ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nivsRnemd/nivsRnemd.bib
Revision: 3625
Committed: Fri Aug 6 21:28:26 2010 UTC (14 years, 1 month ago) by gezelter
File size: 79715 byte(s)
Log Message:
lots of changes

File Contents

# User Rev Content
1 skuang 3527 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 gezelter 3625 %% Created for Dan Gezelter at 2010-08-06 17:28:05 -0400
6 skuang 3527
7    
8 gezelter 3625 %% Saved with string encoding Unicode (UTF-8)
9 skuang 3527
10    
11    
12 gezelter 3625 @article{RevModPhys.61.605,
13     Author = {Swartz, E. T. and Pohl, R. O.},
14     Date-Added = {2010-08-06 17:03:01 -0400},
15     Date-Modified = {2010-08-06 17:03:01 -0400},
16     Doi = {10.1103/RevModPhys.61.605},
17     Journal = {Rev. Mod. Phys.},
18     Month = {Jul},
19     Number = {3},
20     Numpages = {63},
21     Pages = {605--668},
22     Publisher = {American Physical Society},
23     Title = {Thermal boundary resistance},
24     Volume = {61},
25     Year = {1989},
26     Bdsk-Url-1 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
27    
28     @article{cahill:793,
29     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
30     Date-Added = {2010-08-06 17:02:22 -0400},
31     Date-Modified = {2010-08-06 17:02:22 -0400},
32     Doi = {10.1063/1.1524305},
33     Journal = {Journal of Applied Physics},
34     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
35     Number = {2},
36     Pages = {793-818},
37     Publisher = {AIP},
38     Title = {Nanoscale thermal transport},
39     Url = {http://link.aip.org/link/?JAP/93/793/1},
40     Volume = {93},
41     Year = {2003},
42     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
43     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
44    
45 gezelter 3616 @inbook{Hoffman:2001sf,
46     Address = {New York},
47 skuang 3613 Annote = {LDR 01107cam 2200253 a 4500
48     001 12358442
49     005 20070910074423.0
50     008 010326s2001 nyua b 001 0 eng
51     906 $a7$bcbc$corignew$d1$eocip$f20$gy-gencatlg
52     925 0 $aacquire$b2 shelf copies$xpolicy default
53     955 $ato ASCD pc23 03-26-01; jp20 03-27-01 to subj; jp99 to SL 03-27-01; jp85 to Dewey 03-27-01; aa01 03-28-01$aps02 2001-10-04 bk rec'd, to CIP ver.;$fpv04 2001-10-31 CIP ver to BCCD$ajp01 2001-12-06 c. 2 to BCCD
54     010 $a 2001028633
55     020 $a0824704436 (acid-free paper)
56     040 $aDLC$cDLC$dDLC
57     050 00 $aQA297$b.H588 2001
58     082 00 $a519.4$221
59     100 1 $aHoffman, Joe D.,$d1934-
60     245 10 $aNumerical methods for engineers and scientists /$cJoe D. Hoffman.
61     250 $a2nd ed., rev. and expanded.
62     260 $aNew York :$bMarcel Dekker,$cc2001.
63     300 $axi, 823 p. :$bill. ;$c26 cm.
64     504 $aIncludes bibliographical references (p. 775-777) and index.
65     650 0 $aNumerical analysis.
66     856 42 $3Publisher description$uhttp://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html
67     },
68     Author = {Hoffman, Joe D.},
69     Call-Number = {QA297},
70     Date-Added = {2010-07-15 16:32:02 -0400},
71 skuang 3617 Date-Modified = {2010-07-19 16:49:37 -0400},
72 skuang 3613 Dewey-Call-Number = {519.4},
73     Edition = {2nd ed., rev. and expanded},
74     Genre = {Numerical analysis},
75     Isbn = {0824704436 (acid-free paper)},
76     Library-Id = {2001028633},
77 skuang 3617 Pages = {157},
78 skuang 3613 Publisher = {Marcel Dekker},
79 gezelter 3616 Title = {Numerical methods for engineers and scientists},
80 skuang 3613 Url = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html},
81     Year = {2001},
82     Bdsk-Url-1 = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html}}
83    
84 gezelter 3609 @article{Vardeman:2008fk,
85     Abstract = {Using molecular dynamics simulations, we have simulated the rapid cooling experienced by bimetallic nanoparticles following laser excitation at the plasmon resonance and find evidence that glassy beads, specifically Ag-Cu bimetallic particles at the eutectic composition (60\% Ag, 40\% Cu), can be formed during these experiments. The bimetallic nanoparticles are embedded in an implicit solvent with a viscosity tuned to yield cooling curves that match the experimental cooling behavior as closely as possible. Because the nanoparticles have a large surface-to-volume ratio, experimentally realistic cooling rates are accessible via relatively short simulations. The presence of glassy structural features was verified using bond orientational order parameters that are sensitive to the formation of local icosahedral ordering in condensed phases. As the particles cool from the liquid droplet state into glassy beads, a silver-rich monolayer develops on the outer surface and local icosahedra can develop around the silver atoms in this monolayer. However, we observe a strong preference for the local icosahedral ordering around the copper atoms in the particles. As the particles cool, these local icosahedral structures grow to include a larger fraction of the atoms in the nanoparticle, eventually leading to a glassy nanosphere.},
86     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
87 gezelter 3616 Author = {{Vardeman II}, Charles F. and Gezelter, J. Daniel},
88 gezelter 3609 Date-Added = {2010-07-13 11:48:22 -0400},
89 gezelter 3616 Date-Modified = {2010-07-19 16:20:01 -0400},
90 gezelter 3609 Doi = {DOI 10.1021/jp710063g},
91     Isi = {000253512400021},
92     Isi-Recid = {160903603},
93     Isi-Ref-Recids = {144152922 81445483 98913099 146167982 55512304 50985260 52031423 29272311 151055545 134895634 130292830 101988637 100757730 98524559 123952006 6025131 59492217 2078548 135495737 136941603 90709964 160903604 130558416 113800688 30137926 117888234 63632785 38926953 158293976 135246439 125693419 125789026 155583142 156430464 65888620 130160487 97576420 109490154 150229560 116057234 134425927 142869781 121706070 89390336 119150946 143383743 64066027 171282998 142688207 51429664 84591083 127696312 58160909 155366996 155654757 137551818 128633299 109033408 120457571 171282999 124947095 126857514 49630702 64115284 84689627 71842426 96309965 79034659 92658330 146168029 119238036 144824430 132319357 160903607 171283000 100274448},
94     Journal = {Journal of Physical Chemistry C},
95     Month = mar,
96     Number = {9},
97     Pages = {3283-3293},
98     Publisher = {AMER CHEMICAL SOC},
99     Times-Cited = {0},
100     Title = {Simulations of laser-induced glass formation in Ag-Cu nanoparticles},
101     Volume = {112},
102     Year = {2008},
103     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000253512400021}}
104    
105     @article{PhysRevB.59.3527,
106     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
107     Date-Added = {2010-07-13 11:44:08 -0400},
108     Date-Modified = {2010-07-13 11:44:08 -0400},
109     Doi = {10.1103/PhysRevB.59.3527},
110     Journal = {Phys. Rev. B},
111     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
112     Month = {Feb},
113     Number = {5},
114     Numpages = {6},
115     Pages = {3527-3533},
116     Publisher = {American Physical Society},
117     Title = {Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:\quad{}{C}u-{A}g and {C}u-{N}i},
118     Volume = {59},
119     Year = {1999},
120     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
121    
122     @article{Medasani:2007uq,
123     Abstract = {We employ first-principles and empirical computational methods to study the surface energy and surface stress of silver nanoparticles. The structures, cohesive energies, and lattice contractions of spherical Ag nanoclusters in the size range 0.5-5.5 nm are analyzed using two different theoretical approaches: an ab initio density functional pseudopotential technique combined with the generalized gradient approximation and the embedded atom method. The surface energies and stresses obtained via the embedded atom method are found to be in good agreement with those predicted by the gradient-corrected ab initio density functional formalism. We estimate the surface energy of Ag nanoclusters to be in the range of 1.0-2.2 J/m(2). Our values are close to the bulk surface energy of silver, but are significantly lower than the recently reported value of 7.2 J/m(2) for free Ag nanoparticles derived from the Kelvin equation.},
124     Author = {Medasani, Bharat and Park, Young Ho and Vasiliev, Igor},
125     Date-Added = {2010-07-13 11:43:15 -0400},
126     Date-Modified = {2010-07-13 11:43:15 -0400},
127     Doi = {ARTN 235436},
128     Journal = {Phys. Rev. B},
129     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_75_235436.pdf},
130     Title = {Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles},
131     Volume = {75},
132     Year = {2007},
133     Bdsk-Url-1 = {http://dx.doi.org/235436}}
134    
135     @article{Wang:2005qy,
136     Abstract = {The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 atom \%. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5-14 atom \% higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertexes of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.},
137     Author = {Wang, GF and Van Hove, MA and Ross, PN and Baskes, MI},
138     Date-Added = {2010-07-13 11:42:50 -0400},
139     Date-Modified = {2010-07-13 11:42:50 -0400},
140     Doi = {DOI 10.1021/jp050116n},
141     Journal = {J. Phys. Chem. B},
142     Pages = {11683-11692},
143     Title = {Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations},
144     Volume = {109},
145     Year = {2005},
146     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp050116n}}
147    
148     @article{Chui:2003fk,
149     Abstract = {Molecular dynamics simulations of a platinum nanocluster consisting 250 atoms were performed at different temperatures between 70 K and 298 K. The semi-empirical, many-body Sutton-Chen (SC) potential was used to model the interatomic interaction in the metallic system. Regions of core or bulk-like atoms and surface atoms can be defined from analyses of structures, atomic coordination, and the local density function of atoms as defined in the SC potential. The core atoms in the nanoparticle behave as bulk-like metal atoms with a predominant face centered cubic (fcc) packing. The interface between surface atoms and core atoms is marked by a peak in the local density function and corresponds to near surface atoms. The near surface atoms and surface atoms prefer a hexagonal closed packing (hcp). The temperature and size effects on structures of the nanoparticle and the dynamics of the surface region and the core region are discussed.},
150     Author = {Chui, YH and Chan, KY},
151     Date-Added = {2010-07-13 11:42:32 -0400},
152     Date-Modified = {2010-07-13 11:42:32 -0400},
153     Doi = {DOI 10.1039/b302122j},
154     Journal = {Phys. Chem. Chem. Phys.},
155     Pages = {2869-2874},
156     Title = {Analyses of surface and core atoms in a platinum nanoparticle},
157     Volume = {5},
158     Year = {2003},
159     Bdsk-Url-1 = {http://dx.doi.org/10.1039/b302122j}}
160    
161     @article{Sankaranarayanan:2005lr,
162     Abstract = {Bimetallic nanoclusters are of interest because of their utility in catalysis and sensors, The thermal characteristics of bimetallic Pt-Pd nanoclusters of different sizes and compositions were investigated through molecular dynamics simulations using quantum Sutton-Chen (QSC) many-body potentials, Monte Carlo simulations employing the bond order simulation model were used to generate minimum energy configurations, which were utilized as the starting point for molecular dynamics simulations. The calculated initial configurations of the Pt-Pd system consisted of surface segregated Pd atoms and a Pt-rich core, Melting characteristics were studied by following the changes in potential energy and heat capacity as functions of temperature, Structural changes accompanying the thermal evolution were studied by the bond order parameter method. The Pt-Pd clusters exhibited a two-stage melting: surface melting of the external Pd atoms followed by homogeneous melting of the Pt core. These transitions were found to depend on the composition and size of the nanocluster. Melting temperatures of the nanoclusters were found to be much lower than those of bulk Pt and Pd. Bulk melting temperatures of Pd and Pt simulated using periodic boundary conditions compare well with experimental values, thus providing justification for the use of QSC potentials in these simulations. Deformation parameters were calculated to characterize the structural evolution resulting from diffusion of Pd and Pt atoms, The results indicate that in Pd-Pt clusters, Pd atoms prefer to remain at the surface even after melting. In addition, Pt also tends to diffuse to the surface after melting due to reduction of its surface energy with temperature. This mixing pattern is different from those reported in some of the earlier Studies on melting of bimetallics.},
163     Author = {Sankaranarayanan, SKRS and Bhethanabotla, VR and Joseph, B},
164     Date-Added = {2010-07-13 11:42:13 -0400},
165     Date-Modified = {2010-07-13 11:42:13 -0400},
166     Doi = {ARTN 195415},
167     Journal = {Phys. Rev. B},
168     Title = {Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters},
169     Volume = {71},
170     Year = {2005},
171     Bdsk-Url-1 = {http://dx.doi.org/195415}}
172    
173     @article{Vardeman-II:2001jn,
174     Author = {C.~F. {Vardeman II} and J.~D. Gezelter},
175     Date-Added = {2010-07-13 11:41:50 -0400},
176     Date-Modified = {2010-07-13 11:41:50 -0400},
177     Journal = {J. Phys. Chem. A},
178     Local-Url = {file://localhost/Users/charles/Documents/Papers/Vardeman%20II/2001.pdf},
179     Number = {12},
180     Pages = {2568},
181     Title = {Comparing models for diffusion in supercooled liquids: The eutectic composition of the {A}g-{C}u alloy},
182     Volume = {105},
183     Year = {2001}}
184    
185     @article{ShibataT._ja026764r,
186     Author = {Shibata, T. and Bunker, B.A. and Zhang, Z. and Meisel, D. and Vardeman, C.F. and Gezelter, J.D.},
187     Date-Added = {2010-07-13 11:41:36 -0400},
188     Date-Modified = {2010-07-13 11:41:36 -0400},
189     Journal = {J. Amer. Chem. Soc.},
190     Local-Url = {file://localhost/Users/charles/Documents/Papers/ja026764r.pdf},
191     Number = {40},
192     Pages = {11989-11996},
193     Title = {Size-Dependent Spontaneous Alloying of {A}u-{A}g Nanoparticles},
194     Url = {http://dx.doi.org/10.1021/ja026764r},
195     Volume = {124},
196     Year = {2002},
197     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja026764r}}
198    
199     @article{Chen90,
200     Author = {A.~P. Sutton and J. Chen},
201     Date-Added = {2010-07-13 11:40:48 -0400},
202     Date-Modified = {2010-07-13 11:40:48 -0400},
203     Journal = {Phil. Mag. Lett.},
204     Pages = {139-146},
205     Title = {Long-Range Finnis Sinclair Potentials},
206     Volume = 61,
207     Year = {1990}}
208    
209     @article{PhysRevB.33.7983,
210     Author = {Foiles, S. M. and Baskes, M. I. and Daw, M. S.},
211     Date-Added = {2010-07-13 11:40:28 -0400},
212     Date-Modified = {2010-07-13 11:40:28 -0400},
213     Doi = {10.1103/PhysRevB.33.7983},
214     Journal = {Phys. Rev. B},
215     Local-Url = {file://localhost/Users/charles/Documents/Papers/p7983_1.pdf},
216     Month = {Jun},
217     Number = {12},
218     Numpages = {8},
219     Pages = {7983-7991},
220     Publisher = {American Physical Society},
221     Title = {Embedded-atom-method functions for the fcc metals {C}u, {A}g, {A}u, {N}i, {P}d, {P}t, and their alloys},
222     Volume = {33},
223     Year = {1986},
224     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.33.7983}}
225    
226     @article{hoover85,
227     Author = {W.~G. Hoover},
228     Date-Added = {2010-07-13 11:24:30 -0400},
229     Date-Modified = {2010-07-13 11:24:30 -0400},
230     Journal = pra,
231     Pages = 1695,
232     Title = {Canonical dynamics: Equilibrium phase-space distributions},
233     Volume = 31,
234     Year = 1985}
235    
236     @article{melchionna93,
237     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
238     Date-Added = {2010-07-13 11:22:17 -0400},
239     Date-Modified = {2010-07-13 11:22:17 -0400},
240     Journal = {Mol. Phys.},
241     Pages = {533-544},
242     Title = {Hoover {\sc npt} dynamics for systems varying in shape and size},
243     Volume = 78,
244     Year = 1993}
245    
246     @misc{openmd,
247     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
248     Date-Added = {2010-07-13 11:16:00 -0400},
249 gezelter 3616 Date-Modified = {2010-07-19 16:27:45 -0400},
250     Howpublished = {Available at {\tt http://openmd.net}},
251     Title = {{OpenMD}}}
252 gezelter 3609
253 skuang 3617 @inbook{AshcroftMermin,
254 gezelter 3609 Author = {N.~David Mermin and Neil W. Ashcroft},
255     Date-Added = {2010-07-12 14:26:49 -0400},
256 skuang 3617 Date-Modified = {2010-07-22 13:37:20 -0400},
257     Pages = {21},
258 gezelter 3609 Publisher = {Brooks Cole},
259     Title = {Solid State Physics},
260     Year = {1976}}
261    
262     @book{WagnerKruse,
263     Address = {Berlin},
264     Author = {W. Wagner and A. Kruse},
265     Date-Added = {2010-07-12 14:10:29 -0400},
266     Date-Modified = {2010-07-12 14:13:44 -0400},
267     Publisher = {Springer-Verlag},
268     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
269     Year = {1998}}
270    
271 skuang 3592 @article{ISI:000266247600008,
272 gezelter 3594 Abstract = {Temperature dependence of viscosity of butyl-3-methylimidazolium
273 skuang 3592 hexafluorophosphate is investigated by non-equilibrium molecular
274     dynamics simulations with cosine-modulated force in the temperature
275     range from 360 to 480K. It is shown that this method is able to
276     correctly predict the shear viscosity. The simulation setting and
277     choice of the force field are discussed in detail. The all-atom force
278     field exhibits a bad convergence and the shear viscosity is
279     overestimated, while the simple united atom model predicts the kinetics
280     very well. The results are compared with the equilibrium molecular
281     dynamics simulations. The relationship between the diffusion
282     coefficient and viscosity is examined by means of the hydrodynamic
283     radii calculated from the Stokes-Einstein equation and the solvation
284 gezelter 3594 properties are discussed.},
285     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
286     Affiliation = {Kolafa, J (Reprint Author), Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic. {[}Picalek, Jan; Kolafa, Jiri] Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic.},
287 skuang 3592 Author = {Picalek, Jan and Kolafa, Jiri},
288 gezelter 3594 Author-Email = {jiri.kolafa@vscht.cz},
289 skuang 3592 Date-Added = {2010-04-16 13:19:12 -0400},
290     Date-Modified = {2010-04-16 13:19:12 -0400},
291 gezelter 3594 Doc-Delivery-Number = {448FD},
292     Doi = {10.1080/08927020802680703},
293     Funding-Acknowledgement = {Czech Science Foundation {[}203/07/1006]; Czech Ministry of Education {[}LC512]},
294     Funding-Text = {We gratefully acknowledge a support from the Czech Science Foundation (project 203/07/1006) and the computing facilities from the Czech Ministry of Education (Center for Biomolecules and Complex Molecular Systems, project LC512).},
295     Issn = {0892-7022},
296     Journal = {Mol. Simul.},
297     Journal-Iso = {Mol. Simul.},
298     Keywords = {room temperature ionic liquids; viscosity; non-equilibrium molecular dynamics; solvation; imidazolium},
299     Keywords-Plus = {1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICOCHEMICAL PROPERTIES; COMPUTER-SIMULATION; PHYSICAL-PROPERTIES; IMIDAZOLIUM CATION; FORCE-FIELD; AB-INITIO; TEMPERATURE; CHLORIDE; CONDUCTIVITY},
300     Language = {English},
301     Number = {8},
302     Number-Of-Cited-References = {50},
303     Pages = {685-690},
304     Publisher = {TAYLOR \& FRANCIS LTD},
305     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
306     Times-Cited = {2},
307     Title = {Shear viscosity of ionic liquids from non-equilibrium molecular dynamics simulation},
308     Type = {Article},
309     Unique-Id = {ISI:000266247600008},
310     Volume = {35},
311     Year = {2009},
312 skuang 3592 Bdsk-Url-1 = {http://dx.doi.org/10.1080/08927020802680703%7D}}
313    
314     @article{Vasquez:2004fk,
315     Abstract = {A method for fast calculation of viscosity from molecular dynamics simulation is revisited. The method consists of using a steady-state periodic perturbation. A methodology to choose the amplitude of the external perturbation, which is one of the major practical issues in the original technique of Gosling et al. {$[$}Mol. Phys. 26: 1475 (1973){$]$} is proposed. The amplitude of the perturbation required for fast caculations and the viscosity values for wide ranges of temperature and density of the Lennard-Jones (LJ) model fluid are reported. The viscosity results are in agreement with recent LJ viscosity calculations. Additionally, the simulations demonstrate that the proposed approach is suitable to efficiently generate viscosity data of good quality.},
316     Author = {Vasquez, V. R. and Macedo, E. A. and Zabaloy, M. S.},
317     Date = {2004/11/02/},
318     Date-Added = {2010-04-16 13:18:48 -0400},
319     Date-Modified = {2010-04-16 13:18:48 -0400},
320     Day = {02},
321 gezelter 3594 Journal = {Int. J. Thermophys.},
322 skuang 3592 M3 = {10.1007/s10765-004-7736-3},
323     Month = {11},
324     Number = {6},
325     Pages = {1799--1818},
326     Title = {Lennard-Jones Viscosities in Wide Ranges of Temperature and Density: Fast Calculations Using a Steady--State Periodic Perturbation Method},
327     Ty = {JOUR},
328     Url = {http://dx.doi.org/10.1007/s10765-004-7736-3},
329     Volume = {25},
330     Year = {2004},
331     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-004-7736-3}}
332    
333 skuang 3591 @article{hess:209,
334     Author = {Berk Hess},
335     Date-Added = {2010-04-16 12:37:37 -0400},
336     Date-Modified = {2010-04-16 12:37:37 -0400},
337     Doi = {10.1063/1.1421362},
338 gezelter 3594 Journal = {J. Chem. Phys.},
339 skuang 3591 Keywords = {viscosity; molecular dynamics method; liquid theory; shear flow},
340     Number = {1},
341     Pages = {209-217},
342     Publisher = {AIP},
343     Title = {Determining the shear viscosity of model liquids from molecular dynamics simulations},
344     Url = {http://link.aip.org/link/?JCP/116/209/1},
345     Volume = {116},
346     Year = {2002},
347     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/116/209/1},
348     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1421362}}
349    
350     @article{backer:154503,
351     Author = {J. A. Backer and C. P. Lowe and H. C. J. Hoefsloot and P. D. Iedema},
352     Date-Added = {2010-04-16 12:37:37 -0400},
353     Date-Modified = {2010-04-16 12:37:37 -0400},
354     Doi = {10.1063/1.1883163},
355     Eid = {154503},
356 gezelter 3594 Journal = {J. Chem. Phys.},
357 skuang 3591 Keywords = {Poiseuille flow; flow simulation; Lennard-Jones potential; viscosity; boundary layers; computational fluid dynamics},
358     Number = {15},
359     Numpages = {6},
360     Pages = {154503},
361     Publisher = {AIP},
362     Title = {Poiseuille flow to measure the viscosity of particle model fluids},
363     Url = {http://link.aip.org/link/?JCP/122/154503/1},
364     Volume = {122},
365     Year = {2005},
366     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/122/154503/1},
367     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1883163}}
368    
369     @article{daivis:541,
370     Author = {Peter J. Daivis and Denis J. Evans},
371     Date-Added = {2010-04-16 12:05:36 -0400},
372     Date-Modified = {2010-04-16 12:05:36 -0400},
373     Doi = {10.1063/1.466970},
374 gezelter 3594 Journal = {J. Chem. Phys.},
375 skuang 3591 Keywords = {SHEAR; DECANE; FLOW MODELS; VOLUME; PRESSURE; NONEQUILIBRIUM; MOLECULAR DYNAMICS CALCULATIONS; COMPARATIVE EVALUATIONS; SIMULATION; STRAIN RATE; VISCOSITY; KUBO FORMULA},
376     Number = {1},
377     Pages = {541-547},
378     Publisher = {AIP},
379     Title = {Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane},
380     Url = {http://link.aip.org/link/?JCP/100/541/1},
381     Volume = {100},
382     Year = {1994},
383     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/100/541/1},
384     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.466970}}
385    
386     @article{mondello:9327,
387     Author = {Maurizio Mondello and Gary S. Grest},
388     Date-Added = {2010-04-16 12:05:36 -0400},
389     Date-Modified = {2010-04-16 12:05:36 -0400},
390     Doi = {10.1063/1.474002},
391 gezelter 3594 Journal = {J. Chem. Phys.},
392 skuang 3591 Keywords = {organic compounds; viscosity; digital simulation; molecular dynamics method},
393     Number = {22},
394     Pages = {9327-9336},
395     Publisher = {AIP},
396     Title = {Viscosity calculations of [bold n]-alkanes by equilibrium molecular dynamics},
397     Url = {http://link.aip.org/link/?JCP/106/9327/1},
398     Volume = {106},
399     Year = {1997},
400     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/106/9327/1},
401     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.474002}}
402    
403 skuang 3588 @article{ISI:A1988Q205300014,
404 gezelter 3594 Address = {ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE},
405     Affiliation = {VOGELSANG, R (Reprint Author), RUHR UNIV BOCHUM,UNIV STR 150,D-4630 BOCHUM,FED REP GER. UNIV DUISBURG,THERMODYNAM,D-4100 DUISBURG,FED REP GER.},
406     Author = {Vogelsang, R and Hoheisel, G and Luckas, M},
407 skuang 3588 Date-Added = {2010-04-14 16:20:24 -0400},
408     Date-Modified = {2010-04-14 16:20:24 -0400},
409 gezelter 3594 Doc-Delivery-Number = {Q2053},
410     Issn = {0026-8976},
411     Journal = {Mol. Phys.},
412     Journal-Iso = {Mol. Phys.},
413     Language = {English},
414     Month = {AUG 20},
415     Number = {6},
416     Number-Of-Cited-References = {14},
417     Pages = {1203-1213},
418     Publisher = {TAYLOR \& FRANCIS LTD},
419     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
420     Times-Cited = {12},
421     Title = {SHEAR VISCOSITY AND THERMAL-CONDUCTIVITY OF THE LENNARD-JONES LIQUID COMPUTED USING MOLECULAR-DYNAMICS AND PREDICTED BY A MEMORY FUNCTION MODEL FOR A LARGE NUMBER OF STATES},
422     Type = {Article},
423     Unique-Id = {ISI:A1988Q205300014},
424     Volume = {64},
425 gezelter 3609 Year = {1988}}
426 skuang 3588
427 skuang 3587 @article{ISI:000261835100054,
428 gezelter 3594 Abstract = {Transport properties of liquid methanol and ethanol are predicted by
429 skuang 3587 molecular dynamics simulation. The molecular models for the alcohols
430     are rigid, nonpolarizable, and of united-atom type. They were developed
431     in preceding work using experimental vapor-liquid equilibrium data
432     only. Self- and Maxwell-Stefan diffusion coefficients as well as the
433     shear viscosity of methanol, ethanol, and their binary mixture are
434     determined using equilibrium molecular dynamics and the Green-Kubo
435     formalism. Nonequilibrium molecular dynamics is used for predicting the
436     thermal conductivity of the two pure substances. The transport
437     properties of the fluids are calculated over a wide temperature range
438     at ambient pressure and compared with experimental and simulation data
439     from the literature. Overall, a very good agreement with the experiment
440     is found. For instance, the self-diffusion coefficient and the shear
441     viscosity are predicted with average deviations of less than 8\% for
442     the pure alcohols and 12\% for the mixture. The predicted thermal
443     conductivity agrees on average within 5\% with the experimental data.
444     Additionally, some velocity and shear viscosity autocorrelation
445     functions are presented and discussed. Radial distribution functions
446     for ethanol are also presented. The predicted excess volume, excess
447     enthalpy, and the vapor-liquid equilibrium of the binary mixture
448 gezelter 3594 methanol + ethanol are assessed and agree well with experimental data.},
449     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
450     Affiliation = {Vrabec, J (Reprint Author), Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Vrabec, Jadran] Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Guevara-Carrion, Gabriela; Hasse, Hans] Univ Kaiserslautern, Lab Engn Thermodynam, D-67663 Kaiserslautern, Germany. {[}Nieto-Draghi, Carlos] Inst Francais Petr, F-92852 Rueil Malmaison, France.},
451 skuang 3587 Author = {Guevara-Carrion, Gabriela and Nieto-Draghi, Carlos and Vrabec, Jadran and Hasse, Hans},
452 gezelter 3594 Author-Email = {vrabec@itt.uni-stuttgart.de},
453 skuang 3587 Date-Added = {2010-04-14 15:43:29 -0400},
454     Date-Modified = {2010-04-14 15:43:29 -0400},
455 gezelter 3594 Doc-Delivery-Number = {385SY},
456     Doi = {10.1021/jp805584d},
457     Issn = {1520-6106},
458     Journal = {J. Phys. Chem. B},
459     Journal-Iso = {J. Phys. Chem. B},
460     Keywords-Plus = {STEFAN DIFFUSION-COEFFICIENTS; MONTE-CARLO CALCULATIONS; ATOM FORCE-FIELD; SELF-DIFFUSION; DYNAMICS SIMULATION; PHASE-EQUILIBRIA; LIQUID METHANOL; TEMPERATURE-DEPENDENCE; COMPUTER-SIMULATION; MONOHYDRIC ALCOHOLS},
461     Language = {English},
462     Month = {DEC 25},
463     Number = {51},
464     Number-Of-Cited-References = {86},
465     Pages = {16664-16674},
466     Publisher = {AMER CHEMICAL SOC},
467     Subject-Category = {Chemistry, Physical},
468     Times-Cited = {5},
469     Title = {Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture},
470     Type = {Article},
471     Unique-Id = {ISI:000261835100054},
472     Volume = {112},
473     Year = {2008},
474 skuang 3587 Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp805584d%7D}}
475    
476     @article{ISI:000258460400020,
477 gezelter 3594 Abstract = {Nonequilibrium molecular dynamics simulations with the nonpolarizable
478 skuang 3587 SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the
479     polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121,
480     9549) force fields have been employed to calculate the thermal
481     conductivity and other associated properties of methane hydrate over a
482     temperature range from 30 to 260 K. The calculated results are compared
483     to experimental data over this same range. The values of the thermal
484     conductivity calculated with the COS/G2 model are closer to the
485     experimental values than are those calculated with the nonpolarizable
486     SPC/E model. The calculations match the temperature trend in the
487     experimental data at temperatures below 50 K; however, they exhibit a
488     slight decrease in thermal conductivity at higher temperatures in
489     comparison to an opposite trend in the experimental data. The
490     calculated thermal conductivity values are found to be relatively
491     insensitive to the occupancy of the cages except at low (T <= 50 K)
492     temperatures, which indicates that the differences between the two
493     lattice structures may have a more dominant role than generally thought
494     in explaining the low thermal conductivity of methane hydrate compared
495     to ice Ih. The introduction of defects into the water lattice is found
496     to cause a reduction in the thermal conductivity but to have a
497 gezelter 3594 negligible impact on its temperature dependence.},
498     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
499     Affiliation = {Jordan, KD (Reprint Author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Myshakin, Evgeniy M.; Jordan, Kenneth D.; Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol \& Mat Simulat, Pittsburgh, PA 15260 USA. {[}Myshakin, Evgeniy M.] Parsons Project Serv Inc, South Pk, PA 15129 USA.},
500 skuang 3587 Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
501     Date-Added = {2010-04-14 15:38:14 -0400},
502     Date-Modified = {2010-04-14 15:38:14 -0400},
503 gezelter 3594 Doc-Delivery-Number = {337UG},
504     Doi = {10.1021/jp802942v},
505     Funding-Acknowledgement = {E.M.M. ; National Energy Technology Laboratory's Office of Research and Development {[}41817.660.01.03]; ORISE Part-Time Faculty Program ; {[}DE-AM26-04NT41817]; {[}41817.606.06.03]},
506     Funding-Text = {We thank Drs. John Tse, Niall English, and Alan McGaughey for their comments. H.J. and K.D.J. performed this work under Contract DE-AM26-04NT41817, Subtask 41817.606.06.03, and E.M.M. performed this work under the same contract, Subtask 41817.660.01.03, in support of the National Energy Technology Laboratory's Office of Research and Development. K.D.J. was also supported at NETL by the ORISE Part-Time Faculty Program during the early stages of this work.},
507     Issn = {1520-6106},
508     Journal = {J. Phys. Chem. B},
509     Journal-Iso = {J. Phys. Chem. B},
510     Keywords-Plus = {LIQUID WATER; CLATHRATE HYDRATE; HEAT-CAPACITY; FORCE-FIELDS; ICE; ANHARMONICITY; SUMMATION; MODELS; SILICA},
511     Language = {English},
512     Month = {AUG 21},
513     Number = {33},
514     Number-Of-Cited-References = {51},
515     Pages = {10207-10216},
516     Publisher = {AMER CHEMICAL SOC},
517     Subject-Category = {Chemistry, Physical},
518     Times-Cited = {8},
519     Title = {Molecular dynamics Simulations of the thermal conductivity of methane hydrate},
520     Type = {Article},
521     Unique-Id = {ISI:000258460400020},
522     Volume = {112},
523     Year = {2008},
524 skuang 3587 Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp802942v%7D}}
525    
526 skuang 3585 @article{ISI:000184808400018,
527 gezelter 3594 Abstract = {A new non-equilibrium molecular dynamics algorithm is presented based
528 skuang 3585 on the original work of Willer-Plathe, (1997, J. chem. Phys., 106,
529     6082), for the non-equilibrium simulation of heat transport maintaining
530     fixed the total momentum as well as the total energy of the system. The
531     presented scheme preserves these properties but, unlike the original
532     algorithm, is able to deal with multicomponent systems, that is with
533     particles of different mass independently of their relative
534     concentration. The main idea behind the new procedure is to consider an
535     exchange of momentum and energy between the particles in the hot and
536     cold regions, to maintain the non-equilibrium conditions, as if they
537     undergo a hypothetical elastic collision. The new algorithm can also be
538     employed in multicomponent systems for molecular fluids and in a wide
539 gezelter 3594 range of thermodynamic conditions.},
540     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
541     Affiliation = {Nieto-Draghi, C (Reprint Author), Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain. Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Tarragona 43007, Spain.},
542 skuang 3585 Author = {Nieto-Draghi, C and Avalos, JB},
543     Date-Added = {2010-04-14 12:48:08 -0400},
544     Date-Modified = {2010-04-14 12:48:08 -0400},
545 gezelter 3594 Doc-Delivery-Number = {712QM},
546     Doi = {10.1080/0026897031000154338},
547     Issn = {0026-8976},
548     Journal = {Mol. Phys.},
549     Journal-Iso = {Mol. Phys.},
550     Keywords-Plus = {BINARY-LIQUID MIXTURES; THERMAL-CONDUCTIVITY; MATTER TRANSPORT; WATER},
551     Language = {English},
552     Month = {JUL 20},
553     Number = {14},
554     Number-Of-Cited-References = {20},
555     Pages = {2303-2307},
556     Publisher = {TAYLOR \& FRANCIS LTD},
557     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
558     Times-Cited = {13},
559     Title = {Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems},
560     Type = {Article},
561     Unique-Id = {ISI:000184808400018},
562     Volume = {101},
563     Year = {2003},
564 skuang 3585 Bdsk-Url-1 = {http://dx.doi.org/10.1080/0026897031000154338%7D}}
565    
566     @article{Bedrov:2000-1,
567 gezelter 3594 Abstract = {The thermal conductivity of liquid
568 skuang 3585 octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been
569     determined from imposed heat flux non-equilibrium molecular dynamics
570     (NEMD) simulations using a previously published quantum chemistry-based
571     atomistic potential. The thermal conductivity was determined in the
572     temperature domain 550 less than or equal to T less than or equal to
573     800 K, which corresponds approximately to the existence limits of the
574     liquid phase of HMX at atmospheric pressure. The NEMD predictions,
575     which comprise the first reported values for thermal conductivity of
576     HMX liquid, were found to be consistent with measured values for
577     crystalline HMX. The thermal conductivity of liquid HMX was found to
578     exhibit a much weaker temperature dependence than the shear viscosity
579     and self-diffusion coefficients. (C) 2000 Elsevier Science B.V. All
580 gezelter 3594 rights reserved.},
581     Address = {PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS},
582     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Mat Sci \& Engn, 122 S Cent Campus Dr,Room 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.},
583 skuang 3585 Author = {Bedrov, D and Smith, GD and Sewell, TD},
584     Date-Added = {2010-04-14 12:26:59 -0400},
585     Date-Modified = {2010-04-14 12:27:52 -0400},
586 gezelter 3594 Doc-Delivery-Number = {330PF},
587     Issn = {0009-2614},
588     Journal = {Chem. Phys. Lett.},
589     Journal-Iso = {Chem. Phys. Lett.},
590     Keywords-Plus = {FORCE-FIELD},
591     Language = {English},
592     Month = {JUN 30},
593     Number = {1-3},
594     Number-Of-Cited-References = {17},
595     Pages = {64-68},
596     Publisher = {ELSEVIER SCIENCE BV},
597     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
598     Times-Cited = {19},
599     Title = {Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations},
600     Type = {Article},
601     Unique-Id = {ISI:000087969900011},
602     Volume = {324},
603 gezelter 3609 Year = {2000}}
604 skuang 3585
605     @article{ISI:000258840700015,
606 gezelter 3594 Abstract = {By using the embedded-atom method (EAM), a series of molecular dynamics
607 skuang 3585 (MD) simulations are carried out to calculate the viscosity and
608     self-diffusion coefficient of liquid copper from the normal to the
609     undercooled states. The simulated results are in reasonable agreement
610     with the experimental values available above the melting temperature
611     that is also predicted from a solid-liquid-solid sandwich structure.
612     The relationship between the viscosity and the self-diffusion
613     coefficient is evaluated. It is found that the Stokes-Einstein and
614     Sutherland-Einstein relations qualitatively describe this relationship
615     within the simulation temperature range. However, the predicted
616     constant from MD simulation is close to 1/(3 pi), which is larger than
617 gezelter 3594 the constants of the Stokes-Einstein and Sutherland-Einstein relations.},
618     Address = {233 SPRING ST, NEW YORK, NY 10013 USA},
619     Affiliation = {Chen, M (Reprint Author), Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China. {[}Han, X. J.; Chen, M.; Lue, Y. J.] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.},
620 skuang 3585 Author = {Han, X. J. and Chen, M. and Lue, Y. J.},
621 gezelter 3594 Author-Email = {mchen@tsinghua.edu.cn},
622 skuang 3585 Date-Added = {2010-04-14 12:00:38 -0400},
623     Date-Modified = {2010-04-14 12:00:38 -0400},
624 gezelter 3594 Doc-Delivery-Number = {343GH},
625     Doi = {10.1007/s10765-008-0489-7},
626     Funding-Acknowledgement = {China Postdoctoral Science Foundation ; National Natural Science Foundation of China {[}50395101, 50371043]},
627     Funding-Text = {This work was financially supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China under grant Nos. of 50395101 and 50371043. The computations are carried out at the Tsinghua National Laboratory for Information Science and Technology, China. The authors are grateful to Mr. D. Q. Yu for valuable discussions.},
628     Issn = {0195-928X},
629     Journal = {Int. J. Thermophys.},
630     Journal-Iso = {Int. J. Thermophys.},
631     Keywords = {copper; molecular simulation; self-diffusion coefficient; viscosity; undercooled},
632     Keywords-Plus = {EMBEDDED-ATOM MODEL; THERMOPHYSICAL PROPERTIES; COMPUTER-SIMULATION; TRANSITION-METALS; SHEAR VISCOSITY; ALLOYS; TEMPERATURE; DIFFUSION; BINDING; SURFACE},
633     Language = {English},
634     Month = {AUG},
635     Number = {4},
636     Number-Of-Cited-References = {39},
637     Pages = {1408-1421},
638     Publisher = {SPRINGER/PLENUM PUBLISHERS},
639     Subject-Category = {Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied},
640     Times-Cited = {2},
641     Title = {Transport properties of undercooled liquid copper: A molecular dynamics study},
642     Type = {Article},
643     Unique-Id = {ISI:000258840700015},
644     Volume = {29},
645     Year = {2008},
646 skuang 3585 Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-008-0489-7%7D}}
647    
648     @article{Muller-Plathe:2008,
649 gezelter 3594 Abstract = {Reverse nonequilibrium molecular dynamics and equilibrium molecular
650 skuang 3585 dynamics simulations were carried out to compute the shear viscosity of
651     the pure ionic liquid system {[}bmim]{[}PF6] at 300 K. The two methods
652     yielded consistent results which were also compared to experiments. The
653     results showed that the reverse nonequilibrium molecular dynamics
654     (RNEMD) methodology can successfully be applied to computation of
655     highly viscous ionic liquids. Moreover, this study provides a
656     validation of the atomistic force-field developed by Bhargava and
657     Balasubramanian (J. Chem. Phys. 2007, 127, 114510) for dynamic
658 gezelter 3594 properties.},
659     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
660     Affiliation = {Wei, Z (Reprint Author), Tech Univ Darmstadt, Petersenstr 30, D-64287 Darmstadt, Germany. {[}Wei Zhao; Leroy, Frederic; Mueller-Plathe, Florian] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. {[}Balasubramanian, Sundaram] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chem \& Phys Mat Unit, Bangalore 560064, Karnataka, India.},
661     Author = {Wei Zhao and Leroy, Frederic and Balasubramanian, Sundaram and M\"{u}ller-Plathe, Florian},
662     Author-Email = {w.zhao@theo.chemie.tu-darmstadt.de},
663 skuang 3585 Date-Added = {2010-04-14 11:53:37 -0400},
664     Date-Modified = {2010-04-14 11:54:20 -0400},
665 gezelter 3594 Doc-Delivery-Number = {321VS},
666     Doi = {10.1021/jp8017869},
667     Issn = {1520-6106},
668     Journal = {J. Phys. Chem. B},
669     Journal-Iso = {J. Phys. Chem. B},
670     Keywords-Plus = {TRANSPORT-PROPERTIES; FORCE-FIELD; TEMPERATURE; SIMULATION; IMIDAZOLIUM; FLUIDS; MODEL; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; PYRIDINIUM; CHLORIDE},
671     Language = {English},
672     Month = {JUL 10},
673     Number = {27},
674     Number-Of-Cited-References = {49},
675     Pages = {8129-8133},
676     Publisher = {AMER CHEMICAL SOC},
677     Subject-Category = {Chemistry, Physical},
678     Times-Cited = {2},
679     Title = {Shear viscosity of the ionic liquid 1-n-butyl 3-methylimidazolium hexafluorophosphate {[}bmim]{[}PF6] computed by reverse nonequilibrium molecular dynamics},
680     Type = {Article},
681     Unique-Id = {ISI:000257335200022},
682     Volume = {112},
683     Year = {2008},
684 skuang 3585 Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp8017869%7D}}
685    
686     @article{Muller-Plathe:2002,
687 gezelter 3594 Abstract = {The reverse nonequilibrium molecular dynamics {[}F. Muller-Plathe,
688 skuang 3585 Phys. Rev. E 49, 359 (1999)] presented for the calculation of the shear
689     viscosity of Lennard-Jones liquids has been extended to atomistic
690     models of molecular liquids. The method is improved to overcome the
691     problems due to the detailed molecular models. The new technique is
692     besides a test with a Lennard-Jones fluid, applied on different
693     realistic systems: liquid nitrogen, water, and hexane, in order to
694     cover a large range of interactions and systems/architectures. We show
695     that all the advantages of the method itemized previously are still
696     valid, and that it has a very good efficiency and accuracy making it
697 gezelter 3594 very competitive. (C) 2002 American Institute of Physics.},
698     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
699     Affiliation = {Bordat, P (Reprint Author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymer Res, D-55128 Mainz, Germany.},
700     Author = {Bordat, P and M\"{u}ller-Plathe, F},
701 skuang 3585 Date-Added = {2010-04-14 11:34:42 -0400},
702     Date-Modified = {2010-04-14 11:35:35 -0400},
703 gezelter 3594 Doc-Delivery-Number = {521QV},
704     Doi = {10.1063/1.1436124},
705     Issn = {0021-9606},
706     Journal = {J. Chem. Phys.},
707     Journal-Iso = {J. Chem. Phys.},
708     Keywords-Plus = {TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; LIQUID ALKANES; N-HEPTADECANE; SIMULATION; WATER; FLOW; MIXTURES; BUTANE; NITROGEN},
709     Language = {English},
710     Month = {FEB 22},
711     Number = {8},
712     Number-Of-Cited-References = {47},
713     Pages = {3362-3369},
714     Publisher = {AMER INST PHYSICS},
715     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
716     Times-Cited = {33},
717     Title = {The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics},
718     Type = {Article},
719     Unique-Id = {ISI:000173853600023},
720     Volume = {116},
721     Year = {2002},
722 skuang 3585 Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1436124%7D}}
723    
724 skuang 3580 @article{ISI:000207079300006,
725 skuang 3585 Abstract = {Non-equilibrium Molecular Dynamics Simulation
726 gezelter 3583 methods have been used to study the ability of
727     Embedded Atom Method models of the metals copper and
728     gold to reproduce the equilibrium and
729     non-equilibrium behavior of metals at a stationary
730     and at a moving solid/liquid interface. The
731     equilibrium solid/vapor interface was shown to
732     display a simple termination of the bulk until the
733     temperature of the solid reaches approximate to 90\%
734     of the bulk melting point. At and above such
735     temperatures the systems exhibit a surface
736     disodering known as surface melting. Non-equilibrium
737     simulations emulating the action of a picosecond
738     laser on the metal were performed to determine the
739     regrowth velocity. For copper, the action of a 20 ps
740     laser with an absorbed energy of 2-5 mJ/cm(2)
741     produced a regrowth velocity of 83-100 m/s, in
742     reasonable agreement with the value obtained by
743     experiment (>60 m/s). For gold, similar conditions
744     produced a slower regrowth velocity of 63 m/s at an
745     absorbed energy of 5 mJ/cm(2). This is almost a
746     factor of two too low in comparison to experiment
747     (>100 m/s). The regrowth velocities of the metals
748     seems unexpectedly close to experiment considering
749     that the free-electron contribution is ignored in
750     the Embeeded Atom Method models used.},
751 skuang 3585 Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
752     Affiliation = {Clancy, P (Reprint Author), Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA.},
753     Author = {Richardson, Clifton F. and Clancy, Paulette},
754     Date-Added = {2010-04-07 11:24:36 -0400},
755     Date-Modified = {2010-04-07 11:24:36 -0400},
756     Doc-Delivery-Number = {V04SY},
757     Issn = {0892-7022},
758 gezelter 3594 Journal = {Mol. Simul.},
759 skuang 3585 Journal-Iso = {Mol. Simul.},
760     Keywords = {Non-equilibrium computer simulation; molecular dynamics; crystal growth; Embedded Atom Method models of metals},
761     Language = {English},
762     Number = {5-6},
763     Number-Of-Cited-References = {36},
764     Pages = {335-355},
765     Publisher = {TAYLOR \& FRANCIS LTD},
766     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
767     Times-Cited = {7},
768     Title = {PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A COMPUTER SIMULATION STUDY},
769     Type = {Article},
770     Unique-Id = {ISI:000207079300006},
771     Volume = {7},
772     Year = {1991}}
773 skuang 3580
774 skuang 3573 @article{ISI:000167766600035,
775 skuang 3585 Abstract = {Molecular dynamics simulations are used to
776 gezelter 3583 investigate the separation of water films adjacent
777     to a hot metal surface. The simulations clearly show
778     that the water layers nearest the surface overheat
779     and undergo explosive boiling. For thick films, the
780     expansion of the vaporized molecules near the
781     surface forces the outer water layers to move away
782     from the surface. These results are of interest for
783     mass spectrometry of biological molecules, steam
784     cleaning of surfaces, and medical procedures.},
785 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
786     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
787     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
788     Date-Added = {2010-03-11 15:32:14 -0500},
789     Date-Modified = {2010-03-11 15:32:14 -0500},
790     Doc-Delivery-Number = {416ED},
791     Issn = {1089-5639},
792     Journal = {J. Phys. Chem. A},
793     Journal-Iso = {J. Phys. Chem. A},
794     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
795     Language = {English},
796     Month = {MAR 29},
797     Number = {12},
798     Number-Of-Cited-References = {65},
799     Pages = {2748-2755},
800     Publisher = {AMER CHEMICAL SOC},
801     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
802     Times-Cited = {66},
803     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
804     Type = {Article},
805     Unique-Id = {ISI:000167766600035},
806     Volume = {105},
807     Year = {2001}}
808 skuang 3573
809 skuang 3585 @article{Maginn:2010,
810     Abstract = {The reverse nonequilibrium molecular dynamics
811 gezelter 3583 (RNEMD) method calculates the shear viscosity of a
812     fluid by imposing a nonphysical exchange of momentum
813     and measuring the resulting shear velocity
814     gradient. In this study we investigate the range of
815     momentum flux values over which RNEMD yields usable
816     (linear) velocity gradients. We find that nonlinear
817     velocity profiles result primarily from gradients in
818     fluid temperature and density. The temperature
819     gradient results from conversion of heat into bulk
820     kinetic energy, which is transformed back into heat
821     elsewhere via viscous heating. An expression is
822     derived to predict the temperature profile resulting
823     from a specified momentum flux for a given fluid and
824     simulation cell. Although primarily bounded above,
825     we also describe milder low-flux limitations. RNEMD
826     results for a Lennard-Jones fluid agree with
827     equilibrium molecular dynamics and conventional
828     nonequilibrium molecular dynamics calculations at
829     low shear, but RNEMD underpredicts viscosity
830     relative to conventional NEMD at high shear.},
831 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
832     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
833     Article-Number = {014103},
834     Author = {Tenney, Craig M. and Maginn, Edward J.},
835     Author-Email = {ed@nd.edu},
836     Date-Added = {2010-03-09 13:08:41 -0500},
837 gezelter 3616 Date-Modified = {2010-07-19 16:21:35 -0400},
838 skuang 3585 Doc-Delivery-Number = {542DQ},
839     Doi = {10.1063/1.3276454},
840     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
841     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
842     Issn = {0021-9606},
843     Journal = {J. Chem. Phys.},
844     Journal-Iso = {J. Chem. Phys.},
845     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
846     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
847     Language = {English},
848     Month = {JAN 7},
849     Number = {1},
850     Number-Of-Cited-References = {20},
851 gezelter 3616 Pages = {014103},
852 skuang 3585 Publisher = {AMER INST PHYSICS},
853     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
854     Times-Cited = {0},
855     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
856     Type = {Article},
857     Unique-Id = {ISI:000273472300004},
858     Volume = {132},
859     Year = {2010},
860     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
861 skuang 3565
862 skuang 3582 @article{Clancy:1992,
863 skuang 3585 Abstract = {The regrowth velocity of a crystal from a melt
864 gezelter 3583 depends on contributions from the thermal
865     conductivity, heat gradient, and latent heat. The
866     relative contributions of these terms to the
867     regrowth velocity of the pure metals copper and gold
868     during liquid-phase epitaxy are evaluated. These
869     results are used to explain how results from
870     previous nonequilibrium molecular-dynamics
871     simulations using classical potentials are able to
872     predict regrowth velocities that are close to the
873     experimental values. Results from equilibrium
874     molecular dynamics showing the nature of the
875     solid-vapor interface of an
876     embedded-atom-method-modeled Cu57Ni43 alloy at a
877     temperature corresponding to 62\% of the melting
878     point are presented. The regrowth of this alloy
879     following a simulation of a laser-processing
880     experiment is also given, with use of nonequilibrium
881     molecular-dynamics techniques. The thermal
882     conductivity and temperature gradient in the
883     simulation of the alloy are compared to those for
884     the pure metals.},
885 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
886     Affiliation = {CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.},
887     Author = {Richardson, C.~F. and Clancy, P},
888     Date-Added = {2010-01-12 16:17:33 -0500},
889     Date-Modified = {2010-04-08 17:18:25 -0400},
890     Doc-Delivery-Number = {HX378},
891     Issn = {0163-1829},
892     Journal = {Phys. Rev. B},
893     Journal-Iso = {Phys. Rev. B},
894     Keywords-Plus = {SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI},
895     Language = {English},
896     Month = {JUN 1},
897     Number = {21},
898     Number-Of-Cited-References = {24},
899     Pages = {12260-12268},
900     Publisher = {AMERICAN PHYSICAL SOC},
901     Subject-Category = {Physics, Condensed Matter},
902     Times-Cited = {11},
903     Title = {CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS},
904     Type = {Article},
905     Unique-Id = {ISI:A1992HX37800010},
906     Volume = {45},
907     Year = {1992}}
908 skuang 3563
909 skuang 3585 @article{Bedrov:2000,
910     Abstract = {We have applied a new nonequilibrium molecular
911 gezelter 3583 dynamics (NEMD) method {[}F. Muller-Plathe,
912     J. Chem. Phys. 106, 6082 (1997)] previously applied
913     to monatomic Lennard-Jones fluids in the
914     determination of the thermal conductivity of
915     molecular fluids. The method was modified in order
916     to be applicable to systems with holonomic
917     constraints. Because the method involves imposing a
918     known heat flux it is particularly attractive for
919     systems involving long-range and many-body
920     interactions where calculation of the microscopic
921     heat flux is difficult. The predicted thermal
922     conductivities of liquid n-butane and water using
923     the imposed-flux NEMD method were found to be in a
924     good agreement with previous simulations and
925     experiment. (C) 2000 American Institute of
926     Physics. {[}S0021-9606(00)50841-1].},
927 skuang 3585 Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
928     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
929     Author = {Bedrov, D and Smith, GD},
930     Date-Added = {2009-11-05 18:21:18 -0500},
931     Date-Modified = {2010-04-14 11:50:48 -0400},
932     Doc-Delivery-Number = {369BF},
933     Issn = {0021-9606},
934     Journal = {J. Chem. Phys.},
935     Journal-Iso = {J. Chem. Phys.},
936     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
937     Language = {English},
938     Month = {NOV 8},
939     Number = {18},
940     Number-Of-Cited-References = {26},
941     Pages = {8080-8084},
942     Publisher = {AMER INST PHYSICS},
943     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
944     Times-Cited = {23},
945     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
946     Type = {Article},
947     Unique-Id = {ISI:000090151400044},
948     Volume = {113},
949     Year = {2000}}
950 skuang 3563
951     @article{ISI:000231042800044,
952 skuang 3585 Abstract = {The reverse nonequilibrium molecular dynamics
953 gezelter 3583 method for thermal conductivities is adapted to the
954     investigation of molecular fluids. The method
955     generates a heat flux through the system by suitably
956     exchanging velocities of particles located in
957     different regions. From the resulting temperature
958     gradient, the thermal conductivity is then
959     calculated. Different variants of the algorithm and
960     their combinations with other system parameters are
961     tested: exchange of atomic velocities versus
962     exchange of molecular center-of-mass velocities,
963     different exchange frequencies, molecular models
964     with bond constraints versus models with flexible
965     bonds, united-atom versus all-atom models, and
966     presence versus absence of a thermostat. To help
967     establish the range of applicability, the algorithm
968     is tested on different models of benzene,
969     cyclohexane, water, and n-hexane. We find that the
970     algorithm is robust and that the calculated thermal
971     conductivities are insensitive to variations in its
972     control parameters. The force field, in contrast,
973     has a major influence on the value of the thermal
974     conductivity. While calculated and experimental
975     thermal conductivities fall into the same order of
976     magnitude, in most cases the calculated values are
977     systematically larger. United-atom force fields seem
978     to do better than all-atom force fields, possibly
979     because they remove high-frequency degrees of
980     freedom from the simulation, which, in nature, are
981     quantum-mechanical oscillators in their ground state
982     and do not contribute to heat conduction.},
983 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
984     Affiliation = {Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.},
985     Author = {Zhang, MM and Lussetti, E and de Souza, LES and M\"{u}ller-Plathe, F},
986     Date-Added = {2009-11-05 18:17:33 -0500},
987     Date-Modified = {2009-11-05 18:17:33 -0500},
988     Doc-Delivery-Number = {952YQ},
989     Doi = {10.1021/jp0512255},
990     Issn = {1520-6106},
991     Journal = {J. Phys. Chem. B},
992     Journal-Iso = {J. Phys. Chem. B},
993     Keywords-Plus = {LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION},
994     Language = {English},
995     Month = {AUG 11},
996     Number = {31},
997     Number-Of-Cited-References = {42},
998     Pages = {15060-15067},
999     Publisher = {AMER CHEMICAL SOC},
1000     Subject-Category = {Chemistry, Physical},
1001     Times-Cited = {17},
1002     Title = {Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics},
1003     Type = {Article},
1004     Unique-Id = {ISI:000231042800044},
1005     Volume = {109},
1006     Year = {2005},
1007     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
1008 skuang 3563
1009     @article{ISI:A1997YC32200056,
1010 skuang 3585 Abstract = {Equilibrium molecular dynamics simulations have
1011 gezelter 3583 been carried out in the microcanonical ensemble at
1012     300 and 255 K on the extended simple point charge
1013     (SPC/E) model of water {[}Berendsen et al.,
1014     J. Phys. Chem. 91, 6269 (1987)]. In addition to a
1015     number of static and dynamic properties, thermal
1016     conductivity lambda has been calculated via
1017     Green-Kubo integration of the heat current time
1018     correlation functions (CF's) in the atomic and
1019     molecular formalism, at wave number k=0. The
1020     calculated values (0.67 +/- 0.04 W/mK at 300 K and
1021     0.52 +/- 0.03 W/mK at 255 K) are in good agreement
1022     with the experimental data (0.61 W/mK at 300 K and
1023     0.49 W/mK at 255 K). A negative long-time tail of
1024     the heat current CF, more apparent at 255 K, is
1025     responsible for the anomalous decrease of lambda
1026     with temperature. An analysis of the dynamical modes
1027     contributing to lambda has shown that its value is
1028     due to two low-frequency exponential-like modes, a
1029     faster collisional mode, with positive contribution,
1030     and a slower one, which determines the negative
1031     long-time tail. A comparison of the molecular and
1032     atomic spectra of the heat current CF has suggested
1033     that higher-frequency modes should not contribute to
1034     lambda in this temperature range. Generalized
1035     thermal diffusivity D-T(k) decreases as a function
1036     of k, after an initial minor increase at k =
1037     k(min). The k dependence of the generalized
1038     thermodynamic properties has been calculated in the
1039     atomic and molecular formalisms. The observed
1040     differences have been traced back to intramolecular
1041     or intermolecular rotational effects and related to
1042     the partial structure functions. Finally, from the
1043     results we calculated it appears that the SPC/E
1044     model gives results in better agreement with
1045     experimental data than the transferable
1046     intermolecular potential with four points TIP4P
1047     water model {[}Jorgensen et al., J. Chem. Phys. 79,
1048     926 (1983)], with a larger improvement for, e.g.,
1049     diffusion, viscosities, and dielectric properties
1050     and a smaller one for thermal conductivity. The
1051     SPC/E model shares, to a smaller extent, the
1052     insufficient slowing down of dynamics at low
1053     temperature already found for the TIP4P water
1054     model.},
1055 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1056     Affiliation = {UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.},
1057     Author = {Bertolini, D and Tani, A},
1058     Date-Added = {2009-10-30 15:41:21 -0400},
1059     Date-Modified = {2009-10-30 15:41:21 -0400},
1060     Doc-Delivery-Number = {YC322},
1061     Issn = {1063-651X},
1062     Journal = {Phys. Rev. E},
1063     Journal-Iso = {Phys. Rev. E},
1064     Keywords-Plus = {TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS},
1065     Language = {English},
1066     Month = {OCT},
1067     Number = {4},
1068     Number-Of-Cited-References = {35},
1069     Pages = {4135-4151},
1070     Publisher = {AMERICAN PHYSICAL SOC},
1071     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1072     Times-Cited = {18},
1073     Title = {Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results},
1074     Type = {Article},
1075     Unique-Id = {ISI:A1997YC32200056},
1076     Volume = {56},
1077     Year = {1997}}
1078 skuang 3563
1079 skuang 3532 @article{Meineke:2005gd,
1080 skuang 3585 Abstract = {OOPSE is a new molecular dynamics simulation program
1081 gezelter 3583 that is capable of efficiently integrating equations
1082     of motion for atom types with orientational degrees
1083     of freedom (e.g. #sticky# atoms and point
1084     dipoles). Transition metals can also be simulated
1085     using the embedded atom method (EAM) potential
1086     included in the code. Parallel simulations are
1087     carried out using the force-based decomposition
1088     method. Simulations are specified using a very
1089     simple C-based meta-data language. A number of
1090     advanced integrators are included, and the basic
1091     integrator for orientational dynamics provides
1092     substantial improvements over older quaternion-based
1093     schemes.},
1094 skuang 3585 Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1095     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1096     Date-Added = {2009-10-01 18:43:03 -0400},
1097     Date-Modified = {2010-04-13 09:11:16 -0400},
1098     Doi = {DOI 10.1002/jcc.20161},
1099     Isi = {000226558200006},
1100     Isi-Recid = {142688207},
1101     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1102     Journal = {J. Comp. Chem.},
1103     Keywords = {OOPSE; molecular dynamics},
1104     Month = feb,
1105     Number = {3},
1106     Pages = {252-271},
1107     Publisher = {JOHN WILEY \& SONS INC},
1108     Times-Cited = {9},
1109     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
1110     Volume = {26},
1111     Year = {2005},
1112     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1113     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1114 skuang 3532
1115     @article{ISI:000080382700030,
1116 skuang 3585 Abstract = {A nonequilibrium method for calculating the shear
1117 gezelter 3583 viscosity is presented. It reverses the
1118     cause-and-effect picture customarily used in
1119     nonequilibrium molecular dynamics: the effect, the
1120     momentum flux or stress, is imposed, whereas the
1121     cause, the velocity gradient or shear rate, is
1122     obtained from the simulation. It differs from other
1123     Norton-ensemble methods by the way in which the
1124     steady-state momentum flux is maintained. This
1125     method involves a simple exchange of particle
1126     momenta, which is easy to implement. Moreover, it
1127     can be made to conserve the total energy as well as
1128     the total linear momentum, so no coupling to an
1129     external temperature bath is needed. The resulting
1130     raw data, the velocity profile, is a robust and
1131     rapidly converging property. The method is tested on
1132     the Lennard-Jones fluid near its triple point. It
1133     yields a viscosity of 3.2-3.3, in Lennard-Jones
1134     reduced units, in agreement with literature
1135     results. {[}S1063-651X(99)03105-0].},
1136 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1137     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1138     Author = {M\"{u}ller-Plathe, F},
1139     Date-Added = {2009-10-01 14:07:30 -0400},
1140     Date-Modified = {2009-10-01 14:07:30 -0400},
1141     Doc-Delivery-Number = {197TX},
1142     Issn = {1063-651X},
1143     Journal = {Phys. Rev. E},
1144     Journal-Iso = {Phys. Rev. E},
1145     Language = {English},
1146     Month = {MAY},
1147     Number = {5, Part A},
1148     Number-Of-Cited-References = {17},
1149     Pages = {4894-4898},
1150     Publisher = {AMERICAN PHYSICAL SOC},
1151     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1152     Times-Cited = {57},
1153     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
1154     Type = {Article},
1155     Unique-Id = {ISI:000080382700030},
1156     Volume = {59},
1157     Year = {1999}}
1158 skuang 3532
1159 skuang 3585 @article{Maginn:2007,
1160     Abstract = {Atomistic simulations are conducted to examine the
1161 gezelter 3583 dependence of the viscosity of
1162     1-ethyl-3-methylimidazolium
1163     bis(trifluoromethanesulfonyl)imide on temperature
1164     and water content. A nonequilibrium molecular
1165     dynamics procedure is utilized along with an
1166     established fixed charge force field. It is found
1167     that the simulations quantitatively capture the
1168     temperature dependence of the viscosity as well as
1169     the drop in viscosity that occurs with increasing
1170     water content. Using mixture viscosity models, we
1171     show that the relative drop in viscosity with water
1172     content is actually less than that that would be
1173     predicted for an ideal system. This finding is at
1174     odds with the popular notion that small amounts of
1175     water cause an unusually large drop in the viscosity
1176     of ionic liquids. The simulations suggest that, due
1177     to preferential association of water with anions and
1178     the formation of water clusters, the excess molar
1179     volume is negative. This means that dissolved water
1180     is actually less effective at lowering the viscosity
1181     of these mixtures when compared to a solute obeying
1182     ideal mixing behavior. The use of a nonequilibrium
1183     simulation technique enables diffusive behavior to
1184     be observed on the time scale of the simulations,
1185     and standard equilibrium molecular dynamics resulted
1186     in sub-diffusive behavior even over 2 ns of
1187     simulation time.},
1188 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1189     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1190     Author = {Kelkar, Manish S. and Maginn, Edward J.},
1191     Author-Email = {ed@nd.edu},
1192     Date-Added = {2009-09-29 17:07:17 -0400},
1193     Date-Modified = {2010-04-14 12:51:02 -0400},
1194     Doc-Delivery-Number = {163VA},
1195     Doi = {10.1021/jp0686893},
1196     Issn = {1520-6106},
1197     Journal = {J. Phys. Chem. B},
1198     Journal-Iso = {J. Phys. Chem. B},
1199     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
1200     Language = {English},
1201     Month = {MAY 10},
1202     Number = {18},
1203     Number-Of-Cited-References = {57},
1204     Pages = {4867-4876},
1205     Publisher = {AMER CHEMICAL SOC},
1206     Subject-Category = {Chemistry, Physical},
1207     Times-Cited = {35},
1208     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
1209     Type = {Article},
1210     Unique-Id = {ISI:000246190100032},
1211     Volume = {111},
1212     Year = {2007},
1213     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D},
1214     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0686893}}
1215 skuang 3528
1216 skuang 3527 @article{MullerPlathe:1997xw,
1217 skuang 3585 Abstract = {A nonequilibrium molecular dynamics method for
1218 gezelter 3583 calculating the thermal conductivity is
1219     presented. It reverses the usual cause and effect
1220     picture. The ''effect,'' the heat flux, is imposed
1221     on the system and the ''cause,'' the temperature
1222     gradient is obtained from the simulation. Besides
1223     being very simple to implement, the scheme offers
1224     several advantages such as compatibility with
1225     periodic boundary conditions, conservation of total
1226     energy and total linear momentum, and the sampling
1227     of a rapidly converging quantity (temperature
1228     gradient) rather than a slowly converging one (heat
1229     flux). The scheme is tested on the Lennard-Jones
1230     fluid. (C) 1997 American Institute of Physics.},
1231 skuang 3585 Address = {WOODBURY},
1232     Author = {M\"{u}ller-Plathe, F.},
1233     Cited-Reference-Count = {13},
1234     Date = {APR 8},
1235     Date-Added = {2009-09-21 16:51:21 -0400},
1236     Date-Modified = {2009-09-21 16:51:21 -0400},
1237     Document-Type = {Article},
1238     Isi = {ISI:A1997WR62000032},
1239     Isi-Document-Delivery-Number = {WR620},
1240     Iso-Source-Abbreviation = {J. Chem. Phys.},
1241     Issn = {0021-9606},
1242     Journal = {J. Chem. Phys.},
1243     Language = {English},
1244     Month = {Apr},
1245     Number = {14},
1246     Page-Count = {4},
1247     Pages = {6082--6085},
1248     Publication-Type = {J},
1249     Publisher = {AMER INST PHYSICS},
1250     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1251     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1252     Source = {J CHEM PHYS},
1253     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1254     Times-Cited = {106},
1255     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
1256     Volume = {106},
1257     Year = {1997}}
1258 skuang 3527
1259     @article{Muller-Plathe:1999ek,
1260 skuang 3585 Abstract = {A novel non-equilibrium method for calculating
1261 gezelter 3583 transport coefficients is presented. It reverses the
1262     experimental cause-and-effect picture, e.g. for the
1263     calculation of viscosities: the effect, the momentum
1264     flux or stress, is imposed, whereas the cause, the
1265     velocity gradient or shear rates, is obtained from
1266     the simulation. It differs from other
1267     Norton-ensemble methods by the way, in which the
1268     steady-state fluxes are maintained. This method
1269     involves a simple exchange of particle momenta,
1270     which is easy to implement and to analyse. Moreover,
1271     it can be made to conserve the total energy as well
1272     as the total linear momentum, so no thermostatting
1273     is needed. The resulting raw data are robust and
1274     rapidly converging. The method is tested on the
1275     calculation of the shear viscosity, the thermal
1276     conductivity and the Soret coefficient (thermal
1277     diffusion) for the Lennard-Jones (LJ) fluid near its
1278     triple point. Possible applications to other
1279     transport coefficients and more complicated systems
1280     are discussed. (C) 1999 Elsevier Science Ltd. All
1281     rights reserved.},
1282 skuang 3585 Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
1283     Author = {M\"{u}ller-Plathe, F and Reith, D},
1284     Date-Added = {2009-09-21 16:47:07 -0400},
1285     Date-Modified = {2009-09-21 16:47:07 -0400},
1286     Isi = {000082266500004},
1287     Isi-Recid = {111564960},
1288     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
1289     Journal = {Computational and Theoretical Polymer Science},
1290     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
1291     Number = {3-4},
1292     Pages = {203-209},
1293     Publisher = {ELSEVIER SCI LTD},
1294     Times-Cited = {15},
1295     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
1296     Volume = {9},
1297     Year = {1999},
1298     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
1299 skuang 3527
1300     @article{Viscardy:2007lq,
1301 skuang 3585 Abstract = {The thermal conductivity is calculated with the
1302 gezelter 3583 Helfand-moment method in the Lennard-Jones fluid
1303     near the triple point. The Helfand moment of thermal
1304     conductivity is here derived for molecular dynamics
1305     with periodic boundary conditions. Thermal
1306     conductivity is given by a generalized Einstein
1307     relation with this Helfand moment. The authors
1308     compute thermal conductivity by this new method and
1309     compare it with their own values obtained by the
1310     standard Green-Kubo method. The agreement is
1311     excellent. (C) 2007 American Institute of Physics.},
1312 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1313     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1314     Date-Added = {2009-09-21 16:37:20 -0400},
1315 gezelter 3616 Date-Modified = {2010-07-19 16:18:44 -0400},
1316 skuang 3585 Doi = {DOI 10.1063/1.2724821},
1317     Isi = {000246453900035},
1318     Isi-Recid = {156192451},
1319     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
1320     Journal = {J. Chem. Phys.},
1321     Month = may,
1322     Number = {18},
1323 gezelter 3616 Pages = {184513},
1324 skuang 3585 Publisher = {AMER INST PHYSICS},
1325     Times-Cited = {3},
1326     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
1327     Volume = {126},
1328     Year = {2007},
1329     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035},
1330     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724821}}
1331 skuang 3527
1332     @article{Viscardy:2007bh,
1333 skuang 3585 Abstract = {The authors propose a new method, the Helfand-moment
1334 gezelter 3583 method, to compute the shear viscosity by
1335     equilibrium molecular dynamics in periodic
1336     systems. In this method, the shear viscosity is
1337     written as an Einstein-type relation in terms of the
1338     variance of the so-called Helfand moment. This
1339     quantity is modified in order to satisfy systems
1340     with periodic boundary conditions usually considered
1341     in molecular dynamics. They calculate the shear
1342     viscosity in the Lennard-Jones fluid near the triple
1343     point thanks to this new technique. They show that
1344     the results of the Helfand-moment method are in
1345     excellent agreement with the results of the standard
1346     Green-Kubo method. (C) 2007 American Institute of
1347     Physics.},
1348 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1349     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1350     Date-Added = {2009-09-21 16:37:19 -0400},
1351 gezelter 3616 Date-Modified = {2010-07-19 16:19:03 -0400},
1352 skuang 3585 Doi = {DOI 10.1063/1.2724820},
1353     Isi = {000246453900034},
1354     Isi-Recid = {156192449},
1355     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
1356     Journal = {J. Chem. Phys.},
1357     Month = may,
1358     Number = {18},
1359 gezelter 3616 Pages = {184512},
1360 skuang 3585 Publisher = {AMER INST PHYSICS},
1361     Times-Cited = {1},
1362     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
1363     Volume = {126},
1364     Year = {2007},
1365     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034},
1366     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724820}}
1367 skuang 3613
1368     @inproceedings{384119,
1369     Address = {New York, NY, USA},
1370     Author = {Fortune, Steven},
1371     Booktitle = {ISSAC '01: Proceedings of the 2001 international symposium on Symbolic and algebraic computation},
1372     Doi = {http://doi.acm.org/10.1145/384101.384119},
1373     Isbn = {1-58113-417-7},
1374     Location = {London, Ontario, Canada},
1375     Pages = {121--128},
1376     Publisher = {ACM},
1377     Title = {Polynomial root finding using iterated Eigenvalue computation},
1378     Year = {2001},
1379     Bdsk-Url-1 = {http://doi.acm.org/10.1145/384101.384119}}