unique-Id = {ISI:000231042800044},
745     Volume = {109},
746     Year = {2005},
747     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
748 skuang 3563
749     @article{ISI:A1997YC32200056,
750 skuang 3585 Abstract = {Equilibrium molecular dynamics simulations have
751 gezelter 3583 been carried out in the microcanonical ensemble at
752     300 and 255 K on the extended simple point charge
753     (SPC/E) model of water {[}Berendsen et al.,
754     J. Phys. Chem. 91, 6269 (1987)]. In addition to a
755     number of static and dynamic properties, thermal
756     conductivity lambda has been calculated via
757     Green-Kubo integration of the heat current time
758     correlation functions (CF's) in the atomic and
759     molecular formalism, at wave number k=0. The
760     calculated values (0.67 +/- 0.04 W/mK at 300 K and
761     0.52 +/- 0.03 W/mK at 255 K) are in good agreement
762     with the experimental data (0.61 W/mK at 300 K and
763     0.49 W/mK at 255 K). A negative long-time tail of
764     the heat current CF, more apparent at 255 K, is
765     responsible for the anomalous decrease of lambda
766     with temperature. An analysis of the dynamical modes
767     contributing to lambda has shown that its value is
768     due to two low-frequency exponential-like modes, a
769     faster collisional mode, with positive contribution,
770     and a slower one, which determines the negative
771     long-time tail. A comparison of the molecular and
772     atomic spectra of the heat current CF has suggested
773     that higher-frequency modes should not contribute to
774     lambda in this temperature range. Generalized
775     thermal diffusivity D-T(k) decreases as a function
776     of k, after an initial minor increase at k =
777     k(min). The k dependence of the generalized
778     thermodynamic properties has been calculated in the
779     atomic and molecular formalisms. The observed
780     differences have been traced back to intramolecular
781     or intermolecular rotational effects and related to
782     the partial structure functions. Finally, from the
783     results we calculated it appears that the SPC/E
784     model gives results in better agreement with
785     experimental data than the transferable
786     intermolecular potential with four points TIP4P
787     water model {[}Jorgensen et al., J. Chem. Phys. 79,
788     926 (1983)], with a larger improvement for, e.g.,
789     diffusion, viscosities, and dielectric properties
790     and a smaller one for thermal conductivity. The
791     SPC/E model shares, to a smaller extent, the
792     insufficient slowing down of dynamics at low
793     temperature already found for the TIP4P water
794     model.},
795 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
796     Affiliation = {UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.},
797     Author = {Bertolini, D and Tani, A},
798     Date-Added = {2009-10-30 15:41:21 -0400},
799     Date-Modified = {2009-10-30 15:41:21 -0400},
800     Doc-Delivery-Number = {YC322},
801     Issn = {1063-651X},
802     Journal = {Phys. Rev. E},
803     Journal-Iso = {Phys. Rev. E},
804     Keywords-Plus = {TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS},
805     Language = {English},
806     Month = {OCT},
807     Number = {4},
808     Number-Of-Cited-References = {35},
809     Pages = {4135-4151},
810     Publisher = {AMERICAN PHYSICAL SOC},
811     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
812     Times-Cited = {18},
813     Title = {Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results},
814     Type = {Article},
815     Unique-Id = {ISI:A1997YC32200056},
816     Volume = {56},
817     Year = {1997}}
818 skuang 3563
819 skuang 3532 @article{Meineke:2005gd,
820 skuang 3585 Abstract = {OOPSE is a new molecular dynamics simulation program
821 gezelter 3583 that is capable of efficiently integrating equations
822     of motion for atom types with orientational degrees
823     of freedom (e.g. #sticky# atoms and point
824     dipoles). Transition metals can also be simulated
825     using the embedded atom method (EAM) potential
826     included in the code. Parallel simulations are
827     carried out using the force-based decomposition
828     method. Simulations are specified using a very
829     simple C-based meta-data language. A number of
830     advanced integrators are included, and the basic
831     integrator for orientational dynamics provides
832     substantial improvements over older quaternion-based
833     schemes.},
834 skuang 3585 Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
835     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
836     Date-Added = {2009-10-01 18:43:03 -0400},
837     Date-Modified = {2010-04-13 09:11:16 -0400},
838     Doi = {DOI 10.1002/jcc.20161},
839     Isi = {000226558200006},
840     Isi-Recid = {142688207},
841     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
842     Journal = {J. Comp. Chem.},
843     Keywords = {OOPSE; molecular dynamics},
844     Month = feb,
845     Number = {3},
846     Pages = {252-271},
847     Publisher = {JOHN WILEY \& SONS INC},
848     Times-Cited = {9},
849     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
850     Volume = {26},
851     Year = {2005},
852     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
853     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
854 skuang 3532
855     @article{ISI:000080382700030,
856 skuang 3585 Abstract = {A nonequilibrium method for calculating the shear
857 gezelter 3583 viscosity is presented. It reverses the
858     cause-and-effect picture customarily used in
859     nonequilibrium molecular dynamics: the effect, the
860     momentum flux or stress, is imposed, whereas the
861     cause, the velocity gradient or shear rate, is
862     obtained from the simulation. It differs from other
863     Norton-ensemble methods by the way in which the
864     steady-state momentum flux is maintained. This
865     method involves a simple exchange of particle
866     momenta, which is easy to implement. Moreover, it
867     can be made to conserve the total energy as well as
868     the total linear momentum, so no coupling to an
869     external temperature bath is needed. The resulting
870     raw data, the velocity profile, is a robust and
871     rapidly converging property. The method is tested on
872     the Lennard-Jones fluid near its triple point. It
873     yields a viscosity of 3.2-3.3, in Lennard-Jones
874     reduced units, in agreement with literature
875     results. {[}S1063-651X(99)03105-0].},
876 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
877     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
878     Author = {M\"{u}ller-Plathe, F},
879     Date-Added = {2009-10-01 14:07:30 -0400},
880     Date-Modified = {2009-10-01 14:07:30 -0400},
881     Doc-Delivery-Number = {197TX},
882     Issn = {1063-651X},
883     Journal = {Phys. Rev. E},
884     Journal-Iso = {Phys. Rev. E},
885     Language = {English},
886     Month = {MAY},
887     Number = {5, Part A},
888     Number-Of-Cited-References = {17},
889     Pages = {4894-4898},
890     Publisher = {AMERICAN PHYSICAL SOC},
891     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
892     Times-Cited = {57},
893     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
894     Type = {Article},
895     Unique-Id = {ISI:000080382700030},
896     Volume = {59},
897     Year = {1999}}
898 skuang 3532
899 skuang 3585 @article{Maginn:2007,
900     Abstract = {Atomistic simulations are conducted to examine the
901 gezelter 3583 dependence of the viscosity of
902     1-ethyl-3-methylimidazolium
903     bis(trifluoromethanesulfonyl)imide on temperature
904     and water content. A nonequilibrium molecular
905     dynamics procedure is utilized along with an
906     established fixed charge force field. It is found
907     that the simulations quantitatively capture the
908     temperature dependence of the viscosity as well as
909     the drop in viscosity that occurs with increasing
910     water content. Using mixture viscosity models, we
911     show that the relative drop in viscosity with water
912     content is actually less than that that would be
913     predicted for an ideal system. This finding is at
914     odds with the popular notion that small amounts of
915     water cause an unusually large drop in the viscosity
916     of ionic liquids. The simulations suggest that, due
917     to preferential association of water with anions and
918     the formation of water clusters, the excess molar
919     volume is negative. This means that dissolved water
920     is actually less effective at lowering the viscosity
921     of these mixtures when compared to a solute obeying
922     ideal mixing behavior. The use of a nonequilibrium
923     simulation technique enables diffusive behavior to
924     be observed on the time scale of the simulations,
925     and standard equilibrium molecular dynamics resulted
926     in sub-diffusive behavior even over 2 ns of
927     simulation time.},
928 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
929     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
930     Author = {Kelkar, Manish S. and Maginn, Edward J.},
931     Author-Email = {ed@nd.edu},
932     Date-Added = {2009-09-29 17:07:17 -0400},
933     Date-Modified = {2010-04-14 12:51:02 -0400},
934     Doc-Delivery-Number = {163VA},
935     Doi = {10.1021/jp0686893},
936     Issn = {1520-6106},
937     Journal = {J. Phys. Chem. B},
938     Journal-Iso = {J. Phys. Chem. B},
939     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
940     Language = {English},
941     Month = {MAY 10},
942     Number = {18},
943     Number-Of-Cited-References = {57},
944     Pages = {4867-4876},
945     Publisher = {AMER CHEMICAL SOC},
946     Subject-Category = {Chemistry, Physical},
947     Times-Cited = {35},
948     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
949     Type = {Article},
950     Unique-Id = {ISI:000246190100032},
951     Volume = {111},
952     Year = {2007},
953     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D},
954     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0686893}}
955 skuang 3528
956 skuang 3527 @article{MullerPlathe:1997xw,
957 skuang 3585 Abstract = {A nonequilibrium molecular dynamics method for
958 gezelter 3583 calculating the thermal conductivity is
959     presented. It reverses the usual cause and effect
960     picture. The ''effect,'' the heat flux, is imposed
961     on the system and the ''cause,'' the temperature
962     gradient is obtained from the simulation. Besides
963     being very simple to implement, the scheme offers
964     several advantages such as compatibility with
965     periodic boundary conditions, conservation of total
966     energy and total linear momentum, and the sampling
967     of a rapidly converging quantity (temperature
968     gradient) rather than a slowly converging one (heat
969     flux). The scheme is tested on the Lennard-Jones
970     fluid. (C) 1997 American Institute of Physics.},
971 skuang 3585 Address = {WOODBURY},
972     Author = {M\"{u}ller-Plathe, F.},
973     Cited-Reference-Count = {13},
974     Date = {APR 8},
975     Date-Added = {2009-09-21 16:51:21 -0400},
976     Date-Modified = {2009-09-21 16:51:21 -0400},
977     Document-Type = {Article},
978     Isi = {ISI:A1997WR62000032},
979     Isi-Document-Delivery-Number = {WR620},
980     Iso-Source-Abbreviation = {J. Chem. Phys.},
981     Issn = {0021-9606},
982     Journal = {J. Chem. Phys.},
983     Language = {English},
984     Month = {Apr},
985     Number = {14},
986     Page-Count = {4},
987     Pages = {6082--6085},
988     Publication-Type = {J},
989     Publisher = {AMER INST PHYSICS},
990     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
991     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
992     Source = {J CHEM PHYS},
993     Subject-Category = {Physics, Atomic, Molecular & Chemical},
994     Times-Cited = {106},
995     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
996     Volume = {106},
997     Year = {1997}}
998 skuang 3527
999     @article{Muller-Plathe:1999ek,
1000 skuang 3585 Abstract = {A novel non-equilibrium method for calculating
1001 gezelter 3583 transport coefficients is presented. It reverses the
1002     experimental cause-and-effect picture, e.g. for the
1003     calculation of viscosities: the effect, the momentum
1004     flux or stress, is imposed, whereas the cause, the
1005     velocity gradient or shear rates, is obtained from
1006     the simulation. It differs from other
1007     Norton-ensemble methods by the way, in which the
1008     steady-state fluxes are maintained. This method
1009     involves a simple exchange of particle momenta,
1010     which is easy to implement and to analyse. Moreover,
1011     it can be made to conserve the total energy as well
1012     as the total linear momentum, so no thermostatting
1013     is needed. The resulting raw data are robust and
1014     rapidly converging. The method is tested on the
1015     calculation of the shear viscosity, the thermal
1016     conductivity and the Soret coefficient (thermal
1017     diffusion) for the Lennard-Jones (LJ) fluid near its
1018     triple point. Possible applications to other
1019     transport coefficients and more complicated systems
1020     are discussed. (C) 1999 Elsevier Science Ltd. All
1021     rights reserved.},
1022 skuang 3585 Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
1023     Author = {M\"{u}ller-Plathe, F and Reith, D},
1024     Date-Added = {2009-09-21 16:47:07 -0400},
1025     Date-Modified = {2009-09-21 16:47:07 -0400},
1026     Isi = {000082266500004},
1027     Isi-Recid = {111564960},
1028     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
1029     Journal = {Computational and Theoretical Polymer Science},
1030     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
1031     Number = {3-4},
1032     Pages = {203-209},
1033     Publisher = {ELSEVIER SCI LTD},
1034     Times-Cited = {15},
1035     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
1036     Volume = {9},
1037     Year = {1999},
1038     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
1039 skuang 3527
1040     @article{Viscardy:2007lq,
1041 skuang 3585 Abstract = {The thermal conductivity is calculated with the
1042 gezelter 3583 Helfand-moment method in the Lennard-Jones fluid
1043     near the triple point. The Helfand moment of thermal
1044     conductivity is here derived for molecular dynamics
1045     with periodic boundary conditions. Thermal
1046     conductivity is given by a generalized Einstein
1047     relation with this Helfand moment. The authors
1048     compute thermal conductivity by this new method and
1049     compare it with their own values obtained by the
1050     standard Green-Kubo method. The agreement is
1051     excellent. (C) 2007 American Institute of Physics.},
1052 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1053     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1054     Date-Added = {2009-09-21 16:37:20 -0400},
1055     Date-Modified = {2009-09-21 16:37:20 -0400},
1056     Doi = {DOI 10.1063/1.2724821},
1057     Isi = {000246453900035},
1058     Isi-Recid = {156192451},
1059     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
1060     Journal = {J. Chem. Phys.},
1061     Month = may,
1062     Number = {18},
1063     Publisher = {AMER INST PHYSICS},
1064     Times-Cited = {3},
1065     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
1066     Volume = {126},
1067     Year = {2007},
1068     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035},
1069     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724821}}
1070 skuang 3527
1071     @article{Viscardy:2007bh,
1072 skuang 3585 Abstract = {The authors propose a new method, the Helfand-moment
1073 gezelter 3583 method, to compute the shear viscosity by
1074     equilibrium molecular dynamics in periodic
1075     systems. In this method, the shear viscosity is
1076     written as an Einstein-type relation in terms of the
1077     variance of the so-called Helfand moment. This
1078     quantity is modified in order to satisfy systems
1079     with periodic boundary conditions usually considered
1080     in molecular dynamics. They calculate the shear
1081     viscosity in the Lennard-Jones fluid near the triple
1082     point thanks to this new technique. They show that
1083     the results of the Helfand-moment method are in
1084     excellent agreement with the results of the standard
1085     Green-Kubo method. (C) 2007 American Institute of
1086     Physics.},
1087 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1088     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1089     Date-Added = {2009-09-21 16:37:19 -0400},
1090     Date-Modified = {2009-09-21 16:37:19 -0400},
1091     Doi = {DOI 10.1063/1.2724820},
1092     Isi = {000246453900034},
1093     Isi-Recid = {156192449},
1094     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
1095     Journal = {J. Chem. Phys.},
1096     Month = may,
1097     Number = {18},
1098     Publisher = {AMER INST PHYSICS},
1099     Times-Cited = {1},
1100     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
1101     Volume = {126},
1102     Year = {2007},
1103     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034},
1104     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724820}}