ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nivsRnemd/nivsRnemd.bib
Revision: 3609
Committed: Wed Jul 14 14:41:57 2010 UTC (14 years, 2 months ago) by gezelter
File size: 76073 byte(s)
Log Message:
active edits

File Contents

# User Rev Content
1 skuang 3527 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 gezelter 3609 %% Created for Dan Gezelter at 2010-07-13 15:47:51 -0400
6 skuang 3527
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11    
12 gezelter 3609 @article{Vardeman:2008fk,
13     Abstract = {Using molecular dynamics simulations, we have simulated the rapid cooling experienced by bimetallic nanoparticles following laser excitation at the plasmon resonance and find evidence that glassy beads, specifically Ag-Cu bimetallic particles at the eutectic composition (60\% Ag, 40\% Cu), can be formed during these experiments. The bimetallic nanoparticles are embedded in an implicit solvent with a viscosity tuned to yield cooling curves that match the experimental cooling behavior as closely as possible. Because the nanoparticles have a large surface-to-volume ratio, experimentally realistic cooling rates are accessible via relatively short simulations. The presence of glassy structural features was verified using bond orientational order parameters that are sensitive to the formation of local icosahedral ordering in condensed phases. As the particles cool from the liquid droplet state into glassy beads, a silver-rich monolayer develops on the outer surface and local icosahedra can develop around the silver atoms in this monolayer. However, we observe a strong preference for the local icosahedral ordering around the copper atoms in the particles. As the particles cool, these local icosahedral structures grow to include a larger fraction of the atoms in the nanoparticle, eventually leading to a glassy nanosphere.},
14     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
15     Author = {Vardeman, Charles F., II and Gezelter, J. Daniel},
16     Date-Added = {2010-07-13 11:48:22 -0400},
17     Date-Modified = {2010-07-13 11:48:22 -0400},
18     Doi = {DOI 10.1021/jp710063g},
19     Isi = {000253512400021},
20     Isi-Recid = {160903603},
21     Isi-Ref-Recids = {144152922 81445483 98913099 146167982 55512304 50985260 52031423 29272311 151055545 134895634 130292830 101988637 100757730 98524559 123952006 6025131 59492217 2078548 135495737 136941603 90709964 160903604 130558416 113800688 30137926 117888234 63632785 38926953 158293976 135246439 125693419 125789026 155583142 156430464 65888620 130160487 97576420 109490154 150229560 116057234 134425927 142869781 121706070 89390336 119150946 143383743 64066027 171282998 142688207 51429664 84591083 127696312 58160909 155366996 155654757 137551818 128633299 109033408 120457571 171282999 124947095 126857514 49630702 64115284 84689627 71842426 96309965 79034659 92658330 146168029 119238036 144824430 132319357 160903607 171283000 100274448},
22     Journal = {Journal of Physical Chemistry C},
23     Month = mar,
24     Number = {9},
25     Pages = {3283-3293},
26     Publisher = {AMER CHEMICAL SOC},
27     Times-Cited = {0},
28     Title = {Simulations of laser-induced glass formation in Ag-Cu nanoparticles},
29     Volume = {112},
30     Year = {2008},
31     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000253512400021}}
32    
33     @article{PhysRevB.59.3527,
34     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
35     Date-Added = {2010-07-13 11:44:08 -0400},
36     Date-Modified = {2010-07-13 11:44:08 -0400},
37     Doi = {10.1103/PhysRevB.59.3527},
38     Journal = {Phys. Rev. B},
39     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
40     Month = {Feb},
41     Number = {5},
42     Numpages = {6},
43     Pages = {3527-3533},
44     Publisher = {American Physical Society},
45     Title = {Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:\quad{}{C}u-{A}g and {C}u-{N}i},
46     Volume = {59},
47     Year = {1999},
48     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
49    
50     @article{Medasani:2007uq,
51     Abstract = {We employ first-principles and empirical computational methods to study the surface energy and surface stress of silver nanoparticles. The structures, cohesive energies, and lattice contractions of spherical Ag nanoclusters in the size range 0.5-5.5 nm are analyzed using two different theoretical approaches: an ab initio density functional pseudopotential technique combined with the generalized gradient approximation and the embedded atom method. The surface energies and stresses obtained via the embedded atom method are found to be in good agreement with those predicted by the gradient-corrected ab initio density functional formalism. We estimate the surface energy of Ag nanoclusters to be in the range of 1.0-2.2 J/m(2). Our values are close to the bulk surface energy of silver, but are significantly lower than the recently reported value of 7.2 J/m(2) for free Ag nanoparticles derived from the Kelvin equation.},
52     Author = {Medasani, Bharat and Park, Young Ho and Vasiliev, Igor},
53     Date-Added = {2010-07-13 11:43:15 -0400},
54     Date-Modified = {2010-07-13 11:43:15 -0400},
55     Doi = {ARTN 235436},
56     Journal = {Phys. Rev. B},
57     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_75_235436.pdf},
58     Title = {Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles},
59     Volume = {75},
60     Year = {2007},
61     Bdsk-Url-1 = {http://dx.doi.org/235436}}
62    
63     @article{Wang:2005qy,
64     Abstract = {The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 atom \%. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5-14 atom \% higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertexes of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.},
65     Author = {Wang, GF and Van Hove, MA and Ross, PN and Baskes, MI},
66     Date-Added = {2010-07-13 11:42:50 -0400},
67     Date-Modified = {2010-07-13 11:42:50 -0400},
68     Doi = {DOI 10.1021/jp050116n},
69     Journal = {J. Phys. Chem. B},
70     Pages = {11683-11692},
71     Title = {Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations},
72     Volume = {109},
73     Year = {2005},
74     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp050116n}}
75    
76     @article{Chui:2003fk,
77     Abstract = {Molecular dynamics simulations of a platinum nanocluster consisting 250 atoms were performed at different temperatures between 70 K and 298 K. The semi-empirical, many-body Sutton-Chen (SC) potential was used to model the interatomic interaction in the metallic system. Regions of core or bulk-like atoms and surface atoms can be defined from analyses of structures, atomic coordination, and the local density function of atoms as defined in the SC potential. The core atoms in the nanoparticle behave as bulk-like metal atoms with a predominant face centered cubic (fcc) packing. The interface between surface atoms and core atoms is marked by a peak in the local density function and corresponds to near surface atoms. The near surface atoms and surface atoms prefer a hexagonal closed packing (hcp). The temperature and size effects on structures of the nanoparticle and the dynamics of the surface region and the core region are discussed.},
78     Author = {Chui, YH and Chan, KY},
79     Date-Added = {2010-07-13 11:42:32 -0400},
80     Date-Modified = {2010-07-13 11:42:32 -0400},
81     Doi = {DOI 10.1039/b302122j},
82     Journal = {Phys. Chem. Chem. Phys.},
83     Pages = {2869-2874},
84     Title = {Analyses of surface and core atoms in a platinum nanoparticle},
85     Volume = {5},
86     Year = {2003},
87     Bdsk-Url-1 = {http://dx.doi.org/10.1039/b302122j}}
88    
89     @article{Sankaranarayanan:2005lr,
90     Abstract = {Bimetallic nanoclusters are of interest because of their utility in catalysis and sensors, The thermal characteristics of bimetallic Pt-Pd nanoclusters of different sizes and compositions were investigated through molecular dynamics simulations using quantum Sutton-Chen (QSC) many-body potentials, Monte Carlo simulations employing the bond order simulation model were used to generate minimum energy configurations, which were utilized as the starting point for molecular dynamics simulations. The calculated initial configurations of the Pt-Pd system consisted of surface segregated Pd atoms and a Pt-rich core, Melting characteristics were studied by following the changes in potential energy and heat capacity as functions of temperature, Structural changes accompanying the thermal evolution were studied by the bond order parameter method. The Pt-Pd clusters exhibited a two-stage melting: surface melting of the external Pd atoms followed by homogeneous melting of the Pt core. These transitions were found to depend on the composition and size of the nanocluster. Melting temperatures of the nanoclusters were found to be much lower than those of bulk Pt and Pd. Bulk melting temperatures of Pd and Pt simulated using periodic boundary conditions compare well with experimental values, thus providing justification for the use of QSC potentials in these simulations. Deformation parameters were calculated to characterize the structural evolution resulting from diffusion of Pd and Pt atoms, The results indicate that in Pd-Pt clusters, Pd atoms prefer to remain at the surface even after melting. In addition, Pt also tends to diffuse to the surface after melting due to reduction of its surface energy with temperature. This mixing pattern is different from those reported in some of the earlier Studies on melting of bimetallics.},
91     Author = {Sankaranarayanan, SKRS and Bhethanabotla, VR and Joseph, B},
92     Date-Added = {2010-07-13 11:42:13 -0400},
93     Date-Modified = {2010-07-13 11:42:13 -0400},
94     Doi = {ARTN 195415},
95     Journal = {Phys. Rev. B},
96     Title = {Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters},
97     Volume = {71},
98     Year = {2005},
99     Bdsk-Url-1 = {http://dx.doi.org/195415}}
100    
101     @article{Vardeman-II:2001jn,
102     Author = {C.~F. {Vardeman II} and J.~D. Gezelter},
103     Date-Added = {2010-07-13 11:41:50 -0400},
104     Date-Modified = {2010-07-13 11:41:50 -0400},
105     Journal = {J. Phys. Chem. A},
106     Local-Url = {file://localhost/Users/charles/Documents/Papers/Vardeman%20II/2001.pdf},
107     Number = {12},
108     Pages = {2568},
109     Title = {Comparing models for diffusion in supercooled liquids: The eutectic composition of the {A}g-{C}u alloy},
110     Volume = {105},
111     Year = {2001}}
112    
113     @article{ShibataT._ja026764r,
114     Author = {Shibata, T. and Bunker, B.A. and Zhang, Z. and Meisel, D. and Vardeman, C.F. and Gezelter, J.D.},
115     Date-Added = {2010-07-13 11:41:36 -0400},
116     Date-Modified = {2010-07-13 11:41:36 -0400},
117     Journal = {J. Amer. Chem. Soc.},
118     Local-Url = {file://localhost/Users/charles/Documents/Papers/ja026764r.pdf},
119     Number = {40},
120     Pages = {11989-11996},
121     Title = {Size-Dependent Spontaneous Alloying of {A}u-{A}g Nanoparticles},
122     Url = {http://dx.doi.org/10.1021/ja026764r},
123     Volume = {124},
124     Year = {2002},
125     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja026764r}}
126    
127     @article{Chen90,
128     Author = {A.~P. Sutton and J. Chen},
129     Date-Added = {2010-07-13 11:40:48 -0400},
130     Date-Modified = {2010-07-13 11:40:48 -0400},
131     Journal = {Phil. Mag. Lett.},
132     Pages = {139-146},
133     Title = {Long-Range Finnis Sinclair Potentials},
134     Volume = 61,
135     Year = {1990}}
136    
137     @article{PhysRevB.33.7983,
138     Author = {Foiles, S. M. and Baskes, M. I. and Daw, M. S.},
139     Date-Added = {2010-07-13 11:40:28 -0400},
140     Date-Modified = {2010-07-13 11:40:28 -0400},
141     Doi = {10.1103/PhysRevB.33.7983},
142     Journal = {Phys. Rev. B},
143     Local-Url = {file://localhost/Users/charles/Documents/Papers/p7983_1.pdf},
144     Month = {Jun},
145     Number = {12},
146     Numpages = {8},
147     Pages = {7983-7991},
148     Publisher = {American Physical Society},
149     Title = {Embedded-atom-method functions for the fcc metals {C}u, {A}g, {A}u, {N}i, {P}d, {P}t, and their alloys},
150     Volume = {33},
151     Year = {1986},
152     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.33.7983}}
153    
154     @article{hoover85,
155     Author = {W.~G. Hoover},
156     Date-Added = {2010-07-13 11:24:30 -0400},
157     Date-Modified = {2010-07-13 11:24:30 -0400},
158     Journal = pra,
159     Pages = 1695,
160     Title = {Canonical dynamics: Equilibrium phase-space distributions},
161     Volume = 31,
162     Year = 1985}
163    
164     @article{melchionna93,
165     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
166     Date-Added = {2010-07-13 11:22:17 -0400},
167     Date-Modified = {2010-07-13 11:22:17 -0400},
168     Journal = {Mol. Phys.},
169     Pages = {533-544},
170     Title = {Hoover {\sc npt} dynamics for systems varying in shape and size},
171     Volume = 78,
172     Year = 1993}
173    
174     @misc{openmd,
175     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
176     Date-Added = {2010-07-13 11:16:00 -0400},
177     Date-Modified = {2010-07-13 11:19:48 -0400},
178     Howpublished = {Available at http://openmd.net},
179     Title = {OpenMD}}
180    
181     @book{AshcroftMermin,
182     Author = {N.~David Mermin and Neil W. Ashcroft},
183     Date-Added = {2010-07-12 14:26:49 -0400},
184     Date-Modified = {2010-07-12 14:27:42 -0400},
185     Publisher = {Brooks Cole},
186     Title = {Solid State Physics},
187     Year = {1976}}
188    
189     @book{WagnerKruse,
190     Address = {Berlin},
191     Author = {W. Wagner and A. Kruse},
192     Date-Added = {2010-07-12 14:10:29 -0400},
193     Date-Modified = {2010-07-12 14:13:44 -0400},
194     Publisher = {Springer-Verlag},
195     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
196     Year = {1998}}
197    
198 skuang 3592 @article{ISI:000266247600008,
199 gezelter 3594 Abstract = {Temperature dependence of viscosity of butyl-3-methylimidazolium
200 skuang 3592 hexafluorophosphate is investigated by non-equilibrium molecular
201     dynamics simulations with cosine-modulated force in the temperature
202     range from 360 to 480K. It is shown that this method is able to
203     correctly predict the shear viscosity. The simulation setting and
204     choice of the force field are discussed in detail. The all-atom force
205     field exhibits a bad convergence and the shear viscosity is
206     overestimated, while the simple united atom model predicts the kinetics
207     very well. The results are compared with the equilibrium molecular
208     dynamics simulations. The relationship between the diffusion
209     coefficient and viscosity is examined by means of the hydrodynamic
210     radii calculated from the Stokes-Einstein equation and the solvation
211 gezelter 3594 properties are discussed.},
212     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
213     Affiliation = {Kolafa, J (Reprint Author), Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic. {[}Picalek, Jan; Kolafa, Jiri] Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic.},
214 skuang 3592 Author = {Picalek, Jan and Kolafa, Jiri},
215 gezelter 3594 Author-Email = {jiri.kolafa@vscht.cz},
216 skuang 3592 Date-Added = {2010-04-16 13:19:12 -0400},
217     Date-Modified = {2010-04-16 13:19:12 -0400},
218 gezelter 3594 Doc-Delivery-Number = {448FD},
219     Doi = {10.1080/08927020802680703},
220     Funding-Acknowledgement = {Czech Science Foundation {[}203/07/1006]; Czech Ministry of Education {[}LC512]},
221     Funding-Text = {We gratefully acknowledge a support from the Czech Science Foundation (project 203/07/1006) and the computing facilities from the Czech Ministry of Education (Center for Biomolecules and Complex Molecular Systems, project LC512).},
222     Issn = {0892-7022},
223     Journal = {Mol. Simul.},
224     Journal-Iso = {Mol. Simul.},
225     Keywords = {room temperature ionic liquids; viscosity; non-equilibrium molecular dynamics; solvation; imidazolium},
226     Keywords-Plus = {1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICOCHEMICAL PROPERTIES; COMPUTER-SIMULATION; PHYSICAL-PROPERTIES; IMIDAZOLIUM CATION; FORCE-FIELD; AB-INITIO; TEMPERATURE; CHLORIDE; CONDUCTIVITY},
227     Language = {English},
228     Number = {8},
229     Number-Of-Cited-References = {50},
230     Pages = {685-690},
231     Publisher = {TAYLOR \& FRANCIS LTD},
232     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
233     Times-Cited = {2},
234     Title = {Shear viscosity of ionic liquids from non-equilibrium molecular dynamics simulation},
235     Type = {Article},
236     Unique-Id = {ISI:000266247600008},
237     Volume = {35},
238     Year = {2009},
239 skuang 3592 Bdsk-Url-1 = {http://dx.doi.org/10.1080/08927020802680703%7D}}
240    
241     @article{Vasquez:2004fk,
242     Abstract = {A method for fast calculation of viscosity from molecular dynamics simulation is revisited. The method consists of using a steady-state periodic perturbation. A methodology to choose the amplitude of the external perturbation, which is one of the major practical issues in the original technique of Gosling et al. {$[$}Mol. Phys. 26: 1475 (1973){$]$} is proposed. The amplitude of the perturbation required for fast caculations and the viscosity values for wide ranges of temperature and density of the Lennard-Jones (LJ) model fluid are reported. The viscosity results are in agreement with recent LJ viscosity calculations. Additionally, the simulations demonstrate that the proposed approach is suitable to efficiently generate viscosity data of good quality.},
243     Author = {Vasquez, V. R. and Macedo, E. A. and Zabaloy, M. S.},
244     Date = {2004/11/02/},
245     Date-Added = {2010-04-16 13:18:48 -0400},
246     Date-Modified = {2010-04-16 13:18:48 -0400},
247     Day = {02},
248 gezelter 3594 Journal = {Int. J. Thermophys.},
249 skuang 3592 M3 = {10.1007/s10765-004-7736-3},
250     Month = {11},
251     Number = {6},
252     Pages = {1799--1818},
253     Title = {Lennard-Jones Viscosities in Wide Ranges of Temperature and Density: Fast Calculations Using a Steady--State Periodic Perturbation Method},
254     Ty = {JOUR},
255     Url = {http://dx.doi.org/10.1007/s10765-004-7736-3},
256     Volume = {25},
257     Year = {2004},
258     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-004-7736-3}}
259    
260 skuang 3591 @article{hess:209,
261     Author = {Berk Hess},
262     Date-Added = {2010-04-16 12:37:37 -0400},
263     Date-Modified = {2010-04-16 12:37:37 -0400},
264     Doi = {10.1063/1.1421362},
265 gezelter 3594 Journal = {J. Chem. Phys.},
266 skuang 3591 Keywords = {viscosity; molecular dynamics method; liquid theory; shear flow},
267     Number = {1},
268     Pages = {209-217},
269     Publisher = {AIP},
270     Title = {Determining the shear viscosity of model liquids from molecular dynamics simulations},
271     Url = {http://link.aip.org/link/?JCP/116/209/1},
272     Volume = {116},
273     Year = {2002},
274     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/116/209/1},
275     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1421362}}
276    
277     @article{backer:154503,
278     Author = {J. A. Backer and C. P. Lowe and H. C. J. Hoefsloot and P. D. Iedema},
279     Date-Added = {2010-04-16 12:37:37 -0400},
280     Date-Modified = {2010-04-16 12:37:37 -0400},
281     Doi = {10.1063/1.1883163},
282     Eid = {154503},
283 gezelter 3594 Journal = {J. Chem. Phys.},
284 skuang 3591 Keywords = {Poiseuille flow; flow simulation; Lennard-Jones potential; viscosity; boundary layers; computational fluid dynamics},
285     Number = {15},
286     Numpages = {6},
287     Pages = {154503},
288     Publisher = {AIP},
289     Title = {Poiseuille flow to measure the viscosity of particle model fluids},
290     Url = {http://link.aip.org/link/?JCP/122/154503/1},
291     Volume = {122},
292     Year = {2005},
293     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/122/154503/1},
294     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1883163}}
295    
296     @article{daivis:541,
297     Author = {Peter J. Daivis and Denis J. Evans},
298     Date-Added = {2010-04-16 12:05:36 -0400},
299     Date-Modified = {2010-04-16 12:05:36 -0400},
300     Doi = {10.1063/1.466970},
301 gezelter 3594 Journal = {J. Chem. Phys.},
302 skuang 3591 Keywords = {SHEAR; DECANE; FLOW MODELS; VOLUME; PRESSURE; NONEQUILIBRIUM; MOLECULAR DYNAMICS CALCULATIONS; COMPARATIVE EVALUATIONS; SIMULATION; STRAIN RATE; VISCOSITY; KUBO FORMULA},
303     Number = {1},
304     Pages = {541-547},
305     Publisher = {AIP},
306     Title = {Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane},
307     Url = {http://link.aip.org/link/?JCP/100/541/1},
308     Volume = {100},
309     Year = {1994},
310     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/100/541/1},
311     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.466970}}
312    
313     @article{mondello:9327,
314     Author = {Maurizio Mondello and Gary S. Grest},
315     Date-Added = {2010-04-16 12:05:36 -0400},
316     Date-Modified = {2010-04-16 12:05:36 -0400},
317     Doi = {10.1063/1.474002},
318 gezelter 3594 Journal = {J. Chem. Phys.},
319 skuang 3591 Keywords = {organic compounds; viscosity; digital simulation; molecular dynamics method},
320     Number = {22},
321     Pages = {9327-9336},
322     Publisher = {AIP},
323     Title = {Viscosity calculations of [bold n]-alkanes by equilibrium molecular dynamics},
324     Url = {http://link.aip.org/link/?JCP/106/9327/1},
325     Volume = {106},
326     Year = {1997},
327     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/106/9327/1},
328     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.474002}}
329    
330 skuang 3588 @article{ISI:A1988Q205300014,
331 gezelter 3594 Address = {ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE},
332     Affiliation = {VOGELSANG, R (Reprint Author), RUHR UNIV BOCHUM,UNIV STR 150,D-4630 BOCHUM,FED REP GER. UNIV DUISBURG,THERMODYNAM,D-4100 DUISBURG,FED REP GER.},
333     Author = {Vogelsang, R and Hoheisel, G and Luckas, M},
334 skuang 3588 Date-Added = {2010-04-14 16:20:24 -0400},
335     Date-Modified = {2010-04-14 16:20:24 -0400},
336 gezelter 3594 Doc-Delivery-Number = {Q2053},
337     Issn = {0026-8976},
338     Journal = {Mol. Phys.},
339     Journal-Iso = {Mol. Phys.},
340     Language = {English},
341     Month = {AUG 20},
342     Number = {6},
343     Number-Of-Cited-References = {14},
344     Pages = {1203-1213},
345     Publisher = {TAYLOR \& FRANCIS LTD},
346     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
347     Times-Cited = {12},
348     Title = {SHEAR VISCOSITY AND THERMAL-CONDUCTIVITY OF THE LENNARD-JONES LIQUID COMPUTED USING MOLECULAR-DYNAMICS AND PREDICTED BY A MEMORY FUNCTION MODEL FOR A LARGE NUMBER OF STATES},
349     Type = {Article},
350     Unique-Id = {ISI:A1988Q205300014},
351     Volume = {64},
352 gezelter 3609 Year = {1988}}
353 skuang 3588
354 skuang 3587 @article{ISI:000261835100054,
355 gezelter 3594 Abstract = {Transport properties of liquid methanol and ethanol are predicted by
356 skuang 3587 molecular dynamics simulation. The molecular models for the alcohols
357     are rigid, nonpolarizable, and of united-atom type. They were developed
358     in preceding work using experimental vapor-liquid equilibrium data
359     only. Self- and Maxwell-Stefan diffusion coefficients as well as the
360     shear viscosity of methanol, ethanol, and their binary mixture are
361     determined using equilibrium molecular dynamics and the Green-Kubo
362     formalism. Nonequilibrium molecular dynamics is used for predicting the
363     thermal conductivity of the two pure substances. The transport
364     properties of the fluids are calculated over a wide temperature range
365     at ambient pressure and compared with experimental and simulation data
366     from the literature. Overall, a very good agreement with the experiment
367     is found. For instance, the self-diffusion coefficient and the shear
368     viscosity are predicted with average deviations of less than 8\% for
369     the pure alcohols and 12\% for the mixture. The predicted thermal
370     conductivity agrees on average within 5\% with the experimental data.
371     Additionally, some velocity and shear viscosity autocorrelation
372     functions are presented and discussed. Radial distribution functions
373     for ethanol are also presented. The predicted excess volume, excess
374     enthalpy, and the vapor-liquid equilibrium of the binary mixture
375 gezelter 3594 methanol + ethanol are assessed and agree well with experimental data.},
376     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
377     Affiliation = {Vrabec, J (Reprint Author), Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Vrabec, Jadran] Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Guevara-Carrion, Gabriela; Hasse, Hans] Univ Kaiserslautern, Lab Engn Thermodynam, D-67663 Kaiserslautern, Germany. {[}Nieto-Draghi, Carlos] Inst Francais Petr, F-92852 Rueil Malmaison, France.},
378 skuang 3587 Author = {Guevara-Carrion, Gabriela and Nieto-Draghi, Carlos and Vrabec, Jadran and Hasse, Hans},
379 gezelter 3594 Author-Email = {vrabec@itt.uni-stuttgart.de},
380 skuang 3587 Date-Added = {2010-04-14 15:43:29 -0400},
381     Date-Modified = {2010-04-14 15:43:29 -0400},
382 gezelter 3594 Doc-Delivery-Number = {385SY},
383     Doi = {10.1021/jp805584d},
384     Issn = {1520-6106},
385     Journal = {J. Phys. Chem. B},
386     Journal-Iso = {J. Phys. Chem. B},
387     Keywords-Plus = {STEFAN DIFFUSION-COEFFICIENTS; MONTE-CARLO CALCULATIONS; ATOM FORCE-FIELD; SELF-DIFFUSION; DYNAMICS SIMULATION; PHASE-EQUILIBRIA; LIQUID METHANOL; TEMPERATURE-DEPENDENCE; COMPUTER-SIMULATION; MONOHYDRIC ALCOHOLS},
388     Language = {English},
389     Month = {DEC 25},
390     Number = {51},
391     Number-Of-Cited-References = {86},
392     Pages = {16664-16674},
393     Publisher = {AMER CHEMICAL SOC},
394     Subject-Category = {Chemistry, Physical},
395     Times-Cited = {5},
396     Title = {Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture},
397     Type = {Article},
398     Unique-Id = {ISI:000261835100054},
399     Volume = {112},
400     Year = {2008},
401 skuang 3587 Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp805584d%7D}}
402    
403     @article{ISI:000258460400020,
404 gezelter 3594 Abstract = {Nonequilibrium molecular dynamics simulations with the nonpolarizable
405 skuang 3587 SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the
406     polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121,
407     9549) force fields have been employed to calculate the thermal
408     conductivity and other associated properties of methane hydrate over a
409     temperature range from 30 to 260 K. The calculated results are compared
410     to experimental data over this same range. The values of the thermal
411     conductivity calculated with the COS/G2 model are closer to the
412     experimental values than are those calculated with the nonpolarizable
413     SPC/E model. The calculations match the temperature trend in the
414     experimental data at temperatures below 50 K; however, they exhibit a
415     slight decrease in thermal conductivity at higher temperatures in
416     comparison to an opposite trend in the experimental data. The
417     calculated thermal conductivity values are found to be relatively
418     insensitive to the occupancy of the cages except at low (T <= 50 K)
419     temperatures, which indicates that the differences between the two
420     lattice structures may have a more dominant role than generally thought
421     in explaining the low thermal conductivity of methane hydrate compared
422     to ice Ih. The introduction of defects into the water lattice is found
423     to cause a reduction in the thermal conductivity but to have a
424 gezelter 3594 negligible impact on its temperature dependence.},
425     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
426     Affiliation = {Jordan, KD (Reprint Author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Myshakin, Evgeniy M.; Jordan, Kenneth D.; Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol \& Mat Simulat, Pittsburgh, PA 15260 USA. {[}Myshakin, Evgeniy M.] Parsons Project Serv Inc, South Pk, PA 15129 USA.},
427 skuang 3587 Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
428     Date-Added = {2010-04-14 15:38:14 -0400},
429     Date-Modified = {2010-04-14 15:38:14 -0400},
430 gezelter 3594 Doc-Delivery-Number = {337UG},
431     Doi = {10.1021/jp802942v},
432     Funding-Acknowledgement = {E.M.M. ; National Energy Technology Laboratory's Office of Research and Development {[}41817.660.01.03]; ORISE Part-Time Faculty Program ; {[}DE-AM26-04NT41817]; {[}41817.606.06.03]},
433     Funding-Text = {We thank Drs. John Tse, Niall English, and Alan McGaughey for their comments. H.J. and K.D.J. performed this work under Contract DE-AM26-04NT41817, Subtask 41817.606.06.03, and E.M.M. performed this work under the same contract, Subtask 41817.660.01.03, in support of the National Energy Technology Laboratory's Office of Research and Development. K.D.J. was also supported at NETL by the ORISE Part-Time Faculty Program during the early stages of this work.},
434     Issn = {1520-6106},
435     Journal = {J. Phys. Chem. B},
436     Journal-Iso = {J. Phys. Chem. B},
437     Keywords-Plus = {LIQUID WATER; CLATHRATE HYDRATE; HEAT-CAPACITY; FORCE-FIELDS; ICE; ANHARMONICITY; SUMMATION; MODELS; SILICA},
438     Language = {English},
439     Month = {AUG 21},
440     Number = {33},
441     Number-Of-Cited-References = {51},
442     Pages = {10207-10216},
443     Publisher = {AMER CHEMICAL SOC},
444     Subject-Category = {Chemistry, Physical},
445     Times-Cited = {8},
446     Title = {Molecular dynamics Simulations of the thermal conductivity of methane hydrate},
447     Type = {Article},
448     Unique-Id = {ISI:000258460400020},
449     Volume = {112},
450     Year = {2008},
451 skuang 3587 Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp802942v%7D}}
452    
453 skuang 3585 @article{ISI:000184808400018,
454 gezelter 3594 Abstract = {A new non-equilibrium molecular dynamics algorithm is presented based
455 skuang 3585 on the original work of Willer-Plathe, (1997, J. chem. Phys., 106,
456     6082), for the non-equilibrium simulation of heat transport maintaining
457     fixed the total momentum as well as the total energy of the system. The
458     presented scheme preserves these properties but, unlike the original
459     algorithm, is able to deal with multicomponent systems, that is with
460     particles of different mass independently of their relative
461     concentration. The main idea behind the new procedure is to consider an
462     exchange of momentum and energy between the particles in the hot and
463     cold regions, to maintain the non-equilibrium conditions, as if they
464     undergo a hypothetical elastic collision. The new algorithm can also be
465     employed in multicomponent systems for molecular fluids and in a wide
466 gezelter 3594 range of thermodynamic conditions.},
467     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
468     Affiliation = {Nieto-Draghi, C (Reprint Author), Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain. Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Tarragona 43007, Spain.},
469 skuang 3585 Author = {Nieto-Draghi, C and Avalos, JB},
470     Date-Added = {2010-04-14 12:48:08 -0400},
471     Date-Modified = {2010-04-14 12:48:08 -0400},
472 gezelter 3594 Doc-Delivery-Number = {712QM},
473     Doi = {10.1080/0026897031000154338},
474     Issn = {0026-8976},
475     Journal = {Mol. Phys.},
476     Journal-Iso = {Mol. Phys.},
477     Keywords-Plus = {BINARY-LIQUID MIXTURES; THERMAL-CONDUCTIVITY; MATTER TRANSPORT; WATER},
478     Language = {English},
479     Month = {JUL 20},
480     Number = {14},
481     Number-Of-Cited-References = {20},
482     Pages = {2303-2307},
483     Publisher = {TAYLOR \& FRANCIS LTD},
484     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
485     Times-Cited = {13},
486     Title = {Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems},
487     Type = {Article},
488     Unique-Id = {ISI:000184808400018},
489     Volume = {101},
490     Year = {2003},
491 skuang 3585 Bdsk-Url-1 = {http://dx.doi.org/10.1080/0026897031000154338%7D}}
492    
493     @article{Bedrov:2000-1,
494 gezelter 3594 Abstract = {The thermal conductivity of liquid
495 skuang 3585 octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been
496     determined from imposed heat flux non-equilibrium molecular dynamics
497     (NEMD) simulations using a previously published quantum chemistry-based
498     atomistic potential. The thermal conductivity was determined in the
499     temperature domain 550 less than or equal to T less than or equal to
500     800 K, which corresponds approximately to the existence limits of the
501     liquid phase of HMX at atmospheric pressure. The NEMD predictions,
502     which comprise the first reported values for thermal conductivity of
503     HMX liquid, were found to be consistent with measured values for
504     crystalline HMX. The thermal conductivity of liquid HMX was found to
505     exhibit a much weaker temperature dependence than the shear viscosity
506     and self-diffusion coefficients. (C) 2000 Elsevier Science B.V. All
507 gezelter 3594 rights reserved.},
508     Address = {PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS},
509     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Mat Sci \& Engn, 122 S Cent Campus Dr,Room 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.},
510 skuang 3585 Author = {Bedrov, D and Smith, GD and Sewell, TD},
511     Date-Added = {2010-04-14 12:26:59 -0400},
512     Date-Modified = {2010-04-14 12:27:52 -0400},
513 gezelter 3594 Doc-Delivery-Number = {330PF},
514     Issn = {0009-2614},
515     Journal = {Chem. Phys. Lett.},
516     Journal-Iso = {Chem. Phys. Lett.},
517     Keywords-Plus = {FORCE-FIELD},
518     Language = {English},
519     Month = {JUN 30},
520     Number = {1-3},
521     Number-Of-Cited-References = {17},
522     Pages = {64-68},
523     Publisher = {ELSEVIER SCIENCE BV},
524     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
525     Times-Cited = {19},
526     Title = {Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations},
527     Type = {Article},
528     Unique-Id = {ISI:000087969900011},
529     Volume = {324},
530 gezelter 3609 Year = {2000}}
531 skuang 3585
532     @article{ISI:000258840700015,
533 gezelter 3594 Abstract = {By using the embedded-atom method (EAM), a series of molecular dynamics
534 skuang 3585 (MD) simulations are carried out to calculate the viscosity and
535     self-diffusion coefficient of liquid copper from the normal to the
536     undercooled states. The simulated results are in reasonable agreement
537     with the experimental values available above the melting temperature
538     that is also predicted from a solid-liquid-solid sandwich structure.
539     The relationship between the viscosity and the self-diffusion
540     coefficient is evaluated. It is found that the Stokes-Einstein and
541     Sutherland-Einstein relations qualitatively describe this relationship
542     within the simulation temperature range. However, the predicted
543     constant from MD simulation is close to 1/(3 pi), which is larger than
544 gezelter 3594 the constants of the Stokes-Einstein and Sutherland-Einstein relations.},
545     Address = {233 SPRING ST, NEW YORK, NY 10013 USA},
546     Affiliation = {Chen, M (Reprint Author), Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China. {[}Han, X. J.; Chen, M.; Lue, Y. J.] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.},
547 skuang 3585 Author = {Han, X. J. and Chen, M. and Lue, Y. J.},
548 gezelter 3594 Author-Email = {mchen@tsinghua.edu.cn},
549 skuang 3585 Date-Added = {2010-04-14 12:00:38 -0400},
550     Date-Modified = {2010-04-14 12:00:38 -0400},
551 gezelter 3594 Doc-Delivery-Number = {343GH},
552     Doi = {10.1007/s10765-008-0489-7},
553     Funding-Acknowledgement = {China Postdoctoral Science Foundation ; National Natural Science Foundation of China {[}50395101, 50371043]},
554     Funding-Text = {This work was financially supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China under grant Nos. of 50395101 and 50371043. The computations are carried out at the Tsinghua National Laboratory for Information Science and Technology, China. The authors are grateful to Mr. D. Q. Yu for valuable discussions.},
555     Issn = {0195-928X},
556     Journal = {Int. J. Thermophys.},
557     Journal-Iso = {Int. J. Thermophys.},
558     Keywords = {copper; molecular simulation; self-diffusion coefficient; viscosity; undercooled},
559     Keywords-Plus = {EMBEDDED-ATOM MODEL; THERMOPHYSICAL PROPERTIES; COMPUTER-SIMULATION; TRANSITION-METALS; SHEAR VISCOSITY; ALLOYS; TEMPERATURE; DIFFUSION; BINDING; SURFACE},
560     Language = {English},
561     Month = {AUG},
562     Number = {4},
563     Number-Of-Cited-References = {39},
564     Pages = {1408-1421},
565     Publisher = {SPRINGER/PLENUM PUBLISHERS},
566     Subject-Category = {Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied},
567     Times-Cited = {2},
568     Title = {Transport properties of undercooled liquid copper: A molecular dynamics study},
569     Type = {Article},
570     Unique-Id = {ISI:000258840700015},
571     Volume = {29},
572     Year = {2008},
573 skuang 3585 Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-008-0489-7%7D}}
574    
575     @article{Muller-Plathe:2008,
576 gezelter 3594 Abstract = {Reverse nonequilibrium molecular dynamics and equilibrium molecular
577 skuang 3585 dynamics simulations were carried out to compute the shear viscosity of
578     the pure ionic liquid system {[}bmim]{[}PF6] at 300 K. The two methods
579     yielded consistent results which were also compared to experiments. The
580     results showed that the reverse nonequilibrium molecular dynamics
581     (RNEMD) methodology can successfully be applied to computation of
582     highly viscous ionic liquids. Moreover, this study provides a
583     validation of the atomistic force-field developed by Bhargava and
584     Balasubramanian (J. Chem. Phys. 2007, 127, 114510) for dynamic
585 gezelter 3594 properties.},
586     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
587     Affiliation = {Wei, Z (Reprint Author), Tech Univ Darmstadt, Petersenstr 30, D-64287 Darmstadt, Germany. {[}Wei Zhao; Leroy, Frederic; Mueller-Plathe, Florian] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. {[}Balasubramanian, Sundaram] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chem \& Phys Mat Unit, Bangalore 560064, Karnataka, India.},
588     Author = {Wei Zhao and Leroy, Frederic and Balasubramanian, Sundaram and M\"{u}ller-Plathe, Florian},
589     Author-Email = {w.zhao@theo.chemie.tu-darmstadt.de},
590 skuang 3585 Date-Added = {2010-04-14 11:53:37 -0400},
591     Date-Modified = {2010-04-14 11:54:20 -0400},
592 gezelter 3594 Doc-Delivery-Number = {321VS},
593     Doi = {10.1021/jp8017869},
594     Issn = {1520-6106},
595     Journal = {J. Phys. Chem. B},
596     Journal-Iso = {J. Phys. Chem. B},
597     Keywords-Plus = {TRANSPORT-PROPERTIES; FORCE-FIELD; TEMPERATURE; SIMULATION; IMIDAZOLIUM; FLUIDS; MODEL; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; PYRIDINIUM; CHLORIDE},
598     Language = {English},
599     Month = {JUL 10},
600     Number = {27},
601     Number-Of-Cited-References = {49},
602     Pages = {8129-8133},
603     Publisher = {AMER CHEMICAL SOC},
604     Subject-Category = {Chemistry, Physical},
605     Times-Cited = {2},
606     Title = {Shear viscosity of the ionic liquid 1-n-butyl 3-methylimidazolium hexafluorophosphate {[}bmim]{[}PF6] computed by reverse nonequilibrium molecular dynamics},
607     Type = {Article},
608     Unique-Id = {ISI:000257335200022},
609     Volume = {112},
610     Year = {2008},
611 skuang 3585 Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp8017869%7D}}
612    
613     @article{Muller-Plathe:2002,
614 gezelter 3594 Abstract = {The reverse nonequilibrium molecular dynamics {[}F. Muller-Plathe,
615 skuang 3585 Phys. Rev. E 49, 359 (1999)] presented for the calculation of the shear
616     viscosity of Lennard-Jones liquids has been extended to atomistic
617     models of molecular liquids. The method is improved to overcome the
618     problems due to the detailed molecular models. The new technique is
619     besides a test with a Lennard-Jones fluid, applied on different
620     realistic systems: liquid nitrogen, water, and hexane, in order to
621     cover a large range of interactions and systems/architectures. We show
622     that all the advantages of the method itemized previously are still
623     valid, and that it has a very good efficiency and accuracy making it
624 gezelter 3594 very competitive. (C) 2002 American Institute of Physics.},
625     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
626     Affiliation = {Bordat, P (Reprint Author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymer Res, D-55128 Mainz, Germany.},
627     Author = {Bordat, P and M\"{u}ller-Plathe, F},
628 skuang 3585 Date-Added = {2010-04-14 11:34:42 -0400},
629     Date-Modified = {2010-04-14 11:35:35 -0400},
630 gezelter 3594 Doc-Delivery-Number = {521QV},
631     Doi = {10.1063/1.1436124},
632     Issn = {0021-9606},
633     Journal = {J. Chem. Phys.},
634     Journal-Iso = {J. Chem. Phys.},
635     Keywords-Plus = {TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; LIQUID ALKANES; N-HEPTADECANE; SIMULATION; WATER; FLOW; MIXTURES; BUTANE; NITROGEN},
636     Language = {English},
637     Month = {FEB 22},
638     Number = {8},
639     Number-Of-Cited-References = {47},
640     Pages = {3362-3369},
641     Publisher = {AMER INST PHYSICS},
642     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
643     Times-Cited = {33},
644     Title = {The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics},
645     Type = {Article},
646     Unique-Id = {ISI:000173853600023},
647     Volume = {116},
648     Year = {2002},
649 skuang 3585 Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1436124%7D}}
650    
651 skuang 3580 @article{ISI:000207079300006,
652 skuang 3585 Abstract = {Non-equilibrium Molecular Dynamics Simulation
653 gezelter 3583 methods have been used to study the ability of
654     Embedded Atom Method models of the metals copper and
655     gold to reproduce the equilibrium and
656     non-equilibrium behavior of metals at a stationary
657     and at a moving solid/liquid interface. The
658     equilibrium solid/vapor interface was shown to
659     display a simple termination of the bulk until the
660     temperature of the solid reaches approximate to 90\%
661     of the bulk melting point. At and above such
662     temperatures the systems exhibit a surface
663     disodering known as surface melting. Non-equilibrium
664     simulations emulating the action of a picosecond
665     laser on the metal were performed to determine the
666     regrowth velocity. For copper, the action of a 20 ps
667     laser with an absorbed energy of 2-5 mJ/cm(2)
668     produced a regrowth velocity of 83-100 m/s, in
669     reasonable agreement with the value obtained by
670     experiment (>60 m/s). For gold, similar conditions
671     produced a slower regrowth velocity of 63 m/s at an
672     absorbed energy of 5 mJ/cm(2). This is almost a
673     factor of two too low in comparison to experiment
674     (>100 m/s). The regrowth velocities of the metals
675     seems unexpectedly close to experiment considering
676     that the free-electron contribution is ignored in
677     the Embeeded Atom Method models used.},
678 skuang 3585 Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
679     Affiliation = {Clancy, P (Reprint Author), Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA.},
680     Author = {Richardson, Clifton F. and Clancy, Paulette},
681     Date-Added = {2010-04-07 11:24:36 -0400},
682     Date-Modified = {2010-04-07 11:24:36 -0400},
683     Doc-Delivery-Number = {V04SY},
684     Issn = {0892-7022},
685 gezelter 3594 Journal = {Mol. Simul.},
686 skuang 3585 Journal-Iso = {Mol. Simul.},
687     Keywords = {Non-equilibrium computer simulation; molecular dynamics; crystal growth; Embedded Atom Method models of metals},
688     Language = {English},
689     Number = {5-6},
690     Number-Of-Cited-References = {36},
691     Pages = {335-355},
692     Publisher = {TAYLOR \& FRANCIS LTD},
693     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
694     Times-Cited = {7},
695     Title = {PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A COMPUTER SIMULATION STUDY},
696     Type = {Article},
697     Unique-Id = {ISI:000207079300006},
698     Volume = {7},
699     Year = {1991}}
700 skuang 3580
701 skuang 3573 @article{ISI:000167766600035,
702 skuang 3585 Abstract = {Molecular dynamics simulations are used to
703 gezelter 3583 investigate the separation of water films adjacent
704     to a hot metal surface. The simulations clearly show
705     that the water layers nearest the surface overheat
706     and undergo explosive boiling. For thick films, the
707     expansion of the vaporized molecules near the
708     surface forces the outer water layers to move away
709     from the surface. These results are of interest for
710     mass spectrometry of biological molecules, steam
711     cleaning of surfaces, and medical procedures.},
712 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
713     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
714     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
715     Date-Added = {2010-03-11 15:32:14 -0500},
716     Date-Modified = {2010-03-11 15:32:14 -0500},
717     Doc-Delivery-Number = {416ED},
718     Issn = {1089-5639},
719     Journal = {J. Phys. Chem. A},
720     Journal-Iso = {J. Phys. Chem. A},
721     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
722     Language = {English},
723     Month = {MAR 29},
724     Number = {12},
725     Number-Of-Cited-References = {65},
726     Pages = {2748-2755},
727     Publisher = {AMER CHEMICAL SOC},
728     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
729     Times-Cited = {66},
730     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
731     Type = {Article},
732     Unique-Id = {ISI:000167766600035},
733     Volume = {105},
734     Year = {2001}}
735 skuang 3573
736 skuang 3585 @article{Maginn:2010,
737     Abstract = {The reverse nonequilibrium molecular dynamics
738 gezelter 3583 (RNEMD) method calculates the shear viscosity of a
739     fluid by imposing a nonphysical exchange of momentum
740     and measuring the resulting shear velocity
741     gradient. In this study we investigate the range of
742     momentum flux values over which RNEMD yields usable
743     (linear) velocity gradients. We find that nonlinear
744     velocity profiles result primarily from gradients in
745     fluid temperature and density. The temperature
746     gradient results from conversion of heat into bulk
747     kinetic energy, which is transformed back into heat
748     elsewhere via viscous heating. An expression is
749     derived to predict the temperature profile resulting
750     from a specified momentum flux for a given fluid and
751     simulation cell. Although primarily bounded above,
752     we also describe milder low-flux limitations. RNEMD
753     results for a Lennard-Jones fluid agree with
754     equilibrium molecular dynamics and conventional
755     nonequilibrium molecular dynamics calculations at
756     low shear, but RNEMD underpredicts viscosity
757     relative to conventional NEMD at high shear.},
758 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
759     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
760     Article-Number = {014103},
761     Author = {Tenney, Craig M. and Maginn, Edward J.},
762     Author-Email = {ed@nd.edu},
763     Date-Added = {2010-03-09 13:08:41 -0500},
764     Date-Modified = {2010-04-14 12:51:13 -0400},
765     Doc-Delivery-Number = {542DQ},
766     Doi = {10.1063/1.3276454},
767     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
768     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
769     Issn = {0021-9606},
770     Journal = {J. Chem. Phys.},
771     Journal-Iso = {J. Chem. Phys.},
772     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
773     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
774     Language = {English},
775     Month = {JAN 7},
776     Number = {1},
777     Number-Of-Cited-References = {20},
778     Publisher = {AMER INST PHYSICS},
779     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
780     Times-Cited = {0},
781     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
782     Type = {Article},
783     Unique-Id = {ISI:000273472300004},
784     Volume = {132},
785     Year = {2010},
786     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
787 skuang 3565
788 skuang 3582 @article{Clancy:1992,
789 skuang 3585 Abstract = {The regrowth velocity of a crystal from a melt
790 gezelter 3583 depends on contributions from the thermal
791     conductivity, heat gradient, and latent heat. The
792     relative contributions of these terms to the
793     regrowth velocity of the pure metals copper and gold
794     during liquid-phase epitaxy are evaluated. These
795     results are used to explain how results from
796     previous nonequilibrium molecular-dynamics
797     simulations using classical potentials are able to
798     predict regrowth velocities that are close to the
799     experimental values. Results from equilibrium
800     molecular dynamics showing the nature of the
801     solid-vapor interface of an
802     embedded-atom-method-modeled Cu57Ni43 alloy at a
803     temperature corresponding to 62\% of the melting
804     point are presented. The regrowth of this alloy
805     following a simulation of a laser-processing
806     experiment is also given, with use of nonequilibrium
807     molecular-dynamics techniques. The thermal
808     conductivity and temperature gradient in the
809     simulation of the alloy are compared to those for
810     the pure metals.},
811 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
812     Affiliation = {CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.},
813     Author = {Richardson, C.~F. and Clancy, P},
814     Date-Added = {2010-01-12 16:17:33 -0500},
815     Date-Modified = {2010-04-08 17:18:25 -0400},
816     Doc-Delivery-Number = {HX378},
817     Issn = {0163-1829},
818     Journal = {Phys. Rev. B},
819     Journal-Iso = {Phys. Rev. B},
820     Keywords-Plus = {SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI},
821     Language = {English},
822     Month = {JUN 1},
823     Number = {21},
824     Number-Of-Cited-References = {24},
825     Pages = {12260-12268},
826     Publisher = {AMERICAN PHYSICAL SOC},
827     Subject-Category = {Physics, Condensed Matter},
828     Times-Cited = {11},
829     Title = {CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS},
830     Type = {Article},
831     Unique-Id = {ISI:A1992HX37800010},
832     Volume = {45},
833     Year = {1992}}
834 skuang 3563
835 skuang 3585 @article{Bedrov:2000,
836     Abstract = {We have applied a new nonequilibrium molecular
837 gezelter 3583 dynamics (NEMD) method {[}F. Muller-Plathe,
838     J. Chem. Phys. 106, 6082 (1997)] previously applied
839     to monatomic Lennard-Jones fluids in the
840     determination of the thermal conductivity of
841     molecular fluids. The method was modified in order
842     to be applicable to systems with holonomic
843     constraints. Because the method involves imposing a
844     known heat flux it is particularly attractive for
845     systems involving long-range and many-body
846     interactions where calculation of the microscopic
847     heat flux is difficult. The predicted thermal
848     conductivities of liquid n-butane and water using
849     the imposed-flux NEMD method were found to be in a
850     good agreement with previous simulations and
851     experiment. (C) 2000 American Institute of
852     Physics. {[}S0021-9606(00)50841-1].},
853 skuang 3585 Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
854     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
855     Author = {Bedrov, D and Smith, GD},
856     Date-Added = {2009-11-05 18:21:18 -0500},
857     Date-Modified = {2010-04-14 11:50:48 -0400},
858     Doc-Delivery-Number = {369BF},
859     Issn = {0021-9606},
860     Journal = {J. Chem. Phys.},
861     Journal-Iso = {J. Chem. Phys.},
862     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
863     Language = {English},
864     Month = {NOV 8},
865     Number = {18},
866     Number-Of-Cited-References = {26},
867     Pages = {8080-8084},
868     Publisher = {AMER INST PHYSICS},
869     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
870     Times-Cited = {23},
871     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
872     Type = {Article},
873     Unique-Id = {ISI:000090151400044},
874     Volume = {113},
875     Year = {2000}}
876 skuang 3563
877     @article{ISI:000231042800044,
878 skuang 3585 Abstract = {The reverse nonequilibrium molecular dynamics
879 gezelter 3583 method for thermal conductivities is adapted to the
880     investigation of molecular fluids. The method
881     generates a heat flux through the system by suitably
882     exchanging velocities of particles located in
883     different regions. From the resulting temperature
884     gradient, the thermal conductivity is then
885     calculated. Different variants of the algorithm and
886     their combinations with other system parameters are
887     tested: exchange of atomic velocities versus
888     exchange of molecular center-of-mass velocities,
889     different exchange frequencies, molecular models
890     with bond constraints versus models with flexible
891     bonds, united-atom versus all-atom models, and
892     presence versus absence of a thermostat. To help
893     establish the range of applicability, the algorithm
894     is tested on different models of benzene,
895     cyclohexane, water, and n-hexane. We find that the
896     algorithm is robust and that the calculated thermal
897     conductivities are insensitive to variations in its
898     control parameters. The force field, in contrast,
899     has a major influence on the value of the thermal
900     conductivity. While calculated and experimental
901     thermal conductivities fall into the same order of
902     magnitude, in most cases the calculated values are
903     systematically larger. United-atom force fields seem
904     to do better than all-atom force fields, possibly
905     because they remove high-frequency degrees of
906     freedom from the simulation, which, in nature, are
907     quantum-mechanical oscillators in their ground state
908     and do not contribute to heat conduction.},
909 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
910     Affiliation = {Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.},
911     Author = {Zhang, MM and Lussetti, E and de Souza, LES and M\"{u}ller-Plathe, F},
912     Date-Added = {2009-11-05 18:17:33 -0500},
913     Date-Modified = {2009-11-05 18:17:33 -0500},
914     Doc-Delivery-Number = {952YQ},
915     Doi = {10.1021/jp0512255},
916     Issn = {1520-6106},
917     Journal = {J. Phys. Chem. B},
918     Journal-Iso = {J. Phys. Chem. B},
919     Keywords-Plus = {LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION},
920     Language = {English},
921     Month = {AUG 11},
922     Number = {31},
923     Number-Of-Cited-References = {42},
924     Pages = {15060-15067},
925     Publisher = {AMER CHEMICAL SOC},
926     Subject-Category = {Chemistry, Physical},
927     Times-Cited = {17},
928     Title = {Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics},
929     Type = {Article},
930     Unique-Id = {ISI:000231042800044},
931     Volume = {109},
932     Year = {2005},
933     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
934 skuang 3563
935     @article{ISI:A1997YC32200056,
936 skuang 3585 Abstract = {Equilibrium molecular dynamics simulations have
937 gezelter 3583 been carried out in the microcanonical ensemble at
938     300 and 255 K on the extended simple point charge
939     (SPC/E) model of water {[}Berendsen et al.,
940     J. Phys. Chem. 91, 6269 (1987)]. In addition to a
941     number of static and dynamic properties, thermal
942     conductivity lambda has been calculated via
943     Green-Kubo integration of the heat current time
944     correlation functions (CF's) in the atomic and
945     molecular formalism, at wave number k=0. The
946     calculated values (0.67 +/- 0.04 W/mK at 300 K and
947     0.52 +/- 0.03 W/mK at 255 K) are in good agreement
948     with the experimental data (0.61 W/mK at 300 K and
949     0.49 W/mK at 255 K). A negative long-time tail of
950     the heat current CF, more apparent at 255 K, is
951     responsible for the anomalous decrease of lambda
952     with temperature. An analysis of the dynamical modes
953     contributing to lambda has shown that its value is
954     due to two low-frequency exponential-like modes, a
955     faster collisional mode, with positive contribution,
956     and a slower one, which determines the negative
957     long-time tail. A comparison of the molecular and
958     atomic spectra of the heat current CF has suggested
959     that higher-frequency modes should not contribute to
960     lambda in this temperature range. Generalized
961     thermal diffusivity D-T(k) decreases as a function
962     of k, after an initial minor increase at k =
963     k(min). The k dependence of the generalized
964     thermodynamic properties has been calculated in the
965     atomic and molecular formalisms. The observed
966     differences have been traced back to intramolecular
967     or intermolecular rotational effects and related to
968     the partial structure functions. Finally, from the
969     results we calculated it appears that the SPC/E
970     model gives results in better agreement with
971     experimental data than the transferable
972     intermolecular potential with four points TIP4P
973     water model {[}Jorgensen et al., J. Chem. Phys. 79,
974     926 (1983)], with a larger improvement for, e.g.,
975     diffusion, viscosities, and dielectric properties
976     and a smaller one for thermal conductivity. The
977     SPC/E model shares, to a smaller extent, the
978     insufficient slowing down of dynamics at low
979     temperature already found for the TIP4P water
980     model.},
981 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
982     Affiliation = {UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.},
983     Author = {Bertolini, D and Tani, A},
984     Date-Added = {2009-10-30 15:41:21 -0400},
985     Date-Modified = {2009-10-30 15:41:21 -0400},
986     Doc-Delivery-Number = {YC322},
987     Issn = {1063-651X},
988     Journal = {Phys. Rev. E},
989     Journal-Iso = {Phys. Rev. E},
990     Keywords-Plus = {TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS},
991     Language = {English},
992     Month = {OCT},
993     Number = {4},
994     Number-Of-Cited-References = {35},
995     Pages = {4135-4151},
996     Publisher = {AMERICAN PHYSICAL SOC},
997     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
998     Times-Cited = {18},
999     Title = {Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results},
1000     Type = {Article},
1001     Unique-Id = {ISI:A1997YC32200056},
1002     Volume = {56},
1003     Year = {1997}}
1004 skuang 3563
1005 skuang 3532 @article{Meineke:2005gd,
1006 skuang 3585 Abstract = {OOPSE is a new molecular dynamics simulation program
1007 gezelter 3583 that is capable of efficiently integrating equations
1008     of motion for atom types with orientational degrees
1009     of freedom (e.g. #sticky# atoms and point
1010     dipoles). Transition metals can also be simulated
1011     using the embedded atom method (EAM) potential
1012     included in the code. Parallel simulations are
1013     carried out using the force-based decomposition
1014     method. Simulations are specified using a very
1015     simple C-based meta-data language. A number of
1016     advanced integrators are included, and the basic
1017     integrator for orientational dynamics provides
1018     substantial improvements over older quaternion-based
1019     schemes.},
1020 skuang 3585 Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1021     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1022     Date-Added = {2009-10-01 18:43:03 -0400},
1023     Date-Modified = {2010-04-13 09:11:16 -0400},
1024     Doi = {DOI 10.1002/jcc.20161},
1025     Isi = {000226558200006},
1026     Isi-Recid = {142688207},
1027     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1028     Journal = {J. Comp. Chem.},
1029     Keywords = {OOPSE; molecular dynamics},
1030     Month = feb,
1031     Number = {3},
1032     Pages = {252-271},
1033     Publisher = {JOHN WILEY \& SONS INC},
1034     Times-Cited = {9},
1035     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
1036     Volume = {26},
1037     Year = {2005},
1038     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1039     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1040 skuang 3532
1041     @article{ISI:000080382700030,
1042 skuang 3585 Abstract = {A nonequilibrium method for calculating the shear
1043 gezelter 3583 viscosity is presented. It reverses the
1044     cause-and-effect picture customarily used in
1045     nonequilibrium molecular dynamics: the effect, the
1046     momentum flux or stress, is imposed, whereas the
1047     cause, the velocity gradient or shear rate, is
1048     obtained from the simulation. It differs from other
1049     Norton-ensemble methods by the way in which the
1050     steady-state momentum flux is maintained. This
1051     method involves a simple exchange of particle
1052     momenta, which is easy to implement. Moreover, it
1053     can be made to conserve the total energy as well as
1054     the total linear momentum, so no coupling to an
1055     external temperature bath is needed. The resulting
1056     raw data, the velocity profile, is a robust and
1057     rapidly converging property. The method is tested on
1058     the Lennard-Jones fluid near its triple point. It
1059     yields a viscosity of 3.2-3.3, in Lennard-Jones
1060     reduced units, in agreement with literature
1061     results. {[}S1063-651X(99)03105-0].},
1062 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1063     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1064     Author = {M\"{u}ller-Plathe, F},
1065     Date-Added = {2009-10-01 14:07:30 -0400},
1066     Date-Modified = {2009-10-01 14:07:30 -0400},
1067     Doc-Delivery-Number = {197TX},
1068     Issn = {1063-651X},
1069     Journal = {Phys. Rev. E},
1070     Journal-Iso = {Phys. Rev. E},
1071     Language = {English},
1072     Month = {MAY},
1073     Number = {5, Part A},
1074     Number-Of-Cited-References = {17},
1075     Pages = {4894-4898},
1076     Publisher = {AMERICAN PHYSICAL SOC},
1077     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1078     Times-Cited = {57},
1079     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
1080     Type = {Article},
1081     Unique-Id = {ISI:000080382700030},
1082     Volume = {59},
1083     Year = {1999}}
1084 skuang 3532
1085 skuang 3585 @article{Maginn:2007,
1086     Abstract = {Atomistic simulations are conducted to examine the
1087 gezelter 3583 dependence of the viscosity of
1088     1-ethyl-3-methylimidazolium
1089     bis(trifluoromethanesulfonyl)imide on temperature
1090     and water content. A nonequilibrium molecular
1091     dynamics procedure is utilized along with an
1092     established fixed charge force field. It is found
1093     that the simulations quantitatively capture the
1094     temperature dependence of the viscosity as well as
1095     the drop in viscosity that occurs with increasing
1096     water content. Using mixture viscosity models, we
1097     show that the relative drop in viscosity with water
1098     content is actually less than that that would be
1099     predicted for an ideal system. This finding is at
1100     odds with the popular notion that small amounts of
1101     water cause an unusually large drop in the viscosity
1102     of ionic liquids. The simulations suggest that, due
1103     to preferential association of water with anions and
1104     the formation of water clusters, the excess molar
1105     volume is negative. This means that dissolved water
1106     is actually less effective at lowering the viscosity
1107     of these mixtures when compared to a solute obeying
1108     ideal mixing behavior. The use of a nonequilibrium
1109     simulation technique enables diffusive behavior to
1110     be observed on the time scale of the simulations,
1111     and standard equilibrium molecular dynamics resulted
1112     in sub-diffusive behavior even over 2 ns of
1113     simulation time.},
1114 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1115     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1116     Author = {Kelkar, Manish S. and Maginn, Edward J.},
1117     Author-Email = {ed@nd.edu},
1118     Date-Added = {2009-09-29 17:07:17 -0400},
1119     Date-Modified = {2010-04-14 12:51:02 -0400},
1120     Doc-Delivery-Number = {163VA},
1121     Doi = {10.1021/jp0686893},
1122     Issn = {1520-6106},
1123     Journal = {J. Phys. Chem. B},
1124     Journal-Iso = {J. Phys. Chem. B},
1125     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
1126     Language = {English},
1127     Month = {MAY 10},
1128     Number = {18},
1129     Number-Of-Cited-References = {57},
1130     Pages = {4867-4876},
1131     Publisher = {AMER CHEMICAL SOC},
1132     Subject-Category = {Chemistry, Physical},
1133     Times-Cited = {35},
1134     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
1135     Type = {Article},
1136     Unique-Id = {ISI:000246190100032},
1137     Volume = {111},
1138     Year = {2007},
1139     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D},
1140     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0686893}}
1141 skuang 3528
1142 skuang 3527 @article{MullerPlathe:1997xw,
1143 skuang 3585 Abstract = {A nonequilibrium molecular dynamics method for
1144 gezelter 3583 calculating the thermal conductivity is
1145     presented. It reverses the usual cause and effect
1146     picture. The ''effect,'' the heat flux, is imposed
1147     on the system and the ''cause,'' the temperature
1148     gradient is obtained from the simulation. Besides
1149     being very simple to implement, the scheme offers
1150     several advantages such as compatibility with
1151     periodic boundary conditions, conservation of total
1152     energy and total linear momentum, and the sampling
1153     of a rapidly converging quantity (temperature
1154     gradient) rather than a slowly converging one (heat
1155     flux). The scheme is tested on the Lennard-Jones
1156     fluid. (C) 1997 American Institute of Physics.},
1157 skuang 3585 Address = {WOODBURY},
1158     Author = {M\"{u}ller-Plathe, F.},
1159     Cited-Reference-Count = {13},
1160     Date = {APR 8},
1161     Date-Added = {2009-09-21 16:51:21 -0400},
1162     Date-Modified = {2009-09-21 16:51:21 -0400},
1163     Document-Type = {Article},
1164     Isi = {ISI:A1997WR62000032},
1165     Isi-Document-Delivery-Number = {WR620},
1166     Iso-Source-Abbreviation = {J. Chem. Phys.},
1167     Issn = {0021-9606},
1168     Journal = {J. Chem. Phys.},
1169     Language = {English},
1170     Month = {Apr},
1171     Number = {14},
1172     Page-Count = {4},
1173     Pages = {6082--6085},
1174     Publication-Type = {J},
1175     Publisher = {AMER INST PHYSICS},
1176     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1177     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1178     Source = {J CHEM PHYS},
1179     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1180     Times-Cited = {106},
1181     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
1182     Volume = {106},
1183     Year = {1997}}
1184 skuang 3527
1185     @article{Muller-Plathe:1999ek,
1186 skuang 3585 Abstract = {A novel non-equilibrium method for calculating
1187 gezelter 3583 transport coefficients is presented. It reverses the
1188     experimental cause-and-effect picture, e.g. for the
1189     calculation of viscosities: the effect, the momentum
1190     flux or stress, is imposed, whereas the cause, the
1191     velocity gradient or shear rates, is obtained from
1192     the simulation. It differs from other
1193     Norton-ensemble methods by the way, in which the
1194     steady-state fluxes are maintained. This method
1195     involves a simple exchange of particle momenta,
1196     which is easy to implement and to analyse. Moreover,
1197     it can be made to conserve the total energy as well
1198     as the total linear momentum, so no thermostatting
1199     is needed. The resulting raw data are robust and
1200     rapidly converging. The method is tested on the
1201     calculation of the shear viscosity, the thermal
1202     conductivity and the Soret coefficient (thermal
1203     diffusion) for the Lennard-Jones (LJ) fluid near its
1204     triple point. Possible applications to other
1205     transport coefficients and more complicated systems
1206     are discussed. (C) 1999 Elsevier Science Ltd. All
1207     rights reserved.},
1208 skuang 3585 Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
1209     Author = {M\"{u}ller-Plathe, F and Reith, D},
1210     Date-Added = {2009-09-21 16:47:07 -0400},
1211     Date-Modified = {2009-09-21 16:47:07 -0400},
1212     Isi = {000082266500004},
1213     Isi-Recid = {111564960},
1214     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
1215     Journal = {Computational and Theoretical Polymer Science},
1216     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
1217     Number = {3-4},
1218     Pages = {203-209},
1219     Publisher = {ELSEVIER SCI LTD},
1220     Times-Cited = {15},
1221     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
1222     Volume = {9},
1223     Year = {1999},
1224     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
1225 skuang 3527
1226     @article{Viscardy:2007lq,
1227 skuang 3585 Abstract = {The thermal conductivity is calculated with the
1228 gezelter 3583 Helfand-moment method in the Lennard-Jones fluid
1229     near the triple point. The Helfand moment of thermal
1230     conductivity is here derived for molecular dynamics
1231     with periodic boundary conditions. Thermal
1232     conductivity is given by a generalized Einstein
1233     relation with this Helfand moment. The authors
1234     compute thermal conductivity by this new method and
1235     compare it with their own values obtained by the
1236     standard Green-Kubo method. The agreement is
1237     excellent. (C) 2007 American Institute of Physics.},
1238 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1239     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1240     Date-Added = {2009-09-21 16:37:20 -0400},
1241     Date-Modified = {2009-09-21 16:37:20 -0400},
1242     Doi = {DOI 10.1063/1.2724821},
1243     Isi = {000246453900035},
1244     Isi-Recid = {156192451},
1245     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
1246     Journal = {J. Chem. Phys.},
1247     Month = may,
1248     Number = {18},
1249     Publisher = {AMER INST PHYSICS},
1250     Times-Cited = {3},
1251     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
1252     Volume = {126},
1253     Year = {2007},
1254     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035},
1255     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724821}}
1256 skuang 3527
1257     @article{Viscardy:2007bh,
1258 skuang 3585 Abstract = {The authors propose a new method, the Helfand-moment
1259 gezelter 3583 method, to compute the shear viscosity by
1260     equilibrium molecular dynamics in periodic
1261     systems. In this method, the shear viscosity is
1262     written as an Einstein-type relation in terms of the
1263     variance of the so-called Helfand moment. This
1264     quantity is modified in order to satisfy systems
1265     with periodic boundary conditions usually considered
1266     in molecular dynamics. They calculate the shear
1267     viscosity in the Lennard-Jones fluid near the triple
1268     point thanks to this new technique. They show that
1269     the results of the Helfand-moment method are in
1270     excellent agreement with the results of the standard
1271     Green-Kubo method. (C) 2007 American Institute of
1272     Physics.},
1273 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1274     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1275     Date-Added = {2009-09-21 16:37:19 -0400},
1276     Date-Modified = {2009-09-21 16:37:19 -0400},
1277     Doi = {DOI 10.1063/1.2724820},
1278     Isi = {000246453900034},
1279     Isi-Recid = {156192449},
1280     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
1281     Journal = {J. Chem. Phys.},
1282     Month = may,
1283     Number = {18},
1284     Publisher = {AMER INST PHYSICS},
1285     Times-Cited = {1},
1286     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
1287     Volume = {126},
1288     Year = {2007},
1289     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034},
1290     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724820}}