ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nivsRnemd/nivsRnemd.bib
Revision: 3645
Committed: Wed Sep 15 23:22:47 2010 UTC (14 years ago) by skuang
File size: 86036 byte(s)
Log Message:
some changes according to reviewers' comments.

File Contents

# User Rev Content
1 skuang 3527 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 skuang 3645 %% Created for Shenyu Kuang at 2010-09-15 16:54:39 -0400
6 skuang 3527
7    
8 gezelter 3625 %% Saved with string encoding Unicode (UTF-8)
9 skuang 3527
10    
11    
12 skuang 3645 @article{HeX:1993,
13     Abstract = {{A recently developed non-equilibrium molecular dynamics algorithm for
14     heat conduction is used to compute the thermal conductivity, thermal
15     diffusion factor, and heat of transfer in binary Lennard-Jones
16     mixtures. An internal energy flux is established with local source and
17     sink terms for kinetic energy.
18     Simulations of isotope mixtures covering a range of densities and mass
19     ratios show that the lighter component prefers the hot side of the
20     system at stationary state. This implies a positive thermal diffusion
21     factor in the definition we have adopted here. The molecular basis for
22     the Soret effect is studied by analysing the energy flux through the
23     system. In all cases we found that there is a difference in the
24     relative contributions when we compare the hot and cold sides of the
25     system. The contribution from the lighter component is predominantly
26     flux of kinetic energy, and this contribution increases from the cold
27     to the hot side. The contribution from the heavier component is
28     predominantly energy transfer through molecular interactions, and it
29     increases from the hot to the cold side. This explains why the thermal
30     diffusion factor is positive; heal is conducted more effectively
31     through the system if the lighter component is enriched at the hot
32     side. Even for very large heat fluxes, we find a linear or almost
33     linear temperature profile through the system, and a constant thermal
34     conductivity. The entropy production per unit volume and unit time
35     increases from the hot to the cold side.}},
36     Author = {HAFSKJOLD, B and IKESHOJI, T and RATKJE, SK},
37     Date-Added = {2010-09-15 16:52:45 -0400},
38     Date-Modified = {2010-09-15 16:54:23 -0400},
39     Issn = {{0026-8976}},
40     Journal = {{MOLECULAR PHYSICS}},
41     Month = {{DEC 20}},
42     Number = {{6}},
43     Pages = {{1389-1412}},
44     Title = {{ON THE MOLECULAR MECHANISM OF THERMAL-DIFFUSION IN LIQUIDS}},
45     Unique-Id = {{ISI:A1993MQ34500009}},
46     Volume = {{80}},
47     Year = {{1993}}}
48    
49     @article{HeX:1994,
50     Abstract = {{This paper presents a new algorithm for non-equilibrium molecular
51     dynamics, where a temperature gradient is established in a system with
52     periodic boundary conditions. At each time step in the simulation, a
53     fixed amount of energy is supplied to a hot region by scaling the
54     velocity of each particle in it, subject to conservation of total
55     momentum. An equal amount of energy is likewise withdrawn from a cold
56     region at each time step. Between the hot and cold regions is a region
57     through which an energy flux is established. Two configurations of hot
58     and cold regions are proposed. Using a stacked layer structure, the
59     instantaneous local energy flux for a 128-particle Lennard-Jones system
60     in liquid was found to be in good agreement with the macroscopic theory
61     of heat conduction at stationary state, except in and near the hot and
62     cold regions. Thermal conductivity calculated for the 128-particle
63     system was about 10\% smaller than the literature value obtained by
64     molecular dynamics calculations. One run with a 1024-particle system
65     showed an agreement with the literature value within statistical error
66     (1-2\%). Using a unit cell with a cold spherical region at the centre
67     and a hot region in the perimeter of the cube, an initial gaseous state
68     of argon was separated into gas and liquid phases. Energy fluxes due to
69     intermolecular energy transfer and transport of kinetic energy dominate
70     in the liquid and gas phases, respectively.}},
71     Author = {IKESHOJI, T and HAFSKJOLD, B},
72     Date-Added = {2010-09-15 16:52:45 -0400},
73     Date-Modified = {2010-09-15 16:54:37 -0400},
74     Issn = {{0026-8976}},
75     Journal = {{MOLECULAR PHYSICS}},
76     Month = {{FEB 10}},
77     Number = {{2}},
78     Pages = {{251-261}},
79     Title = {{NONEQUILIBRIUM MOLECULAR-DYNAMICS CALCULATION OF HEAT-CONDUCTION IN LIQUID AND THROUGH LIQUID-GAS INTERFACE}},
80     Unique-Id = {{ISI:A1994MY17400001}},
81     Volume = {{81}},
82     Year = {{1994}}}
83    
84 gezelter 3632 @article{plech:195423,
85     Author = {A. Plech and V. Kotaidis and S. Gresillon and C. Dahmen and G. von Plessen},
86     Date-Added = {2010-08-12 11:34:55 -0400},
87     Date-Modified = {2010-08-12 11:34:55 -0400},
88     Eid = {195423},
89     Journal = {Physical Review B (Condensed Matter and Materials Physics)},
90     Keywords = {gold; laser materials processing; melting; nanoparticles; time resolved spectra; X-ray scattering; lattice dynamics; high-speed optical techniques; cooling; thermal resistance; thermal conductivity; long-range order},
91     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_70_195423.pdf},
92     Number = {19},
93     Numpages = {7},
94     Pages = {195423},
95     Publisher = {APS},
96     Title = {Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering},
97     Url = {http://link.aps.org/abstract/PRB/v70/e195423},
98     Volume = {70},
99     Year = {2004},
100     Bdsk-Url-1 = {http://link.aps.org/abstract/PRB/v70/e195423}}
101    
102     @article{Wilson:2002uq,
103     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
104     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
105     Date-Added = {2010-08-12 11:31:02 -0400},
106     Date-Modified = {2010-08-12 11:31:02 -0400},
107     Doi = {ARTN 224301},
108     Journal = {Phys. Rev. B},
109     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
110     Title = {Colloidal metal particles as probes of nanoscale thermal transport in fluids},
111     Volume = {66},
112     Year = {2002},
113     Bdsk-Url-1 = {http://dx.doi.org/224301}}
114    
115 gezelter 3625 @article{RevModPhys.61.605,
116     Author = {Swartz, E. T. and Pohl, R. O.},
117     Date-Added = {2010-08-06 17:03:01 -0400},
118     Date-Modified = {2010-08-06 17:03:01 -0400},
119     Doi = {10.1103/RevModPhys.61.605},
120     Journal = {Rev. Mod. Phys.},
121     Month = {Jul},
122     Number = {3},
123     Numpages = {63},
124     Pages = {605--668},
125     Publisher = {American Physical Society},
126     Title = {Thermal boundary resistance},
127     Volume = {61},
128     Year = {1989},
129     Bdsk-Url-1 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
130    
131     @article{cahill:793,
132     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
133     Date-Added = {2010-08-06 17:02:22 -0400},
134     Date-Modified = {2010-08-06 17:02:22 -0400},
135     Doi = {10.1063/1.1524305},
136     Journal = {Journal of Applied Physics},
137     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
138     Number = {2},
139     Pages = {793-818},
140     Publisher = {AIP},
141     Title = {Nanoscale thermal transport},
142     Url = {http://link.aip.org/link/?JAP/93/793/1},
143     Volume = {93},
144     Year = {2003},
145     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
146     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
147    
148 gezelter 3616 @inbook{Hoffman:2001sf,
149     Address = {New York},
150 skuang 3613 Annote = {LDR 01107cam 2200253 a 4500
151     001 12358442
152     005 20070910074423.0
153     008 010326s2001 nyua b 001 0 eng
154     906 $a7$bcbc$corignew$d1$eocip$f20$gy-gencatlg
155     925 0 $aacquire$b2 shelf copies$xpolicy default
156     955 $ato ASCD pc23 03-26-01; jp20 03-27-01 to subj; jp99 to SL 03-27-01; jp85 to Dewey 03-27-01; aa01 03-28-01$aps02 2001-10-04 bk rec'd, to CIP ver.;$fpv04 2001-10-31 CIP ver to BCCD$ajp01 2001-12-06 c. 2 to BCCD
157     010 $a 2001028633
158     020 $a0824704436 (acid-free paper)
159     040 $aDLC$cDLC$dDLC
160     050 00 $aQA297$b.H588 2001
161     082 00 $a519.4$221
162     100 1 $aHoffman, Joe D.,$d1934-
163     245 10 $aNumerical methods for engineers and scientists /$cJoe D. Hoffman.
164     250 $a2nd ed., rev. and expanded.
165     260 $aNew York :$bMarcel Dekker,$cc2001.
166     300 $axi, 823 p. :$bill. ;$c26 cm.
167     504 $aIncludes bibliographical references (p. 775-777) and index.
168     650 0 $aNumerical analysis.
169     856 42 $3Publisher description$uhttp://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html
170     },
171     Author = {Hoffman, Joe D.},
172     Call-Number = {QA297},
173     Date-Added = {2010-07-15 16:32:02 -0400},
174 skuang 3617 Date-Modified = {2010-07-19 16:49:37 -0400},
175 skuang 3613 Dewey-Call-Number = {519.4},
176     Edition = {2nd ed., rev. and expanded},
177     Genre = {Numerical analysis},
178     Isbn = {0824704436 (acid-free paper)},
179     Library-Id = {2001028633},
180 skuang 3617 Pages = {157},
181 skuang 3613 Publisher = {Marcel Dekker},
182 gezelter 3616 Title = {Numerical methods for engineers and scientists},
183 skuang 3613 Url = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html},
184     Year = {2001},
185     Bdsk-Url-1 = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html}}
186    
187 gezelter 3609 @article{Vardeman:2008fk,
188     Abstract = {Using molecular dynamics simulations, we have simulated the rapid cooling experienced by bimetallic nanoparticles following laser excitation at the plasmon resonance and find evidence that glassy beads, specifically Ag-Cu bimetallic particles at the eutectic composition (60\% Ag, 40\% Cu), can be formed during these experiments. The bimetallic nanoparticles are embedded in an implicit solvent with a viscosity tuned to yield cooling curves that match the experimental cooling behavior as closely as possible. Because the nanoparticles have a large surface-to-volume ratio, experimentally realistic cooling rates are accessible via relatively short simulations. The presence of glassy structural features was verified using bond orientational order parameters that are sensitive to the formation of local icosahedral ordering in condensed phases. As the particles cool from the liquid droplet state into glassy beads, a silver-rich monolayer develops on the outer surface and local icosahedra can develop around the silver atoms in this monolayer. However, we observe a strong preference for the local icosahedral ordering around the copper atoms in the particles. As the particles cool, these local icosahedral structures grow to include a larger fraction of the atoms in the nanoparticle, eventually leading to a glassy nanosphere.},
189     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
190 gezelter 3616 Author = {{Vardeman II}, Charles F. and Gezelter, J. Daniel},
191 gezelter 3609 Date-Added = {2010-07-13 11:48:22 -0400},
192 gezelter 3616 Date-Modified = {2010-07-19 16:20:01 -0400},
193 gezelter 3609 Doi = {DOI 10.1021/jp710063g},
194     Isi = {000253512400021},
195     Isi-Recid = {160903603},
196     Isi-Ref-Recids = {144152922 81445483 98913099 146167982 55512304 50985260 52031423 29272311 151055545 134895634 130292830 101988637 100757730 98524559 123952006 6025131 59492217 2078548 135495737 136941603 90709964 160903604 130558416 113800688 30137926 117888234 63632785 38926953 158293976 135246439 125693419 125789026 155583142 156430464 65888620 130160487 97576420 109490154 150229560 116057234 134425927 142869781 121706070 89390336 119150946 143383743 64066027 171282998 142688207 51429664 84591083 127696312 58160909 155366996 155654757 137551818 128633299 109033408 120457571 171282999 124947095 126857514 49630702 64115284 84689627 71842426 96309965 79034659 92658330 146168029 119238036 144824430 132319357 160903607 171283000 100274448},
197     Journal = {Journal of Physical Chemistry C},
198     Month = mar,
199     Number = {9},
200     Pages = {3283-3293},
201     Publisher = {AMER CHEMICAL SOC},
202     Times-Cited = {0},
203     Title = {Simulations of laser-induced glass formation in Ag-Cu nanoparticles},
204     Volume = {112},
205     Year = {2008},
206     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000253512400021}}
207    
208     @article{PhysRevB.59.3527,
209     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
210     Date-Added = {2010-07-13 11:44:08 -0400},
211     Date-Modified = {2010-07-13 11:44:08 -0400},
212     Doi = {10.1103/PhysRevB.59.3527},
213     Journal = {Phys. Rev. B},
214     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
215     Month = {Feb},
216     Number = {5},
217     Numpages = {6},
218     Pages = {3527-3533},
219     Publisher = {American Physical Society},
220     Title = {Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:\quad{}{C}u-{A}g and {C}u-{N}i},
221     Volume = {59},
222     Year = {1999},
223     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
224    
225     @article{Medasani:2007uq,
226     Abstract = {We employ first-principles and empirical computational methods to study the surface energy and surface stress of silver nanoparticles. The structures, cohesive energies, and lattice contractions of spherical Ag nanoclusters in the size range 0.5-5.5 nm are analyzed using two different theoretical approaches: an ab initio density functional pseudopotential technique combined with the generalized gradient approximation and the embedded atom method. The surface energies and stresses obtained via the embedded atom method are found to be in good agreement with those predicted by the gradient-corrected ab initio density functional formalism. We estimate the surface energy of Ag nanoclusters to be in the range of 1.0-2.2 J/m(2). Our values are close to the bulk surface energy of silver, but are significantly lower than the recently reported value of 7.2 J/m(2) for free Ag nanoparticles derived from the Kelvin equation.},
227     Author = {Medasani, Bharat and Park, Young Ho and Vasiliev, Igor},
228     Date-Added = {2010-07-13 11:43:15 -0400},
229     Date-Modified = {2010-07-13 11:43:15 -0400},
230     Doi = {ARTN 235436},
231     Journal = {Phys. Rev. B},
232     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_75_235436.pdf},
233     Title = {Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles},
234     Volume = {75},
235     Year = {2007},
236     Bdsk-Url-1 = {http://dx.doi.org/235436}}
237    
238     @article{Wang:2005qy,
239     Abstract = {The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 atom \%. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5-14 atom \% higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertexes of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.},
240     Author = {Wang, GF and Van Hove, MA and Ross, PN and Baskes, MI},
241     Date-Added = {2010-07-13 11:42:50 -0400},
242     Date-Modified = {2010-07-13 11:42:50 -0400},
243     Doi = {DOI 10.1021/jp050116n},
244     Journal = {J. Phys. Chem. B},
245     Pages = {11683-11692},
246     Title = {Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations},
247     Volume = {109},
248     Year = {2005},
249     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp050116n}}
250    
251     @article{Chui:2003fk,
252     Abstract = {Molecular dynamics simulations of a platinum nanocluster consisting 250 atoms were performed at different temperatures between 70 K and 298 K. The semi-empirical, many-body Sutton-Chen (SC) potential was used to model the interatomic interaction in the metallic system. Regions of core or bulk-like atoms and surface atoms can be defined from analyses of structures, atomic coordination, and the local density function of atoms as defined in the SC potential. The core atoms in the nanoparticle behave as bulk-like metal atoms with a predominant face centered cubic (fcc) packing. The interface between surface atoms and core atoms is marked by a peak in the local density function and corresponds to near surface atoms. The near surface atoms and surface atoms prefer a hexagonal closed packing (hcp). The temperature and size effects on structures of the nanoparticle and the dynamics of the surface region and the core region are discussed.},
253     Author = {Chui, YH and Chan, KY},
254     Date-Added = {2010-07-13 11:42:32 -0400},
255     Date-Modified = {2010-07-13 11:42:32 -0400},
256     Doi = {DOI 10.1039/b302122j},
257     Journal = {Phys. Chem. Chem. Phys.},
258     Pages = {2869-2874},
259     Title = {Analyses of surface and core atoms in a platinum nanoparticle},
260     Volume = {5},
261     Year = {2003},
262     Bdsk-Url-1 = {http://dx.doi.org/10.1039/b302122j}}
263    
264     @article{Sankaranarayanan:2005lr,
265     Abstract = {Bimetallic nanoclusters are of interest because of their utility in catalysis and sensors, The thermal characteristics of bimetallic Pt-Pd nanoclusters of different sizes and compositions were investigated through molecular dynamics simulations using quantum Sutton-Chen (QSC) many-body potentials, Monte Carlo simulations employing the bond order simulation model were used to generate minimum energy configurations, which were utilized as the starting point for molecular dynamics simulations. The calculated initial configurations of the Pt-Pd system consisted of surface segregated Pd atoms and a Pt-rich core, Melting characteristics were studied by following the changes in potential energy and heat capacity as functions of temperature, Structural changes accompanying the thermal evolution were studied by the bond order parameter method. The Pt-Pd clusters exhibited a two-stage melting: surface melting of the external Pd atoms followed by homogeneous melting of the Pt core. These transitions were found to depend on the composition and size of the nanocluster. Melting temperatures of the nanoclusters were found to be much lower than those of bulk Pt and Pd. Bulk melting temperatures of Pd and Pt simulated using periodic boundary conditions compare well with experimental values, thus providing justification for the use of QSC potentials in these simulations. Deformation parameters were calculated to characterize the structural evolution resulting from diffusion of Pd and Pt atoms, The results indicate that in Pd-Pt clusters, Pd atoms prefer to remain at the surface even after melting. In addition, Pt also tends to diffuse to the surface after melting due to reduction of its surface energy with temperature. This mixing pattern is different from those reported in some of the earlier Studies on melting of bimetallics.},
266     Author = {Sankaranarayanan, SKRS and Bhethanabotla, VR and Joseph, B},
267     Date-Added = {2010-07-13 11:42:13 -0400},
268     Date-Modified = {2010-07-13 11:42:13 -0400},
269     Doi = {ARTN 195415},
270     Journal = {Phys. Rev. B},
271     Title = {Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters},
272     Volume = {71},
273     Year = {2005},
274     Bdsk-Url-1 = {http://dx.doi.org/195415}}
275    
276     @article{Vardeman-II:2001jn,
277     Author = {C.~F. {Vardeman II} and J.~D. Gezelter},
278     Date-Added = {2010-07-13 11:41:50 -0400},
279     Date-Modified = {2010-07-13 11:41:50 -0400},
280     Journal = {J. Phys. Chem. A},
281     Local-Url = {file://localhost/Users/charles/Documents/Papers/Vardeman%20II/2001.pdf},
282     Number = {12},
283     Pages = {2568},
284     Title = {Comparing models for diffusion in supercooled liquids: The eutectic composition of the {A}g-{C}u alloy},
285     Volume = {105},
286     Year = {2001}}
287    
288     @article{ShibataT._ja026764r,
289     Author = {Shibata, T. and Bunker, B.A. and Zhang, Z. and Meisel, D. and Vardeman, C.F. and Gezelter, J.D.},
290     Date-Added = {2010-07-13 11:41:36 -0400},
291     Date-Modified = {2010-07-13 11:41:36 -0400},
292     Journal = {J. Amer. Chem. Soc.},
293     Local-Url = {file://localhost/Users/charles/Documents/Papers/ja026764r.pdf},
294     Number = {40},
295     Pages = {11989-11996},
296     Title = {Size-Dependent Spontaneous Alloying of {A}u-{A}g Nanoparticles},
297     Url = {http://dx.doi.org/10.1021/ja026764r},
298     Volume = {124},
299     Year = {2002},
300     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja026764r}}
301    
302     @article{Chen90,
303     Author = {A.~P. Sutton and J. Chen},
304     Date-Added = {2010-07-13 11:40:48 -0400},
305     Date-Modified = {2010-07-13 11:40:48 -0400},
306     Journal = {Phil. Mag. Lett.},
307     Pages = {139-146},
308     Title = {Long-Range Finnis Sinclair Potentials},
309     Volume = 61,
310     Year = {1990}}
311    
312     @article{PhysRevB.33.7983,
313     Author = {Foiles, S. M. and Baskes, M. I. and Daw, M. S.},
314     Date-Added = {2010-07-13 11:40:28 -0400},
315     Date-Modified = {2010-07-13 11:40:28 -0400},
316     Doi = {10.1103/PhysRevB.33.7983},
317     Journal = {Phys. Rev. B},
318     Local-Url = {file://localhost/Users/charles/Documents/Papers/p7983_1.pdf},
319     Month = {Jun},
320     Number = {12},
321     Numpages = {8},
322     Pages = {7983-7991},
323     Publisher = {American Physical Society},
324     Title = {Embedded-atom-method functions for the fcc metals {C}u, {A}g, {A}u, {N}i, {P}d, {P}t, and their alloys},
325     Volume = {33},
326     Year = {1986},
327     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.33.7983}}
328    
329     @article{hoover85,
330     Author = {W.~G. Hoover},
331     Date-Added = {2010-07-13 11:24:30 -0400},
332     Date-Modified = {2010-07-13 11:24:30 -0400},
333     Journal = pra,
334     Pages = 1695,
335     Title = {Canonical dynamics: Equilibrium phase-space distributions},
336     Volume = 31,
337     Year = 1985}
338    
339     @article{melchionna93,
340     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
341     Date-Added = {2010-07-13 11:22:17 -0400},
342     Date-Modified = {2010-07-13 11:22:17 -0400},
343     Journal = {Mol. Phys.},
344     Pages = {533-544},
345     Title = {Hoover {\sc npt} dynamics for systems varying in shape and size},
346     Volume = 78,
347     Year = 1993}
348    
349     @misc{openmd,
350     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
351     Date-Added = {2010-07-13 11:16:00 -0400},
352 gezelter 3616 Date-Modified = {2010-07-19 16:27:45 -0400},
353     Howpublished = {Available at {\tt http://openmd.net}},
354     Title = {{OpenMD}}}
355 gezelter 3609
356 skuang 3617 @inbook{AshcroftMermin,
357 gezelter 3609 Author = {N.~David Mermin and Neil W. Ashcroft},
358     Date-Added = {2010-07-12 14:26:49 -0400},
359 skuang 3617 Date-Modified = {2010-07-22 13:37:20 -0400},
360     Pages = {21},
361 gezelter 3609 Publisher = {Brooks Cole},
362     Title = {Solid State Physics},
363     Year = {1976}}
364    
365     @book{WagnerKruse,
366     Address = {Berlin},
367     Author = {W. Wagner and A. Kruse},
368     Date-Added = {2010-07-12 14:10:29 -0400},
369     Date-Modified = {2010-07-12 14:13:44 -0400},
370     Publisher = {Springer-Verlag},
371     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
372     Year = {1998}}
373    
374 skuang 3592 @article{ISI:000266247600008,
375 gezelter 3594 Abstract = {Temperature dependence of viscosity of butyl-3-methylimidazolium
376 skuang 3592 hexafluorophosphate is investigated by non-equilibrium molecular
377     dynamics simulations with cosine-modulated force in the temperature
378     range from 360 to 480K. It is shown that this method is able to
379     correctly predict the shear viscosity. The simulation setting and
380     choice of the force field are discussed in detail. The all-atom force
381     field exhibits a bad convergence and the shear viscosity is
382     overestimated, while the simple united atom model predicts the kinetics
383     very well. The results are compared with the equilibrium molecular
384     dynamics simulations. The relationship between the diffusion
385     coefficient and viscosity is examined by means of the hydrodynamic
386     radii calculated from the Stokes-Einstein equation and the solvation
387 gezelter 3594 properties are discussed.},
388     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
389     Affiliation = {Kolafa, J (Reprint Author), Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic. {[}Picalek, Jan; Kolafa, Jiri] Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic.},
390 skuang 3592 Author = {Picalek, Jan and Kolafa, Jiri},
391 gezelter 3594 Author-Email = {jiri.kolafa@vscht.cz},
392 skuang 3592 Date-Added = {2010-04-16 13:19:12 -0400},
393     Date-Modified = {2010-04-16 13:19:12 -0400},
394 gezelter 3594 Doc-Delivery-Number = {448FD},
395     Doi = {10.1080/08927020802680703},
396     Funding-Acknowledgement = {Czech Science Foundation {[}203/07/1006]; Czech Ministry of Education {[}LC512]},
397     Funding-Text = {We gratefully acknowledge a support from the Czech Science Foundation (project 203/07/1006) and the computing facilities from the Czech Ministry of Education (Center for Biomolecules and Complex Molecular Systems, project LC512).},
398     Issn = {0892-7022},
399     Journal = {Mol. Simul.},
400     Journal-Iso = {Mol. Simul.},
401     Keywords = {room temperature ionic liquids; viscosity; non-equilibrium molecular dynamics; solvation; imidazolium},
402     Keywords-Plus = {1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICOCHEMICAL PROPERTIES; COMPUTER-SIMULATION; PHYSICAL-PROPERTIES; IMIDAZOLIUM CATION; FORCE-FIELD; AB-INITIO; TEMPERATURE; CHLORIDE; CONDUCTIVITY},
403     Language = {English},
404     Number = {8},
405     Number-Of-Cited-References = {50},
406     Pages = {685-690},
407     Publisher = {TAYLOR \& FRANCIS LTD},
408     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
409     Times-Cited = {2},
410     Title = {Shear viscosity of ionic liquids from non-equilibrium molecular dynamics simulation},
411     Type = {Article},
412     Unique-Id = {ISI:000266247600008},
413     Volume = {35},
414     Year = {2009},
415 skuang 3592 Bdsk-Url-1 = {http://dx.doi.org/10.1080/08927020802680703%7D}}
416    
417     @article{Vasquez:2004fk,
418     Abstract = {A method for fast calculation of viscosity from molecular dynamics simulation is revisited. The method consists of using a steady-state periodic perturbation. A methodology to choose the amplitude of the external perturbation, which is one of the major practical issues in the original technique of Gosling et al. {$[$}Mol. Phys. 26: 1475 (1973){$]$} is proposed. The amplitude of the perturbation required for fast caculations and the viscosity values for wide ranges of temperature and density of the Lennard-Jones (LJ) model fluid are reported. The viscosity results are in agreement with recent LJ viscosity calculations. Additionally, the simulations demonstrate that the proposed approach is suitable to efficiently generate viscosity data of good quality.},
419     Author = {Vasquez, V. R. and Macedo, E. A. and Zabaloy, M. S.},
420     Date = {2004/11/02/},
421     Date-Added = {2010-04-16 13:18:48 -0400},
422     Date-Modified = {2010-04-16 13:18:48 -0400},
423     Day = {02},
424 gezelter 3594 Journal = {Int. J. Thermophys.},
425 skuang 3592 M3 = {10.1007/s10765-004-7736-3},
426     Month = {11},
427     Number = {6},
428     Pages = {1799--1818},
429     Title = {Lennard-Jones Viscosities in Wide Ranges of Temperature and Density: Fast Calculations Using a Steady--State Periodic Perturbation Method},
430     Ty = {JOUR},
431     Url = {http://dx.doi.org/10.1007/s10765-004-7736-3},
432     Volume = {25},
433     Year = {2004},
434     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-004-7736-3}}
435    
436 skuang 3591 @article{hess:209,
437     Author = {Berk Hess},
438     Date-Added = {2010-04-16 12:37:37 -0400},
439     Date-Modified = {2010-04-16 12:37:37 -0400},
440     Doi = {10.1063/1.1421362},
441 gezelter 3594 Journal = {J. Chem. Phys.},
442 skuang 3591 Keywords = {viscosity; molecular dynamics method; liquid theory; shear flow},
443     Number = {1},
444     Pages = {209-217},
445     Publisher = {AIP},
446     Title = {Determining the shear viscosity of model liquids from molecular dynamics simulations},
447     Url = {http://link.aip.org/link/?JCP/116/209/1},
448     Volume = {116},
449     Year = {2002},
450     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/116/209/1},
451     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1421362}}
452    
453     @article{backer:154503,
454     Author = {J. A. Backer and C. P. Lowe and H. C. J. Hoefsloot and P. D. Iedema},
455     Date-Added = {2010-04-16 12:37:37 -0400},
456     Date-Modified = {2010-04-16 12:37:37 -0400},
457     Doi = {10.1063/1.1883163},
458     Eid = {154503},
459 gezelter 3594 Journal = {J. Chem. Phys.},
460 skuang 3591 Keywords = {Poiseuille flow; flow simulation; Lennard-Jones potential; viscosity; boundary layers; computational fluid dynamics},
461     Number = {15},
462     Numpages = {6},
463     Pages = {154503},
464     Publisher = {AIP},
465     Title = {Poiseuille flow to measure the viscosity of particle model fluids},
466     Url = {http://link.aip.org/link/?JCP/122/154503/1},
467     Volume = {122},
468     Year = {2005},
469     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/122/154503/1},
470     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1883163}}
471    
472     @article{daivis:541,
473     Author = {Peter J. Daivis and Denis J. Evans},
474     Date-Added = {2010-04-16 12:05:36 -0400},
475     Date-Modified = {2010-04-16 12:05:36 -0400},
476     Doi = {10.1063/1.466970},
477 gezelter 3594 Journal = {J. Chem. Phys.},
478 skuang 3591 Keywords = {SHEAR; DECANE; FLOW MODELS; VOLUME; PRESSURE; NONEQUILIBRIUM; MOLECULAR DYNAMICS CALCULATIONS; COMPARATIVE EVALUATIONS; SIMULATION; STRAIN RATE; VISCOSITY; KUBO FORMULA},
479     Number = {1},
480     Pages = {541-547},
481     Publisher = {AIP},
482     Title = {Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane},
483     Url = {http://link.aip.org/link/?JCP/100/541/1},
484     Volume = {100},
485     Year = {1994},
486     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/100/541/1},
487     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.466970}}
488    
489     @article{mondello:9327,
490     Author = {Maurizio Mondello and Gary S. Grest},
491     Date-Added = {2010-04-16 12:05:36 -0400},
492     Date-Modified = {2010-04-16 12:05:36 -0400},
493     Doi = {10.1063/1.474002},
494 gezelter 3594 Journal = {J. Chem. Phys.},
495 skuang 3591 Keywords = {organic compounds; viscosity; digital simulation; molecular dynamics method},
496     Number = {22},
497     Pages = {9327-9336},
498     Publisher = {AIP},
499     Title = {Viscosity calculations of [bold n]-alkanes by equilibrium molecular dynamics},
500     Url = {http://link.aip.org/link/?JCP/106/9327/1},
501     Volume = {106},
502     Year = {1997},
503     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/106/9327/1},
504     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.474002}}
505    
506 skuang 3588 @article{ISI:A1988Q205300014,
507 gezelter 3594 Address = {ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE},
508     Affiliation = {VOGELSANG, R (Reprint Author), RUHR UNIV BOCHUM,UNIV STR 150,D-4630 BOCHUM,FED REP GER. UNIV DUISBURG,THERMODYNAM,D-4100 DUISBURG,FED REP GER.},
509     Author = {Vogelsang, R and Hoheisel, G and Luckas, M},
510 skuang 3588 Date-Added = {2010-04-14 16:20:24 -0400},
511     Date-Modified = {2010-04-14 16:20:24 -0400},
512 gezelter 3594 Doc-Delivery-Number = {Q2053},
513     Issn = {0026-8976},
514     Journal = {Mol. Phys.},
515     Journal-Iso = {Mol. Phys.},
516     Language = {English},
517     Month = {AUG 20},
518     Number = {6},
519     Number-Of-Cited-References = {14},
520     Pages = {1203-1213},
521     Publisher = {TAYLOR \& FRANCIS LTD},
522     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
523     Times-Cited = {12},
524     Title = {SHEAR VISCOSITY AND THERMAL-CONDUCTIVITY OF THE LENNARD-JONES LIQUID COMPUTED USING MOLECULAR-DYNAMICS AND PREDICTED BY A MEMORY FUNCTION MODEL FOR A LARGE NUMBER OF STATES},
525     Type = {Article},
526     Unique-Id = {ISI:A1988Q205300014},
527     Volume = {64},
528 gezelter 3609 Year = {1988}}
529 skuang 3588
530 skuang 3587 @article{ISI:000261835100054,
531 gezelter 3594 Abstract = {Transport properties of liquid methanol and ethanol are predicted by
532 skuang 3587 molecular dynamics simulation. The molecular models for the alcohols
533     are rigid, nonpolarizable, and of united-atom type. They were developed
534     in preceding work using experimental vapor-liquid equilibrium data
535     only. Self- and Maxwell-Stefan diffusion coefficients as well as the
536     shear viscosity of methanol, ethanol, and their binary mixture are
537     determined using equilibrium molecular dynamics and the Green-Kubo
538     formalism. Nonequilibrium molecular dynamics is used for predicting the
539     thermal conductivity of the two pure substances. The transport
540     properties of the fluids are calculated over a wide temperature range
541     at ambient pressure and compared with experimental and simulation data
542     from the literature. Overall, a very good agreement with the experiment
543     is found. For instance, the self-diffusion coefficient and the shear
544     viscosity are predicted with average deviations of less than 8\% for
545     the pure alcohols and 12\% for the mixture. The predicted thermal
546     conductivity agrees on average within 5\% with the experimental data.
547     Additionally, some velocity and shear viscosity autocorrelation
548     functions are presented and discussed. Radial distribution functions
549     for ethanol are also presented. The predicted excess volume, excess
550     enthalpy, and the vapor-liquid equilibrium of the binary mixture
551 gezelter 3594 methanol + ethanol are assessed and agree well with experimental data.},
552     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
553     Affiliation = {Vrabec, J (Reprint Author), Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Vrabec, Jadran] Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Guevara-Carrion, Gabriela; Hasse, Hans] Univ Kaiserslautern, Lab Engn Thermodynam, D-67663 Kaiserslautern, Germany. {[}Nieto-Draghi, Carlos] Inst Francais Petr, F-92852 Rueil Malmaison, France.},
554 skuang 3587 Author = {Guevara-Carrion, Gabriela and Nieto-Draghi, Carlos and Vrabec, Jadran and Hasse, Hans},
555 gezelter 3594 Author-Email = {vrabec@itt.uni-stuttgart.de},
556 skuang 3587 Date-Added = {2010-04-14 15:43:29 -0400},
557     Date-Modified = {2010-04-14 15:43:29 -0400},
558 gezelter 3594 Doc-Delivery-Number = {385SY},
559     Doi = {10.1021/jp805584d},
560     Issn = {1520-6106},
561     Journal = {J. Phys. Chem. B},
562     Journal-Iso = {J. Phys. Chem. B},
563     Keywords-Plus = {STEFAN DIFFUSION-COEFFICIENTS; MONTE-CARLO CALCULATIONS; ATOM FORCE-FIELD; SELF-DIFFUSION; DYNAMICS SIMULATION; PHASE-EQUILIBRIA; LIQUID METHANOL; TEMPERATURE-DEPENDENCE; COMPUTER-SIMULATION; MONOHYDRIC ALCOHOLS},
564     Language = {English},
565     Month = {DEC 25},
566     Number = {51},
567     Number-Of-Cited-References = {86},
568     Pages = {16664-16674},
569     Publisher = {AMER CHEMICAL SOC},
570     Subject-Category = {Chemistry, Physical},
571     Times-Cited = {5},
572     Title = {Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture},
573     Type = {Article},
574     Unique-Id = {ISI:000261835100054},
575     Volume = {112},
576     Year = {2008},
577 skuang 3587 Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp805584d%7D}}
578    
579     @article{ISI:000258460400020,
580 gezelter 3594 Abstract = {Nonequilibrium molecular dynamics simulations with the nonpolarizable
581 skuang 3587 SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the
582     polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121,
583     9549) force fields have been employed to calculate the thermal
584     conductivity and other associated properties of methane hydrate over a
585     temperature range from 30 to 260 K. The calculated results are compared
586     to experimental data over this same range. The values of the thermal
587     conductivity calculated with the COS/G2 model are closer to the
588     experimental values than are those calculated with the nonpolarizable
589     SPC/E model. The calculations match the temperature trend in the
590     experimental data at temperatures below 50 K; however, they exhibit a
591     slight decrease in thermal conductivity at higher temperatures in
592     comparison to an opposite trend in the experimental data. The
593     calculated thermal conductivity values are found to be relatively
594     insensitive to the occupancy of the cages except at low (T <= 50 K)
595     temperatures, which indicates that the differences between the two
596     lattice structures may have a more dominant role than generally thought
597     in explaining the low thermal conductivity of methane hydrate compared
598     to ice Ih. The introduction of defects into the water lattice is found
599     to cause a reduction in the thermal conductivity but to have a
600 gezelter 3594 negligible impact on its temperature dependence.},
601     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
602     Affiliation = {Jordan, KD (Reprint Author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Myshakin, Evgeniy M.; Jordan, Kenneth D.; Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol \& Mat Simulat, Pittsburgh, PA 15260 USA. {[}Myshakin, Evgeniy M.] Parsons Project Serv Inc, South Pk, PA 15129 USA.},
603 skuang 3587 Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
604     Date-Added = {2010-04-14 15:38:14 -0400},
605     Date-Modified = {2010-04-14 15:38:14 -0400},
606 gezelter 3594 Doc-Delivery-Number = {337UG},
607     Doi = {10.1021/jp802942v},
608     Funding-Acknowledgement = {E.M.M. ; National Energy Technology Laboratory's Office of Research and Development {[}41817.660.01.03]; ORISE Part-Time Faculty Program ; {[}DE-AM26-04NT41817]; {[}41817.606.06.03]},
609     Funding-Text = {We thank Drs. John Tse, Niall English, and Alan McGaughey for their comments. H.J. and K.D.J. performed this work under Contract DE-AM26-04NT41817, Subtask 41817.606.06.03, and E.M.M. performed this work under the same contract, Subtask 41817.660.01.03, in support of the National Energy Technology Laboratory's Office of Research and Development. K.D.J. was also supported at NETL by the ORISE Part-Time Faculty Program during the early stages of this work.},
610     Issn = {1520-6106},
611     Journal = {J. Phys. Chem. B},
612     Journal-Iso = {J. Phys. Chem. B},
613     Keywords-Plus = {LIQUID WATER; CLATHRATE HYDRATE; HEAT-CAPACITY; FORCE-FIELDS; ICE; ANHARMONICITY; SUMMATION; MODELS; SILICA},
614     Language = {English},
615     Month = {AUG 21},
616     Number = {33},
617     Number-Of-Cited-References = {51},
618     Pages = {10207-10216},
619     Publisher = {AMER CHEMICAL SOC},
620     Subject-Category = {Chemistry, Physical},
621     Times-Cited = {8},
622     Title = {Molecular dynamics Simulations of the thermal conductivity of methane hydrate},
623     Type = {Article},
624     Unique-Id = {ISI:000258460400020},
625     Volume = {112},
626     Year = {2008},
627 skuang 3587 Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp802942v%7D}}
628    
629 skuang 3585 @article{ISI:000184808400018,
630 gezelter 3594 Abstract = {A new non-equilibrium molecular dynamics algorithm is presented based
631 skuang 3585 on the original work of Willer-Plathe, (1997, J. chem. Phys., 106,
632     6082), for the non-equilibrium simulation of heat transport maintaining
633     fixed the total momentum as well as the total energy of the system. The
634     presented scheme preserves these properties but, unlike the original
635     algorithm, is able to deal with multicomponent systems, that is with
636     particles of different mass independently of their relative
637     concentration. The main idea behind the new procedure is to consider an
638     exchange of momentum and energy between the particles in the hot and
639     cold regions, to maintain the non-equilibrium conditions, as if they
640     undergo a hypothetical elastic collision. The new algorithm can also be
641     employed in multicomponent systems for molecular fluids and in a wide
642 gezelter 3594 range of thermodynamic conditions.},
643     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
644     Affiliation = {Nieto-Draghi, C (Reprint Author), Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain. Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Tarragona 43007, Spain.},
645 skuang 3585 Author = {Nieto-Draghi, C and Avalos, JB},
646     Date-Added = {2010-04-14 12:48:08 -0400},
647     Date-Modified = {2010-04-14 12:48:08 -0400},
648 gezelter 3594 Doc-Delivery-Number = {712QM},
649     Doi = {10.1080/0026897031000154338},
650     Issn = {0026-8976},
651     Journal = {Mol. Phys.},
652     Journal-Iso = {Mol. Phys.},
653     Keywords-Plus = {BINARY-LIQUID MIXTURES; THERMAL-CONDUCTIVITY; MATTER TRANSPORT; WATER},
654     Language = {English},
655     Month = {JUL 20},
656     Number = {14},
657     Number-Of-Cited-References = {20},
658     Pages = {2303-2307},
659     Publisher = {TAYLOR \& FRANCIS LTD},
660     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
661     Times-Cited = {13},
662     Title = {Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems},
663     Type = {Article},
664     Unique-Id = {ISI:000184808400018},
665     Volume = {101},
666     Year = {2003},
667 skuang 3585 Bdsk-Url-1 = {http://dx.doi.org/10.1080/0026897031000154338%7D}}
668    
669     @article{Bedrov:2000-1,
670 gezelter 3594 Abstract = {The thermal conductivity of liquid
671 skuang 3585 octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been
672     determined from imposed heat flux non-equilibrium molecular dynamics
673     (NEMD) simulations using a previously published quantum chemistry-based
674     atomistic potential. The thermal conductivity was determined in the
675     temperature domain 550 less than or equal to T less than or equal to
676     800 K, which corresponds approximately to the existence limits of the
677     liquid phase of HMX at atmospheric pressure. The NEMD predictions,
678     which comprise the first reported values for thermal conductivity of
679     HMX liquid, were found to be consistent with measured values for
680     crystalline HMX. The thermal conductivity of liquid HMX was found to
681     exhibit a much weaker temperature dependence than the shear viscosity
682     and self-diffusion coefficients. (C) 2000 Elsevier Science B.V. All
683 gezelter 3594 rights reserved.},
684     Address = {PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS},
685     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Mat Sci \& Engn, 122 S Cent Campus Dr,Room 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.},
686 skuang 3585 Author = {Bedrov, D and Smith, GD and Sewell, TD},
687     Date-Added = {2010-04-14 12:26:59 -0400},
688     Date-Modified = {2010-04-14 12:27:52 -0400},
689 gezelter 3594 Doc-Delivery-Number = {330PF},
690     Issn = {0009-2614},
691     Journal = {Chem. Phys. Lett.},
692     Journal-Iso = {Chem. Phys. Lett.},
693     Keywords-Plus = {FORCE-FIELD},
694     Language = {English},
695     Month = {JUN 30},
696     Number = {1-3},
697     Number-Of-Cited-References = {17},
698     Pages = {64-68},
699     Publisher = {ELSEVIER SCIENCE BV},
700     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
701     Times-Cited = {19},
702     Title = {Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations},
703     Type = {Article},
704     Unique-Id = {ISI:000087969900011},
705     Volume = {324},
706 gezelter 3609 Year = {2000}}
707 skuang 3585
708     @article{ISI:000258840700015,
709 gezelter 3594 Abstract = {By using the embedded-atom method (EAM), a series of molecular dynamics
710 skuang 3585 (MD) simulations are carried out to calculate the viscosity and
711     self-diffusion coefficient of liquid copper from the normal to the
712     undercooled states. The simulated results are in reasonable agreement
713     with the experimental values available above the melting temperature
714     that is also predicted from a solid-liquid-solid sandwich structure.
715     The relationship between the viscosity and the self-diffusion
716     coefficient is evaluated. It is found that the Stokes-Einstein and
717     Sutherland-Einstein relations qualitatively describe this relationship
718     within the simulation temperature range. However, the predicted
719     constant from MD simulation is close to 1/(3 pi), which is larger than
720 gezelter 3594 the constants of the Stokes-Einstein and Sutherland-Einstein relations.},
721     Address = {233 SPRING ST, NEW YORK, NY 10013 USA},
722     Affiliation = {Chen, M (Reprint Author), Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China. {[}Han, X. J.; Chen, M.; Lue, Y. J.] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.},
723 skuang 3585 Author = {Han, X. J. and Chen, M. and Lue, Y. J.},
724 gezelter 3594 Author-Email = {mchen@tsinghua.edu.cn},
725 skuang 3585 Date-Added = {2010-04-14 12:00:38 -0400},
726     Date-Modified = {2010-04-14 12:00:38 -0400},
727 gezelter 3594 Doc-Delivery-Number = {343GH},
728     Doi = {10.1007/s10765-008-0489-7},
729     Funding-Acknowledgement = {China Postdoctoral Science Foundation ; National Natural Science Foundation of China {[}50395101, 50371043]},
730     Funding-Text = {This work was financially supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China under grant Nos. of 50395101 and 50371043. The computations are carried out at the Tsinghua National Laboratory for Information Science and Technology, China. The authors are grateful to Mr. D. Q. Yu for valuable discussions.},
731     Issn = {0195-928X},
732     Journal = {Int. J. Thermophys.},
733     Journal-Iso = {Int. J. Thermophys.},
734     Keywords = {copper; molecular simulation; self-diffusion coefficient; viscosity; undercooled},
735     Keywords-Plus = {EMBEDDED-ATOM MODEL; THERMOPHYSICAL PROPERTIES; COMPUTER-SIMULATION; TRANSITION-METALS; SHEAR VISCOSITY; ALLOYS; TEMPERATURE; DIFFUSION; BINDING; SURFACE},
736     Language = {English},
737     Month = {AUG},
738     Number = {4},
739     Number-Of-Cited-References = {39},
740     Pages = {1408-1421},
741     Publisher = {SPRINGER/PLENUM PUBLISHERS},
742     Subject-Category = {Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied},
743     Times-Cited = {2},
744     Title = {Transport properties of undercooled liquid copper: A molecular dynamics study},
745     Type = {Article},
746     Unique-Id = {ISI:000258840700015},
747     Volume = {29},
748     Year = {2008},
749 skuang 3585 Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-008-0489-7%7D}}
750    
751     @article{Muller-Plathe:2008,
752 gezelter 3594 Abstract = {Reverse nonequilibrium molecular dynamics and equilibrium molecular
753 skuang 3585 dynamics simulations were carried out to compute the shear viscosity of
754     the pure ionic liquid system {[}bmim]{[}PF6] at 300 K. The two methods
755     yielded consistent results which were also compared to experiments. The
756     results showed that the reverse nonequilibrium molecular dynamics
757     (RNEMD) methodology can successfully be applied to computation of
758     highly viscous ionic liquids. Moreover, this study provides a
759     validation of the atomistic force-field developed by Bhargava and
760     Balasubramanian (J. Chem. Phys. 2007, 127, 114510) for dynamic
761 gezelter 3594 properties.},
762     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
763     Affiliation = {Wei, Z (Reprint Author), Tech Univ Darmstadt, Petersenstr 30, D-64287 Darmstadt, Germany. {[}Wei Zhao; Leroy, Frederic; Mueller-Plathe, Florian] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. {[}Balasubramanian, Sundaram] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chem \& Phys Mat Unit, Bangalore 560064, Karnataka, India.},
764     Author = {Wei Zhao and Leroy, Frederic and Balasubramanian, Sundaram and M\"{u}ller-Plathe, Florian},
765     Author-Email = {w.zhao@theo.chemie.tu-darmstadt.de},
766 skuang 3585 Date-Added = {2010-04-14 11:53:37 -0400},
767     Date-Modified = {2010-04-14 11:54:20 -0400},
768 gezelter 3594 Doc-Delivery-Number = {321VS},
769     Doi = {10.1021/jp8017869},
770     Issn = {1520-6106},
771     Journal = {J. Phys. Chem. B},
772     Journal-Iso = {J. Phys. Chem. B},
773     Keywords-Plus = {TRANSPORT-PROPERTIES; FORCE-FIELD; TEMPERATURE; SIMULATION; IMIDAZOLIUM; FLUIDS; MODEL; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; PYRIDINIUM; CHLORIDE},
774     Language = {English},
775     Month = {JUL 10},
776     Number = {27},
777     Number-Of-Cited-References = {49},
778     Pages = {8129-8133},
779     Publisher = {AMER CHEMICAL SOC},
780     Subject-Category = {Chemistry, Physical},
781     Times-Cited = {2},
782     Title = {Shear viscosity of the ionic liquid 1-n-butyl 3-methylimidazolium hexafluorophosphate {[}bmim]{[}PF6] computed by reverse nonequilibrium molecular dynamics},
783     Type = {Article},
784     Unique-Id = {ISI:000257335200022},
785     Volume = {112},
786     Year = {2008},
787 skuang 3585 Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp8017869%7D}}
788    
789     @article{Muller-Plathe:2002,
790 gezelter 3594 Abstract = {The reverse nonequilibrium molecular dynamics {[}F. Muller-Plathe,
791 skuang 3585 Phys. Rev. E 49, 359 (1999)] presented for the calculation of the shear
792     viscosity of Lennard-Jones liquids has been extended to atomistic
793     models of molecular liquids. The method is improved to overcome the
794     problems due to the detailed molecular models. The new technique is
795     besides a test with a Lennard-Jones fluid, applied on different
796     realistic systems: liquid nitrogen, water, and hexane, in order to
797     cover a large range of interactions and systems/architectures. We show
798     that all the advantages of the method itemized previously are still
799     valid, and that it has a very good efficiency and accuracy making it
800 gezelter 3594 very competitive. (C) 2002 American Institute of Physics.},
801     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
802     Affiliation = {Bordat, P (Reprint Author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymer Res, D-55128 Mainz, Germany.},
803     Author = {Bordat, P and M\"{u}ller-Plathe, F},
804 skuang 3585 Date-Added = {2010-04-14 11:34:42 -0400},
805     Date-Modified = {2010-04-14 11:35:35 -0400},
806 gezelter 3594 Doc-Delivery-Number = {521QV},
807     Doi = {10.1063/1.1436124},
808     Issn = {0021-9606},
809     Journal = {J. Chem. Phys.},
810     Journal-Iso = {J. Chem. Phys.},
811     Keywords-Plus = {TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; LIQUID ALKANES; N-HEPTADECANE; SIMULATION; WATER; FLOW; MIXTURES; BUTANE; NITROGEN},
812     Language = {English},
813     Month = {FEB 22},
814     Number = {8},
815     Number-Of-Cited-References = {47},
816     Pages = {3362-3369},
817     Publisher = {AMER INST PHYSICS},
818     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
819     Times-Cited = {33},
820     Title = {The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics},
821     Type = {Article},
822     Unique-Id = {ISI:000173853600023},
823     Volume = {116},
824     Year = {2002},
825 skuang 3585 Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1436124%7D}}
826    
827 skuang 3580 @article{ISI:000207079300006,
828 skuang 3585 Abstract = {Non-equilibrium Molecular Dynamics Simulation
829 gezelter 3583 methods have been used to study the ability of
830     Embedded Atom Method models of the metals copper and
831     gold to reproduce the equilibrium and
832     non-equilibrium behavior of metals at a stationary
833     and at a moving solid/liquid interface. The
834     equilibrium solid/vapor interface was shown to
835     display a simple termination of the bulk until the
836     temperature of the solid reaches approximate to 90\%
837     of the bulk melting point. At and above such
838     temperatures the systems exhibit a surface
839     disodering known as surface melting. Non-equilibrium
840     simulations emulating the action of a picosecond
841     laser on the metal were performed to determine the
842     regrowth velocity. For copper, the action of a 20 ps
843     laser with an absorbed energy of 2-5 mJ/cm(2)
844     produced a regrowth velocity of 83-100 m/s, in
845     reasonable agreement with the value obtained by
846     experiment (>60 m/s). For gold, similar conditions
847     produced a slower regrowth velocity of 63 m/s at an
848     absorbed energy of 5 mJ/cm(2). This is almost a
849     factor of two too low in comparison to experiment
850     (>100 m/s). The regrowth velocities of the metals
851     seems unexpectedly close to experiment considering
852     that the free-electron contribution is ignored in
853     the Embeeded Atom Method models used.},
854 skuang 3585 Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
855     Affiliation = {Clancy, P (Reprint Author), Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA.},
856     Author = {Richardson, Clifton F. and Clancy, Paulette},
857     Date-Added = {2010-04-07 11:24:36 -0400},
858     Date-Modified = {2010-04-07 11:24:36 -0400},
859     Doc-Delivery-Number = {V04SY},
860     Issn = {0892-7022},
861 gezelter 3594 Journal = {Mol. Simul.},
862 skuang 3585 Journal-Iso = {Mol. Simul.},
863     Keywords = {Non-equilibrium computer simulation; molecular dynamics; crystal growth; Embedded Atom Method models of metals},
864     Language = {English},
865     Number = {5-6},
866     Number-Of-Cited-References = {36},
867     Pages = {335-355},
868     Publisher = {TAYLOR \& FRANCIS LTD},
869     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
870     Times-Cited = {7},
871     Title = {PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A COMPUTER SIMULATION STUDY},
872     Type = {Article},
873     Unique-Id = {ISI:000207079300006},
874     Volume = {7},
875     Year = {1991}}
876 skuang 3580
877 skuang 3573 @article{ISI:000167766600035,
878 skuang 3585 Abstract = {Molecular dynamics simulations are used to
879 gezelter 3583 investigate the separation of water films adjacent
880     to a hot metal surface. The simulations clearly show
881     that the water layers nearest the surface overheat
882     and undergo explosive boiling. For thick films, the
883     expansion of the vaporized molecules near the
884     surface forces the outer water layers to move away
885     from the surface. These results are of interest for
886     mass spectrometry of biological molecules, steam
887     cleaning of surfaces, and medical procedures.},
888 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
889     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
890     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
891     Date-Added = {2010-03-11 15:32:14 -0500},
892     Date-Modified = {2010-03-11 15:32:14 -0500},
893     Doc-Delivery-Number = {416ED},
894     Issn = {1089-5639},
895     Journal = {J. Phys. Chem. A},
896     Journal-Iso = {J. Phys. Chem. A},
897     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
898     Language = {English},
899     Month = {MAR 29},
900     Number = {12},
901     Number-Of-Cited-References = {65},
902     Pages = {2748-2755},
903     Publisher = {AMER CHEMICAL SOC},
904     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
905     Times-Cited = {66},
906     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
907     Type = {Article},
908     Unique-Id = {ISI:000167766600035},
909     Volume = {105},
910     Year = {2001}}
911 skuang 3573
912 skuang 3585 @article{Maginn:2010,
913     Abstract = {The reverse nonequilibrium molecular dynamics
914 gezelter 3583 (RNEMD) method calculates the shear viscosity of a
915     fluid by imposing a nonphysical exchange of momentum
916     and measuring the resulting shear velocity
917     gradient. In this study we investigate the range of
918     momentum flux values over which RNEMD yields usable
919     (linear) velocity gradients. We find that nonlinear
920     velocity profiles result primarily from gradients in
921     fluid temperature and density. The temperature
922     gradient results from conversion of heat into bulk
923     kinetic energy, which is transformed back into heat
924     elsewhere via viscous heating. An expression is
925     derived to predict the temperature profile resulting
926     from a specified momentum flux for a given fluid and
927     simulation cell. Although primarily bounded above,
928     we also describe milder low-flux limitations. RNEMD
929     results for a Lennard-Jones fluid agree with
930     equilibrium molecular dynamics and conventional
931     nonequilibrium molecular dynamics calculations at
932     low shear, but RNEMD underpredicts viscosity
933     relative to conventional NEMD at high shear.},
934 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
935     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
936     Article-Number = {014103},
937     Author = {Tenney, Craig M. and Maginn, Edward J.},
938     Author-Email = {ed@nd.edu},
939     Date-Added = {2010-03-09 13:08:41 -0500},
940 gezelter 3616 Date-Modified = {2010-07-19 16:21:35 -0400},
941 skuang 3585 Doc-Delivery-Number = {542DQ},
942     Doi = {10.1063/1.3276454},
943     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
944     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
945     Issn = {0021-9606},
946     Journal = {J. Chem. Phys.},
947     Journal-Iso = {J. Chem. Phys.},
948     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
949     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
950     Language = {English},
951     Month = {JAN 7},
952     Number = {1},
953     Number-Of-Cited-References = {20},
954 gezelter 3616 Pages = {014103},
955 skuang 3585 Publisher = {AMER INST PHYSICS},
956     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
957     Times-Cited = {0},
958     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
959     Type = {Article},
960     Unique-Id = {ISI:000273472300004},
961     Volume = {132},
962     Year = {2010},
963     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
964 skuang 3565
965 skuang 3582 @article{Clancy:1992,
966 skuang 3585 Abstract = {The regrowth velocity of a crystal from a melt
967 gezelter 3583 depends on contributions from the thermal
968     conductivity, heat gradient, and latent heat. The
969     relative contributions of these terms to the
970     regrowth velocity of the pure metals copper and gold
971     during liquid-phase epitaxy are evaluated. These
972     results are used to explain how results from
973     previous nonequilibrium molecular-dynamics
974     simulations using classical potentials are able to
975     predict regrowth velocities that are close to the
976     experimental values. Results from equilibrium
977     molecular dynamics showing the nature of the
978     solid-vapor interface of an
979     embedded-atom-method-modeled Cu57Ni43 alloy at a
980     temperature corresponding to 62\% of the melting
981     point are presented. The regrowth of this alloy
982     following a simulation of a laser-processing
983     experiment is also given, with use of nonequilibrium
984     molecular-dynamics techniques. The thermal
985     conductivity and temperature gradient in the
986     simulation of the alloy are compared to those for
987     the pure metals.},
988 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
989     Affiliation = {CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.},
990     Author = {Richardson, C.~F. and Clancy, P},
991     Date-Added = {2010-01-12 16:17:33 -0500},
992     Date-Modified = {2010-04-08 17:18:25 -0400},
993     Doc-Delivery-Number = {HX378},
994     Issn = {0163-1829},
995     Journal = {Phys. Rev. B},
996     Journal-Iso = {Phys. Rev. B},
997     Keywords-Plus = {SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI},
998     Language = {English},
999     Month = {JUN 1},
1000     Number = {21},
1001     Number-Of-Cited-References = {24},
1002     Pages = {12260-12268},
1003     Publisher = {AMERICAN PHYSICAL SOC},
1004     Subject-Category = {Physics, Condensed Matter},
1005     Times-Cited = {11},
1006     Title = {CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS},
1007     Type = {Article},
1008     Unique-Id = {ISI:A1992HX37800010},
1009     Volume = {45},
1010     Year = {1992}}
1011 skuang 3563
1012 skuang 3585 @article{Bedrov:2000,
1013     Abstract = {We have applied a new nonequilibrium molecular
1014 gezelter 3583 dynamics (NEMD) method {[}F. Muller-Plathe,
1015     J. Chem. Phys. 106, 6082 (1997)] previously applied
1016     to monatomic Lennard-Jones fluids in the
1017     determination of the thermal conductivity of
1018     molecular fluids. The method was modified in order
1019     to be applicable to systems with holonomic
1020     constraints. Because the method involves imposing a
1021     known heat flux it is particularly attractive for
1022     systems involving long-range and many-body
1023     interactions where calculation of the microscopic
1024     heat flux is difficult. The predicted thermal
1025     conductivities of liquid n-butane and water using
1026     the imposed-flux NEMD method were found to be in a
1027     good agreement with previous simulations and
1028     experiment. (C) 2000 American Institute of
1029     Physics. {[}S0021-9606(00)50841-1].},
1030 skuang 3585 Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1031     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1032     Author = {Bedrov, D and Smith, GD},
1033     Date-Added = {2009-11-05 18:21:18 -0500},
1034     Date-Modified = {2010-04-14 11:50:48 -0400},
1035     Doc-Delivery-Number = {369BF},
1036     Issn = {0021-9606},
1037     Journal = {J. Chem. Phys.},
1038     Journal-Iso = {J. Chem. Phys.},
1039     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1040     Language = {English},
1041     Month = {NOV 8},
1042     Number = {18},
1043     Number-Of-Cited-References = {26},
1044     Pages = {8080-8084},
1045     Publisher = {AMER INST PHYSICS},
1046     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1047     Times-Cited = {23},
1048     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
1049     Type = {Article},
1050     Unique-Id = {ISI:000090151400044},
1051     Volume = {113},
1052     Year = {2000}}
1053 skuang 3563
1054     @article{ISI:000231042800044,
1055 skuang 3585 Abstract = {The reverse nonequilibrium molecular dynamics
1056 gezelter 3583 method for thermal conductivities is adapted to the
1057     investigation of molecular fluids. The method
1058     generates a heat flux through the system by suitably
1059     exchanging velocities of particles located in
1060     different regions. From the resulting temperature
1061     gradient, the thermal conductivity is then
1062     calculated. Different variants of the algorithm and
1063     their combinations with other system parameters are
1064     tested: exchange of atomic velocities versus
1065     exchange of molecular center-of-mass velocities,
1066     different exchange frequencies, molecular models
1067     with bond constraints versus models with flexible
1068     bonds, united-atom versus all-atom models, and
1069     presence versus absence of a thermostat. To help
1070     establish the range of applicability, the algorithm
1071     is tested on different models of benzene,
1072     cyclohexane, water, and n-hexane. We find that the
1073     algorithm is robust and that the calculated thermal
1074     conductivities are insensitive to variations in its
1075     control parameters. The force field, in contrast,
1076     has a major influence on the value of the thermal
1077     conductivity. While calculated and experimental
1078     thermal conductivities fall into the same order of
1079     magnitude, in most cases the calculated values are
1080     systematically larger. United-atom force fields seem
1081     to do better than all-atom force fields, possibly
1082     because they remove high-frequency degrees of
1083     freedom from the simulation, which, in nature, are
1084     quantum-mechanical oscillators in their ground state
1085     and do not contribute to heat conduction.},
1086 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1087     Affiliation = {Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.},
1088     Author = {Zhang, MM and Lussetti, E and de Souza, LES and M\"{u}ller-Plathe, F},
1089     Date-Added = {2009-11-05 18:17:33 -0500},
1090     Date-Modified = {2009-11-05 18:17:33 -0500},
1091     Doc-Delivery-Number = {952YQ},
1092     Doi = {10.1021/jp0512255},
1093     Issn = {1520-6106},
1094     Journal = {J. Phys. Chem. B},
1095     Journal-Iso = {J. Phys. Chem. B},
1096     Keywords-Plus = {LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION},
1097     Language = {English},
1098     Month = {AUG 11},
1099     Number = {31},
1100     Number-Of-Cited-References = {42},
1101     Pages = {15060-15067},
1102     Publisher = {AMER CHEMICAL SOC},
1103     Subject-Category = {Chemistry, Physical},
1104     Times-Cited = {17},
1105     Title = {Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics},
1106     Type = {Article},
1107     Unique-Id = {ISI:000231042800044},
1108     Volume = {109},
1109     Year = {2005},
1110     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
1111 skuang 3563
1112     @article{ISI:A1997YC32200056,
1113 skuang 3585 Abstract = {Equilibrium molecular dynamics simulations have
1114 gezelter 3583 been carried out in the microcanonical ensemble at
1115     300 and 255 K on the extended simple point charge
1116     (SPC/E) model of water {[}Berendsen et al.,
1117     J. Phys. Chem. 91, 6269 (1987)]. In addition to a
1118     number of static and dynamic properties, thermal
1119     conductivity lambda has been calculated via
1120     Green-Kubo integration of the heat current time
1121     correlation functions (CF's) in the atomic and
1122     molecular formalism, at wave number k=0. The
1123     calculated values (0.67 +/- 0.04 W/mK at 300 K and
1124     0.52 +/- 0.03 W/mK at 255 K) are in good agreement
1125     with the experimental data (0.61 W/mK at 300 K and
1126     0.49 W/mK at 255 K). A negative long-time tail of
1127     the heat current CF, more apparent at 255 K, is
1128     responsible for the anomalous decrease of lambda
1129     with temperature. An analysis of the dynamical modes
1130     contributing to lambda has shown that its value is
1131     due to two low-frequency exponential-like modes, a
1132     faster collisional mode, with positive contribution,
1133     and a slower one, which determines the negative
1134     long-time tail. A comparison of the molecular and
1135     atomic spectra of the heat current CF has suggested
1136     that higher-frequency modes should not contribute to
1137     lambda in this temperature range. Generalized
1138     thermal diffusivity D-T(k) decreases as a function
1139     of k, after an initial minor increase at k =
1140     k(min). The k dependence of the generalized
1141     thermodynamic properties has been calculated in the
1142     atomic and molecular formalisms. The observed
1143     differences have been traced back to intramolecular
1144     or intermolecular rotational effects and related to
1145     the partial structure functions. Finally, from the
1146     results we calculated it appears that the SPC/E
1147     model gives results in better agreement with
1148     experimental data than the transferable
1149     intermolecular potential with four points TIP4P
1150     water model {[}Jorgensen et al., J. Chem. Phys. 79,
1151     926 (1983)], with a larger improvement for, e.g.,
1152     diffusion, viscosities, and dielectric properties
1153     and a smaller one for thermal conductivity. The
1154     SPC/E model shares, to a smaller extent, the
1155     insufficient slowing down of dynamics at low
1156     temperature already found for the TIP4P water
1157     model.},
1158 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1159     Affiliation = {UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.},
1160     Author = {Bertolini, D and Tani, A},
1161     Date-Added = {2009-10-30 15:41:21 -0400},
1162     Date-Modified = {2009-10-30 15:41:21 -0400},
1163     Doc-Delivery-Number = {YC322},
1164     Issn = {1063-651X},
1165     Journal = {Phys. Rev. E},
1166     Journal-Iso = {Phys. Rev. E},
1167     Keywords-Plus = {TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS},
1168     Language = {English},
1169     Month = {OCT},
1170     Number = {4},
1171     Number-Of-Cited-References = {35},
1172     Pages = {4135-4151},
1173     Publisher = {AMERICAN PHYSICAL SOC},
1174     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1175     Times-Cited = {18},
1176     Title = {Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results},
1177     Type = {Article},
1178     Unique-Id = {ISI:A1997YC32200056},
1179     Volume = {56},
1180     Year = {1997}}
1181 skuang 3563
1182 skuang 3532 @article{Meineke:2005gd,
1183 skuang 3585 Abstract = {OOPSE is a new molecular dynamics simulation program
1184 gezelter 3583 that is capable of efficiently integrating equations
1185     of motion for atom types with orientational degrees
1186     of freedom (e.g. #sticky# atoms and point
1187     dipoles). Transition metals can also be simulated
1188     using the embedded atom method (EAM) potential
1189     included in the code. Parallel simulations are
1190     carried out using the force-based decomposition
1191     method. Simulations are specified using a very
1192     simple C-based meta-data language. A number of
1193     advanced integrators are included, and the basic
1194     integrator for orientational dynamics provides
1195     substantial improvements over older quaternion-based
1196     schemes.},
1197 skuang 3585 Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1198     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1199     Date-Added = {2009-10-01 18:43:03 -0400},
1200     Date-Modified = {2010-04-13 09:11:16 -0400},
1201     Doi = {DOI 10.1002/jcc.20161},
1202     Isi = {000226558200006},
1203     Isi-Recid = {142688207},
1204     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1205     Journal = {J. Comp. Chem.},
1206     Keywords = {OOPSE; molecular dynamics},
1207     Month = feb,
1208     Number = {3},
1209     Pages = {252-271},
1210     Publisher = {JOHN WILEY \& SONS INC},
1211     Times-Cited = {9},
1212     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
1213     Volume = {26},
1214     Year = {2005},
1215     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1216     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1217 skuang 3532
1218     @article{ISI:000080382700030,
1219 skuang 3585 Abstract = {A nonequilibrium method for calculating the shear
1220 gezelter 3583 viscosity is presented. It reverses the
1221     cause-and-effect picture customarily used in
1222     nonequilibrium molecular dynamics: the effect, the
1223     momentum flux or stress, is imposed, whereas the
1224     cause, the velocity gradient or shear rate, is
1225     obtained from the simulation. It differs from other
1226     Norton-ensemble methods by the way in which the
1227     steady-state momentum flux is maintained. This
1228     method involves a simple exchange of particle
1229     momenta, which is easy to implement. Moreover, it
1230     can be made to conserve the total energy as well as
1231     the total linear momentum, so no coupling to an
1232     external temperature bath is needed. The resulting
1233     raw data, the velocity profile, is a robust and
1234     rapidly converging property. The method is tested on
1235     the Lennard-Jones fluid near its triple point. It
1236     yields a viscosity of 3.2-3.3, in Lennard-Jones
1237     reduced units, in agreement with literature
1238     results. {[}S1063-651X(99)03105-0].},
1239 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1240     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1241     Author = {M\"{u}ller-Plathe, F},
1242     Date-Added = {2009-10-01 14:07:30 -0400},
1243     Date-Modified = {2009-10-01 14:07:30 -0400},
1244     Doc-Delivery-Number = {197TX},
1245     Issn = {1063-651X},
1246     Journal = {Phys. Rev. E},
1247     Journal-Iso = {Phys. Rev. E},
1248     Language = {English},
1249     Month = {MAY},
1250     Number = {5, Part A},
1251     Number-Of-Cited-References = {17},
1252     Pages = {4894-4898},
1253     Publisher = {AMERICAN PHYSICAL SOC},
1254     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1255     Times-Cited = {57},
1256     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
1257     Type = {Article},
1258     Unique-Id = {ISI:000080382700030},
1259     Volume = {59},
1260     Year = {1999}}
1261 skuang 3532
1262 skuang 3585 @article{Maginn:2007,
1263     Abstract = {Atomistic simulations are conducted to examine the
1264 gezelter 3583 dependence of the viscosity of
1265     1-ethyl-3-methylimidazolium
1266     bis(trifluoromethanesulfonyl)imide on temperature
1267     and water content. A nonequilibrium molecular
1268     dynamics procedure is utilized along with an
1269     established fixed charge force field. It is found
1270     that the simulations quantitatively capture the
1271     temperature dependence of the viscosity as well as
1272     the drop in viscosity that occurs with increasing
1273     water content. Using mixture viscosity models, we
1274     show that the relative drop in viscosity with water
1275     content is actually less than that that would be
1276     predicted for an ideal system. This finding is at
1277     odds with the popular notion that small amounts of
1278     water cause an unusually large drop in the viscosity
1279     of ionic liquids. The simulations suggest that, due
1280     to preferential association of water with anions and
1281     the formation of water clusters, the excess molar
1282     volume is negative. This means that dissolved water
1283     is actually less effective at lowering the viscosity
1284     of these mixtures when compared to a solute obeying
1285     ideal mixing behavior. The use of a nonequilibrium
1286     simulation technique enables diffusive behavior to
1287     be observed on the time scale of the simulations,
1288     and standard equilibrium molecular dynamics resulted
1289     in sub-diffusive behavior even over 2 ns of
1290     simulation time.},
1291 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1292     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1293     Author = {Kelkar, Manish S. and Maginn, Edward J.},
1294     Author-Email = {ed@nd.edu},
1295     Date-Added = {2009-09-29 17:07:17 -0400},
1296     Date-Modified = {2010-04-14 12:51:02 -0400},
1297     Doc-Delivery-Number = {163VA},
1298     Doi = {10.1021/jp0686893},
1299     Issn = {1520-6106},
1300     Journal = {J. Phys. Chem. B},
1301     Journal-Iso = {J. Phys. Chem. B},
1302     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
1303     Language = {English},
1304     Month = {MAY 10},
1305     Number = {18},
1306     Number-Of-Cited-References = {57},
1307     Pages = {4867-4876},
1308     Publisher = {AMER CHEMICAL SOC},
1309     Subject-Category = {Chemistry, Physical},
1310     Times-Cited = {35},
1311     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
1312     Type = {Article},
1313     Unique-Id = {ISI:000246190100032},
1314     Volume = {111},
1315     Year = {2007},
1316     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D},
1317     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0686893}}
1318 skuang 3528
1319 skuang 3527 @article{MullerPlathe:1997xw,
1320 skuang 3585 Abstract = {A nonequilibrium molecular dynamics method for
1321 gezelter 3583 calculating the thermal conductivity is
1322     presented. It reverses the usual cause and effect
1323     picture. The ''effect,'' the heat flux, is imposed
1324     on the system and the ''cause,'' the temperature
1325     gradient is obtained from the simulation. Besides
1326     being very simple to implement, the scheme offers
1327     several advantages such as compatibility with
1328     periodic boundary conditions, conservation of total
1329     energy and total linear momentum, and the sampling
1330     of a rapidly converging quantity (temperature
1331     gradient) rather than a slowly converging one (heat
1332     flux). The scheme is tested on the Lennard-Jones
1333     fluid. (C) 1997 American Institute of Physics.},
1334 skuang 3585 Address = {WOODBURY},
1335     Author = {M\"{u}ller-Plathe, F.},
1336     Cited-Reference-Count = {13},
1337     Date = {APR 8},
1338     Date-Added = {2009-09-21 16:51:21 -0400},
1339     Date-Modified = {2009-09-21 16:51:21 -0400},
1340     Document-Type = {Article},
1341     Isi = {ISI:A1997WR62000032},
1342     Isi-Document-Delivery-Number = {WR620},
1343     Iso-Source-Abbreviation = {J. Chem. Phys.},
1344     Issn = {0021-9606},
1345     Journal = {J. Chem. Phys.},
1346     Language = {English},
1347     Month = {Apr},
1348     Number = {14},
1349     Page-Count = {4},
1350     Pages = {6082--6085},
1351     Publication-Type = {J},
1352     Publisher = {AMER INST PHYSICS},
1353     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1354     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1355     Source = {J CHEM PHYS},
1356     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1357     Times-Cited = {106},
1358     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
1359     Volume = {106},
1360     Year = {1997}}
1361 skuang 3527
1362     @article{Muller-Plathe:1999ek,
1363 skuang 3585 Abstract = {A novel non-equilibrium method for calculating
1364 gezelter 3583 transport coefficients is presented. It reverses the
1365     experimental cause-and-effect picture, e.g. for the
1366     calculation of viscosities: the effect, the momentum
1367     flux or stress, is imposed, whereas the cause, the
1368     velocity gradient or shear rates, is obtained from
1369     the simulation. It differs from other
1370     Norton-ensemble methods by the way, in which the
1371     steady-state fluxes are maintained. This method
1372     involves a simple exchange of particle momenta,
1373     which is easy to implement and to analyse. Moreover,
1374     it can be made to conserve the total energy as well
1375     as the total linear momentum, so no thermostatting
1376     is needed. The resulting raw data are robust and
1377     rapidly converging. The method is tested on the
1378     calculation of the shear viscosity, the thermal
1379     conductivity and the Soret coefficient (thermal
1380     diffusion) for the Lennard-Jones (LJ) fluid near its
1381     triple point. Possible applications to other
1382     transport coefficients and more complicated systems
1383     are discussed. (C) 1999 Elsevier Science Ltd. All
1384     rights reserved.},
1385 skuang 3585 Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
1386     Author = {M\"{u}ller-Plathe, F and Reith, D},
1387     Date-Added = {2009-09-21 16:47:07 -0400},
1388     Date-Modified = {2009-09-21 16:47:07 -0400},
1389     Isi = {000082266500004},
1390     Isi-Recid = {111564960},
1391     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
1392     Journal = {Computational and Theoretical Polymer Science},
1393     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
1394     Number = {3-4},
1395     Pages = {203-209},
1396     Publisher = {ELSEVIER SCI LTD},
1397     Times-Cited = {15},
1398     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
1399     Volume = {9},
1400     Year = {1999},
1401     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
1402 skuang 3527
1403     @article{Viscardy:2007lq,
1404 skuang 3585 Abstract = {The thermal conductivity is calculated with the
1405 gezelter 3583 Helfand-moment method in the Lennard-Jones fluid
1406     near the triple point. The Helfand moment of thermal
1407     conductivity is here derived for molecular dynamics
1408     with periodic boundary conditions. Thermal
1409     conductivity is given by a generalized Einstein
1410     relation with this Helfand moment. The authors
1411     compute thermal conductivity by this new method and
1412     compare it with their own values obtained by the
1413     standard Green-Kubo method. The agreement is
1414     excellent. (C) 2007 American Institute of Physics.},
1415 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1416     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1417     Date-Added = {2009-09-21 16:37:20 -0400},
1418 gezelter 3616 Date-Modified = {2010-07-19 16:18:44 -0400},
1419 skuang 3585 Doi = {DOI 10.1063/1.2724821},
1420     Isi = {000246453900035},
1421     Isi-Recid = {156192451},
1422     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
1423     Journal = {J. Chem. Phys.},
1424     Month = may,
1425     Number = {18},
1426 gezelter 3616 Pages = {184513},
1427 skuang 3585 Publisher = {AMER INST PHYSICS},
1428     Times-Cited = {3},
1429     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
1430     Volume = {126},
1431     Year = {2007},
1432     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035},
1433     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724821}}
1434 skuang 3527
1435     @article{Viscardy:2007bh,
1436 skuang 3585 Abstract = {The authors propose a new method, the Helfand-moment
1437 gezelter 3583 method, to compute the shear viscosity by
1438     equilibrium molecular dynamics in periodic
1439     systems. In this method, the shear viscosity is
1440     written as an Einstein-type relation in terms of the
1441     variance of the so-called Helfand moment. This
1442     quantity is modified in order to satisfy systems
1443     with periodic boundary conditions usually considered
1444     in molecular dynamics. They calculate the shear
1445     viscosity in the Lennard-Jones fluid near the triple
1446     point thanks to this new technique. They show that
1447     the results of the Helfand-moment method are in
1448     excellent agreement with the results of the standard
1449     Green-Kubo method. (C) 2007 American Institute of
1450     Physics.},
1451 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1452     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1453     Date-Added = {2009-09-21 16:37:19 -0400},
1454 gezelter 3616 Date-Modified = {2010-07-19 16:19:03 -0400},
1455 skuang 3585 Doi = {DOI 10.1063/1.2724820},
1456     Isi = {000246453900034},
1457     Isi-Recid = {156192449},
1458     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
1459     Journal = {J. Chem. Phys.},
1460     Month = may,
1461     Number = {18},
1462 gezelter 3616 Pages = {184512},
1463 skuang 3585 Publisher = {AMER INST PHYSICS},
1464     Times-Cited = {1},
1465     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
1466     Volume = {126},
1467     Year = {2007},
1468     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034},
1469     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724820}}
1470 skuang 3613
1471     @inproceedings{384119,
1472     Address = {New York, NY, USA},
1473     Author = {Fortune, Steven},
1474     Booktitle = {ISSAC '01: Proceedings of the 2001 international symposium on Symbolic and algebraic computation},
1475     Doi = {http://doi.acm.org/10.1145/384101.384119},
1476     Isbn = {1-58113-417-7},
1477     Location = {London, Ontario, Canada},
1478     Pages = {121--128},
1479     Publisher = {ACM},
1480     Title = {Polynomial root finding using iterated Eigenvalue computation},
1481     Year = {2001},
1482     Bdsk-Url-1 = {http://doi.acm.org/10.1145/384101.384119}}