ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nivsRnemd/nivsRnemd.bib
Revision: 3647
Committed: Fri Sep 17 21:02:21 2010 UTC (14 years ago) by skuang
File size: 87614 byte(s)
Log Message:
answer the question why nivs is better than swapping for inhomogeneous
system.

File Contents

# User Rev Content
1 skuang 3527 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 skuang 3647 %% Created for Shenyu Kuang at 2010-09-16 19:20:59 -0400
6 skuang 3527
7    
8 gezelter 3625 %% Saved with string encoding Unicode (UTF-8)
9 skuang 3527
10    
11    
12 skuang 3647 @article{muller:014102,
13     Author = {Thomas J. Muller and Michael Al-Samman and Florian Muller-Plathe},
14     Date-Added = {2010-09-16 19:19:25 -0400},
15     Date-Modified = {2010-09-16 19:19:25 -0400},
16     Doi = {10.1063/1.2943312},
17     Eid = {014102},
18     Journal = {The Journal of Chemical Physics},
19     Keywords = {intramolecular mechanics; Lennard-Jones potential; molecular dynamics method; thermostats; viscosity},
20     Number = {1},
21     Numpages = {8},
22     Pages = {014102},
23     Publisher = {AIP},
24     Title = {The influence of thermostats and manostats on reverse nonequilibrium molecular dynamics calculations of fluid viscosities},
25     Url = {http://link.aip.org/link/?JCP/129/014102/1},
26     Volume = {129},
27     Year = {2008},
28     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/129/014102/1},
29     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2943312}}
30    
31     @article{wolf:8254,
32     Author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
33     Date-Added = {2010-09-16 19:01:51 -0400},
34     Date-Modified = {2010-09-16 19:01:51 -0400},
35     Doi = {10.1063/1.478738},
36     Journal = {The Journal of Chemical Physics},
37     Keywords = {POTENTIAL ENERGY; COULOMB FIELD; COULOMB ENERGY; LATTICE PARAMETERS; potential energy functions; lattice dynamics; lattice energy},
38     Number = {17},
39     Pages = {8254-8282},
40     Publisher = {AIP},
41     Title = {Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r[sup -1] summation},
42     Url = {http://link.aip.org/link/?JCP/110/8254/1},
43     Volume = {110},
44     Year = {1999},
45     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/110/8254/1},
46     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.478738}}
47    
48 skuang 3645 @article{HeX:1993,
49     Abstract = {{A recently developed non-equilibrium molecular dynamics algorithm for
50     heat conduction is used to compute the thermal conductivity, thermal
51     diffusion factor, and heat of transfer in binary Lennard-Jones
52     mixtures. An internal energy flux is established with local source and
53     sink terms for kinetic energy.
54     Simulations of isotope mixtures covering a range of densities and mass
55     ratios show that the lighter component prefers the hot side of the
56     system at stationary state. This implies a positive thermal diffusion
57     factor in the definition we have adopted here. The molecular basis for
58     the Soret effect is studied by analysing the energy flux through the
59     system. In all cases we found that there is a difference in the
60     relative contributions when we compare the hot and cold sides of the
61     system. The contribution from the lighter component is predominantly
62     flux of kinetic energy, and this contribution increases from the cold
63     to the hot side. The contribution from the heavier component is
64     predominantly energy transfer through molecular interactions, and it
65     increases from the hot to the cold side. This explains why the thermal
66     diffusion factor is positive; heal is conducted more effectively
67     through the system if the lighter component is enriched at the hot
68     side. Even for very large heat fluxes, we find a linear or almost
69     linear temperature profile through the system, and a constant thermal
70     conductivity. The entropy production per unit volume and unit time
71     increases from the hot to the cold side.}},
72     Author = {HAFSKJOLD, B and IKESHOJI, T and RATKJE, SK},
73     Date-Added = {2010-09-15 16:52:45 -0400},
74     Date-Modified = {2010-09-15 16:54:23 -0400},
75     Issn = {{0026-8976}},
76     Journal = {{MOLECULAR PHYSICS}},
77     Month = {{DEC 20}},
78     Number = {{6}},
79     Pages = {{1389-1412}},
80     Title = {{ON THE MOLECULAR MECHANISM OF THERMAL-DIFFUSION IN LIQUIDS}},
81     Unique-Id = {{ISI:A1993MQ34500009}},
82     Volume = {{80}},
83     Year = {{1993}}}
84    
85     @article{HeX:1994,
86     Abstract = {{This paper presents a new algorithm for non-equilibrium molecular
87     dynamics, where a temperature gradient is established in a system with
88     periodic boundary conditions. At each time step in the simulation, a
89     fixed amount of energy is supplied to a hot region by scaling the
90     velocity of each particle in it, subject to conservation of total
91     momentum. An equal amount of energy is likewise withdrawn from a cold
92     region at each time step. Between the hot and cold regions is a region
93     through which an energy flux is established. Two configurations of hot
94     and cold regions are proposed. Using a stacked layer structure, the
95     instantaneous local energy flux for a 128-particle Lennard-Jones system
96     in liquid was found to be in good agreement with the macroscopic theory
97     of heat conduction at stationary state, except in and near the hot and
98     cold regions. Thermal conductivity calculated for the 128-particle
99     system was about 10\% smaller than the literature value obtained by
100     molecular dynamics calculations. One run with a 1024-particle system
101     showed an agreement with the literature value within statistical error
102     (1-2\%). Using a unit cell with a cold spherical region at the centre
103     and a hot region in the perimeter of the cube, an initial gaseous state
104     of argon was separated into gas and liquid phases. Energy fluxes due to
105     intermolecular energy transfer and transport of kinetic energy dominate
106     in the liquid and gas phases, respectively.}},
107     Author = {IKESHOJI, T and HAFSKJOLD, B},
108     Date-Added = {2010-09-15 16:52:45 -0400},
109     Date-Modified = {2010-09-15 16:54:37 -0400},
110     Issn = {{0026-8976}},
111     Journal = {{MOLECULAR PHYSICS}},
112     Month = {{FEB 10}},
113     Number = {{2}},
114     Pages = {{251-261}},
115     Title = {{NONEQUILIBRIUM MOLECULAR-DYNAMICS CALCULATION OF HEAT-CONDUCTION IN LIQUID AND THROUGH LIQUID-GAS INTERFACE}},
116     Unique-Id = {{ISI:A1994MY17400001}},
117     Volume = {{81}},
118     Year = {{1994}}}
119    
120 gezelter 3632 @article{plech:195423,
121     Author = {A. Plech and V. Kotaidis and S. Gresillon and C. Dahmen and G. von Plessen},
122     Date-Added = {2010-08-12 11:34:55 -0400},
123     Date-Modified = {2010-08-12 11:34:55 -0400},
124     Eid = {195423},
125     Journal = {Physical Review B (Condensed Matter and Materials Physics)},
126     Keywords = {gold; laser materials processing; melting; nanoparticles; time resolved spectra; X-ray scattering; lattice dynamics; high-speed optical techniques; cooling; thermal resistance; thermal conductivity; long-range order},
127     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_70_195423.pdf},
128     Number = {19},
129     Numpages = {7},
130     Pages = {195423},
131     Publisher = {APS},
132     Title = {Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering},
133     Url = {http://link.aps.org/abstract/PRB/v70/e195423},
134     Volume = {70},
135     Year = {2004},
136     Bdsk-Url-1 = {http://link.aps.org/abstract/PRB/v70/e195423}}
137    
138     @article{Wilson:2002uq,
139     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
140     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
141     Date-Added = {2010-08-12 11:31:02 -0400},
142     Date-Modified = {2010-08-12 11:31:02 -0400},
143     Doi = {ARTN 224301},
144     Journal = {Phys. Rev. B},
145     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
146     Title = {Colloidal metal particles as probes of nanoscale thermal transport in fluids},
147     Volume = {66},
148     Year = {2002},
149     Bdsk-Url-1 = {http://dx.doi.org/224301}}
150    
151 gezelter 3625 @article{RevModPhys.61.605,
152     Author = {Swartz, E. T. and Pohl, R. O.},
153     Date-Added = {2010-08-06 17:03:01 -0400},
154     Date-Modified = {2010-08-06 17:03:01 -0400},
155     Doi = {10.1103/RevModPhys.61.605},
156     Journal = {Rev. Mod. Phys.},
157     Month = {Jul},
158     Number = {3},
159     Numpages = {63},
160     Pages = {605--668},
161     Publisher = {American Physical Society},
162     Title = {Thermal boundary resistance},
163     Volume = {61},
164     Year = {1989},
165     Bdsk-Url-1 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
166    
167     @article{cahill:793,
168     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
169     Date-Added = {2010-08-06 17:02:22 -0400},
170     Date-Modified = {2010-08-06 17:02:22 -0400},
171     Doi = {10.1063/1.1524305},
172     Journal = {Journal of Applied Physics},
173     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
174     Number = {2},
175     Pages = {793-818},
176     Publisher = {AIP},
177     Title = {Nanoscale thermal transport},
178     Url = {http://link.aip.org/link/?JAP/93/793/1},
179     Volume = {93},
180     Year = {2003},
181     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
182     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
183    
184 gezelter 3616 @inbook{Hoffman:2001sf,
185     Address = {New York},
186 skuang 3613 Annote = {LDR 01107cam 2200253 a 4500
187     001 12358442
188     005 20070910074423.0
189     008 010326s2001 nyua b 001 0 eng
190     906 $a7$bcbc$corignew$d1$eocip$f20$gy-gencatlg
191     925 0 $aacquire$b2 shelf copies$xpolicy default
192     955 $ato ASCD pc23 03-26-01; jp20 03-27-01 to subj; jp99 to SL 03-27-01; jp85 to Dewey 03-27-01; aa01 03-28-01$aps02 2001-10-04 bk rec'd, to CIP ver.;$fpv04 2001-10-31 CIP ver to BCCD$ajp01 2001-12-06 c. 2 to BCCD
193     010 $a 2001028633
194     020 $a0824704436 (acid-free paper)
195     040 $aDLC$cDLC$dDLC
196     050 00 $aQA297$b.H588 2001
197     082 00 $a519.4$221
198     100 1 $aHoffman, Joe D.,$d1934-
199     245 10 $aNumerical methods for engineers and scientists /$cJoe D. Hoffman.
200     250 $a2nd ed., rev. and expanded.
201     260 $aNew York :$bMarcel Dekker,$cc2001.
202     300 $axi, 823 p. :$bill. ;$c26 cm.
203     504 $aIncludes bibliographical references (p. 775-777) and index.
204     650 0 $aNumerical analysis.
205     856 42 $3Publisher description$uhttp://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html
206     },
207     Author = {Hoffman, Joe D.},
208     Call-Number = {QA297},
209     Date-Added = {2010-07-15 16:32:02 -0400},
210 skuang 3617 Date-Modified = {2010-07-19 16:49:37 -0400},
211 skuang 3613 Dewey-Call-Number = {519.4},
212     Edition = {2nd ed., rev. and expanded},
213     Genre = {Numerical analysis},
214     Isbn = {0824704436 (acid-free paper)},
215     Library-Id = {2001028633},
216 skuang 3617 Pages = {157},
217 skuang 3613 Publisher = {Marcel Dekker},
218 gezelter 3616 Title = {Numerical methods for engineers and scientists},
219 skuang 3613 Url = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html},
220     Year = {2001},
221     Bdsk-Url-1 = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html}}
222    
223 gezelter 3609 @article{Vardeman:2008fk,
224     Abstract = {Using molecular dynamics simulations, we have simulated the rapid cooling experienced by bimetallic nanoparticles following laser excitation at the plasmon resonance and find evidence that glassy beads, specifically Ag-Cu bimetallic particles at the eutectic composition (60\% Ag, 40\% Cu), can be formed during these experiments. The bimetallic nanoparticles are embedded in an implicit solvent with a viscosity tuned to yield cooling curves that match the experimental cooling behavior as closely as possible. Because the nanoparticles have a large surface-to-volume ratio, experimentally realistic cooling rates are accessible via relatively short simulations. The presence of glassy structural features was verified using bond orientational order parameters that are sensitive to the formation of local icosahedral ordering in condensed phases. As the particles cool from the liquid droplet state into glassy beads, a silver-rich monolayer develops on the outer surface and local icosahedra can develop around the silver atoms in this monolayer. However, we observe a strong preference for the local icosahedral ordering around the copper atoms in the particles. As the particles cool, these local icosahedral structures grow to include a larger fraction of the atoms in the nanoparticle, eventually leading to a glassy nanosphere.},
225     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
226 gezelter 3616 Author = {{Vardeman II}, Charles F. and Gezelter, J. Daniel},
227 gezelter 3609 Date-Added = {2010-07-13 11:48:22 -0400},
228 gezelter 3616 Date-Modified = {2010-07-19 16:20:01 -0400},
229 gezelter 3609 Doi = {DOI 10.1021/jp710063g},
230     Isi = {000253512400021},
231     Isi-Recid = {160903603},
232     Isi-Ref-Recids = {144152922 81445483 98913099 146167982 55512304 50985260 52031423 29272311 151055545 134895634 130292830 101988637 100757730 98524559 123952006 6025131 59492217 2078548 135495737 136941603 90709964 160903604 130558416 113800688 30137926 117888234 63632785 38926953 158293976 135246439 125693419 125789026 155583142 156430464 65888620 130160487 97576420 109490154 150229560 116057234 134425927 142869781 121706070 89390336 119150946 143383743 64066027 171282998 142688207 51429664 84591083 127696312 58160909 155366996 155654757 137551818 128633299 109033408 120457571 171282999 124947095 126857514 49630702 64115284 84689627 71842426 96309965 79034659 92658330 146168029 119238036 144824430 132319357 160903607 171283000 100274448},
233     Journal = {Journal of Physical Chemistry C},
234     Month = mar,
235     Number = {9},
236     Pages = {3283-3293},
237     Publisher = {AMER CHEMICAL SOC},
238     Times-Cited = {0},
239     Title = {Simulations of laser-induced glass formation in Ag-Cu nanoparticles},
240     Volume = {112},
241     Year = {2008},
242     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000253512400021}}
243    
244     @article{PhysRevB.59.3527,
245     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
246     Date-Added = {2010-07-13 11:44:08 -0400},
247     Date-Modified = {2010-07-13 11:44:08 -0400},
248     Doi = {10.1103/PhysRevB.59.3527},
249     Journal = {Phys. Rev. B},
250     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
251     Month = {Feb},
252     Number = {5},
253     Numpages = {6},
254     Pages = {3527-3533},
255     Publisher = {American Physical Society},
256     Title = {Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:\quad{}{C}u-{A}g and {C}u-{N}i},
257     Volume = {59},
258     Year = {1999},
259     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
260    
261     @article{Medasani:2007uq,
262     Abstract = {We employ first-principles and empirical computational methods to study the surface energy and surface stress of silver nanoparticles. The structures, cohesive energies, and lattice contractions of spherical Ag nanoclusters in the size range 0.5-5.5 nm are analyzed using two different theoretical approaches: an ab initio density functional pseudopotential technique combined with the generalized gradient approximation and the embedded atom method. The surface energies and stresses obtained via the embedded atom method are found to be in good agreement with those predicted by the gradient-corrected ab initio density functional formalism. We estimate the surface energy of Ag nanoclusters to be in the range of 1.0-2.2 J/m(2). Our values are close to the bulk surface energy of silver, but are significantly lower than the recently reported value of 7.2 J/m(2) for free Ag nanoparticles derived from the Kelvin equation.},
263     Author = {Medasani, Bharat and Park, Young Ho and Vasiliev, Igor},
264     Date-Added = {2010-07-13 11:43:15 -0400},
265     Date-Modified = {2010-07-13 11:43:15 -0400},
266     Doi = {ARTN 235436},
267     Journal = {Phys. Rev. B},
268     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_75_235436.pdf},
269     Title = {Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles},
270     Volume = {75},
271     Year = {2007},
272     Bdsk-Url-1 = {http://dx.doi.org/235436}}
273    
274     @article{Wang:2005qy,
275     Abstract = {The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 atom \%. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5-14 atom \% higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertexes of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.},
276     Author = {Wang, GF and Van Hove, MA and Ross, PN and Baskes, MI},
277     Date-Added = {2010-07-13 11:42:50 -0400},
278     Date-Modified = {2010-07-13 11:42:50 -0400},
279     Doi = {DOI 10.1021/jp050116n},
280     Journal = {J. Phys. Chem. B},
281     Pages = {11683-11692},
282     Title = {Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations},
283     Volume = {109},
284     Year = {2005},
285     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp050116n}}
286    
287     @article{Chui:2003fk,
288     Abstract = {Molecular dynamics simulations of a platinum nanocluster consisting 250 atoms were performed at different temperatures between 70 K and 298 K. The semi-empirical, many-body Sutton-Chen (SC) potential was used to model the interatomic interaction in the metallic system. Regions of core or bulk-like atoms and surface atoms can be defined from analyses of structures, atomic coordination, and the local density function of atoms as defined in the SC potential. The core atoms in the nanoparticle behave as bulk-like metal atoms with a predominant face centered cubic (fcc) packing. The interface between surface atoms and core atoms is marked by a peak in the local density function and corresponds to near surface atoms. The near surface atoms and surface atoms prefer a hexagonal closed packing (hcp). The temperature and size effects on structures of the nanoparticle and the dynamics of the surface region and the core region are discussed.},
289     Author = {Chui, YH and Chan, KY},
290     Date-Added = {2010-07-13 11:42:32 -0400},
291     Date-Modified = {2010-07-13 11:42:32 -0400},
292     Doi = {DOI 10.1039/b302122j},
293     Journal = {Phys. Chem. Chem. Phys.},
294     Pages = {2869-2874},
295     Title = {Analyses of surface and core atoms in a platinum nanoparticle},
296     Volume = {5},
297     Year = {2003},
298     Bdsk-Url-1 = {http://dx.doi.org/10.1039/b302122j}}
299    
300     @article{Sankaranarayanan:2005lr,
301     Abstract = {Bimetallic nanoclusters are of interest because of their utility in catalysis and sensors, The thermal characteristics of bimetallic Pt-Pd nanoclusters of different sizes and compositions were investigated through molecular dynamics simulations using quantum Sutton-Chen (QSC) many-body potentials, Monte Carlo simulations employing the bond order simulation model were used to generate minimum energy configurations, which were utilized as the starting point for molecular dynamics simulations. The calculated initial configurations of the Pt-Pd system consisted of surface segregated Pd atoms and a Pt-rich core, Melting characteristics were studied by following the changes in potential energy and heat capacity as functions of temperature, Structural changes accompanying the thermal evolution were studied by the bond order parameter method. The Pt-Pd clusters exhibited a two-stage melting: surface melting of the external Pd atoms followed by homogeneous melting of the Pt core. These transitions were found to depend on the composition and size of the nanocluster. Melting temperatures of the nanoclusters were found to be much lower than those of bulk Pt and Pd. Bulk melting temperatures of Pd and Pt simulated using periodic boundary conditions compare well with experimental values, thus providing justification for the use of QSC potentials in these simulations. Deformation parameters were calculated to characterize the structural evolution resulting from diffusion of Pd and Pt atoms, The results indicate that in Pd-Pt clusters, Pd atoms prefer to remain at the surface even after melting. In addition, Pt also tends to diffuse to the surface after melting due to reduction of its surface energy with temperature. This mixing pattern is different from those reported in some of the earlier Studies on melting of bimetallics.},
302     Author = {Sankaranarayanan, SKRS and Bhethanabotla, VR and Joseph, B},
303     Date-Added = {2010-07-13 11:42:13 -0400},
304     Date-Modified = {2010-07-13 11:42:13 -0400},
305     Doi = {ARTN 195415},
306     Journal = {Phys. Rev. B},
307     Title = {Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters},
308     Volume = {71},
309     Year = {2005},
310     Bdsk-Url-1 = {http://dx.doi.org/195415}}
311    
312     @article{Vardeman-II:2001jn,
313     Author = {C.~F. {Vardeman II} and J.~D. Gezelter},
314     Date-Added = {2010-07-13 11:41:50 -0400},
315     Date-Modified = {2010-07-13 11:41:50 -0400},
316     Journal = {J. Phys. Chem. A},
317     Local-Url = {file://localhost/Users/charles/Documents/Papers/Vardeman%20II/2001.pdf},
318     Number = {12},
319     Pages = {2568},
320     Title = {Comparing models for diffusion in supercooled liquids: The eutectic composition of the {A}g-{C}u alloy},
321     Volume = {105},
322     Year = {2001}}
323    
324     @article{ShibataT._ja026764r,
325     Author = {Shibata, T. and Bunker, B.A. and Zhang, Z. and Meisel, D. and Vardeman, C.F. and Gezelter, J.D.},
326     Date-Added = {2010-07-13 11:41:36 -0400},
327     Date-Modified = {2010-07-13 11:41:36 -0400},
328     Journal = {J. Amer. Chem. Soc.},
329     Local-Url = {file://localhost/Users/charles/Documents/Papers/ja026764r.pdf},
330     Number = {40},
331     Pages = {11989-11996},
332     Title = {Size-Dependent Spontaneous Alloying of {A}u-{A}g Nanoparticles},
333     Url = {http://dx.doi.org/10.1021/ja026764r},
334     Volume = {124},
335     Year = {2002},
336     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja026764r}}
337    
338     @article{Chen90,
339     Author = {A.~P. Sutton and J. Chen},
340     Date-Added = {2010-07-13 11:40:48 -0400},
341     Date-Modified = {2010-07-13 11:40:48 -0400},
342     Journal = {Phil. Mag. Lett.},
343     Pages = {139-146},
344     Title = {Long-Range Finnis Sinclair Potentials},
345     Volume = 61,
346     Year = {1990}}
347    
348     @article{PhysRevB.33.7983,
349     Author = {Foiles, S. M. and Baskes, M. I. and Daw, M. S.},
350     Date-Added = {2010-07-13 11:40:28 -0400},
351     Date-Modified = {2010-07-13 11:40:28 -0400},
352     Doi = {10.1103/PhysRevB.33.7983},
353     Journal = {Phys. Rev. B},
354     Local-Url = {file://localhost/Users/charles/Documents/Papers/p7983_1.pdf},
355     Month = {Jun},
356     Number = {12},
357     Numpages = {8},
358     Pages = {7983-7991},
359     Publisher = {American Physical Society},
360     Title = {Embedded-atom-method functions for the fcc metals {C}u, {A}g, {A}u, {N}i, {P}d, {P}t, and their alloys},
361     Volume = {33},
362     Year = {1986},
363     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.33.7983}}
364    
365     @article{hoover85,
366     Author = {W.~G. Hoover},
367     Date-Added = {2010-07-13 11:24:30 -0400},
368     Date-Modified = {2010-07-13 11:24:30 -0400},
369     Journal = pra,
370     Pages = 1695,
371     Title = {Canonical dynamics: Equilibrium phase-space distributions},
372     Volume = 31,
373     Year = 1985}
374    
375     @article{melchionna93,
376     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
377     Date-Added = {2010-07-13 11:22:17 -0400},
378     Date-Modified = {2010-07-13 11:22:17 -0400},
379     Journal = {Mol. Phys.},
380     Pages = {533-544},
381     Title = {Hoover {\sc npt} dynamics for systems varying in shape and size},
382     Volume = 78,
383     Year = 1993}
384    
385     @misc{openmd,
386     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
387     Date-Added = {2010-07-13 11:16:00 -0400},
388 gezelter 3616 Date-Modified = {2010-07-19 16:27:45 -0400},
389     Howpublished = {Available at {\tt http://openmd.net}},
390     Title = {{OpenMD}}}
391 gezelter 3609
392 skuang 3617 @inbook{AshcroftMermin,
393 gezelter 3609 Author = {N.~David Mermin and Neil W. Ashcroft},
394     Date-Added = {2010-07-12 14:26:49 -0400},
395 skuang 3617 Date-Modified = {2010-07-22 13:37:20 -0400},
396     Pages = {21},
397 gezelter 3609 Publisher = {Brooks Cole},
398     Title = {Solid State Physics},
399     Year = {1976}}
400    
401     @book{WagnerKruse,
402     Address = {Berlin},
403     Author = {W. Wagner and A. Kruse},
404     Date-Added = {2010-07-12 14:10:29 -0400},
405     Date-Modified = {2010-07-12 14:13:44 -0400},
406     Publisher = {Springer-Verlag},
407     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
408     Year = {1998}}
409    
410 skuang 3592 @article{ISI:000266247600008,
411 gezelter 3594 Abstract = {Temperature dependence of viscosity of butyl-3-methylimidazolium
412 skuang 3592 hexafluorophosphate is investigated by non-equilibrium molecular
413     dynamics simulations with cosine-modulated force in the temperature
414     range from 360 to 480K. It is shown that this method is able to
415     correctly predict the shear viscosity. The simulation setting and
416     choice of the force field are discussed in detail. The all-atom force
417     field exhibits a bad convergence and the shear viscosity is
418     overestimated, while the simple united atom model predicts the kinetics
419     very well. The results are compared with the equilibrium molecular
420     dynamics simulations. The relationship between the diffusion
421     coefficient and viscosity is examined by means of the hydrodynamic
422     radii calculated from the Stokes-Einstein equation and the solvation
423 gezelter 3594 properties are discussed.},
424     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
425     Affiliation = {Kolafa, J (Reprint Author), Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic. {[}Picalek, Jan; Kolafa, Jiri] Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic.},
426 skuang 3592 Author = {Picalek, Jan and Kolafa, Jiri},
427 gezelter 3594 Author-Email = {jiri.kolafa@vscht.cz},
428 skuang 3592 Date-Added = {2010-04-16 13:19:12 -0400},
429     Date-Modified = {2010-04-16 13:19:12 -0400},
430 gezelter 3594 Doc-Delivery-Number = {448FD},
431     Doi = {10.1080/08927020802680703},
432     Funding-Acknowledgement = {Czech Science Foundation {[}203/07/1006]; Czech Ministry of Education {[}LC512]},
433     Funding-Text = {We gratefully acknowledge a support from the Czech Science Foundation (project 203/07/1006) and the computing facilities from the Czech Ministry of Education (Center for Biomolecules and Complex Molecular Systems, project LC512).},
434     Issn = {0892-7022},
435     Journal = {Mol. Simul.},
436     Journal-Iso = {Mol. Simul.},
437     Keywords = {room temperature ionic liquids; viscosity; non-equilibrium molecular dynamics; solvation; imidazolium},
438     Keywords-Plus = {1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICOCHEMICAL PROPERTIES; COMPUTER-SIMULATION; PHYSICAL-PROPERTIES; IMIDAZOLIUM CATION; FORCE-FIELD; AB-INITIO; TEMPERATURE; CHLORIDE; CONDUCTIVITY},
439     Language = {English},
440     Number = {8},
441     Number-Of-Cited-References = {50},
442     Pages = {685-690},
443     Publisher = {TAYLOR \& FRANCIS LTD},
444     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
445     Times-Cited = {2},
446     Title = {Shear viscosity of ionic liquids from non-equilibrium molecular dynamics simulation},
447     Type = {Article},
448     Unique-Id = {ISI:000266247600008},
449     Volume = {35},
450     Year = {2009},
451 skuang 3592 Bdsk-Url-1 = {http://dx.doi.org/10.1080/08927020802680703%7D}}
452    
453     @article{Vasquez:2004fk,
454     Abstract = {A method for fast calculation of viscosity from molecular dynamics simulation is revisited. The method consists of using a steady-state periodic perturbation. A methodology to choose the amplitude of the external perturbation, which is one of the major practical issues in the original technique of Gosling et al. {$[$}Mol. Phys. 26: 1475 (1973){$]$} is proposed. The amplitude of the perturbation required for fast caculations and the viscosity values for wide ranges of temperature and density of the Lennard-Jones (LJ) model fluid are reported. The viscosity results are in agreement with recent LJ viscosity calculations. Additionally, the simulations demonstrate that the proposed approach is suitable to efficiently generate viscosity data of good quality.},
455     Author = {Vasquez, V. R. and Macedo, E. A. and Zabaloy, M. S.},
456     Date = {2004/11/02/},
457     Date-Added = {2010-04-16 13:18:48 -0400},
458     Date-Modified = {2010-04-16 13:18:48 -0400},
459     Day = {02},
460 gezelter 3594 Journal = {Int. J. Thermophys.},
461 skuang 3592 M3 = {10.1007/s10765-004-7736-3},
462     Month = {11},
463     Number = {6},
464     Pages = {1799--1818},
465     Title = {Lennard-Jones Viscosities in Wide Ranges of Temperature and Density: Fast Calculations Using a Steady--State Periodic Perturbation Method},
466     Ty = {JOUR},
467     Url = {http://dx.doi.org/10.1007/s10765-004-7736-3},
468     Volume = {25},
469     Year = {2004},
470     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-004-7736-3}}
471    
472 skuang 3591 @article{hess:209,
473     Author = {Berk Hess},
474     Date-Added = {2010-04-16 12:37:37 -0400},
475     Date-Modified = {2010-04-16 12:37:37 -0400},
476     Doi = {10.1063/1.1421362},
477 gezelter 3594 Journal = {J. Chem. Phys.},
478 skuang 3591 Keywords = {viscosity; molecular dynamics method; liquid theory; shear flow},
479     Number = {1},
480     Pages = {209-217},
481     Publisher = {AIP},
482     Title = {Determining the shear viscosity of model liquids from molecular dynamics simulations},
483     Url = {http://link.aip.org/link/?JCP/116/209/1},
484     Volume = {116},
485     Year = {2002},
486     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/116/209/1},
487     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1421362}}
488    
489     @article{backer:154503,
490     Author = {J. A. Backer and C. P. Lowe and H. C. J. Hoefsloot and P. D. Iedema},
491     Date-Added = {2010-04-16 12:37:37 -0400},
492     Date-Modified = {2010-04-16 12:37:37 -0400},
493     Doi = {10.1063/1.1883163},
494     Eid = {154503},
495 gezelter 3594 Journal = {J. Chem. Phys.},
496 skuang 3591 Keywords = {Poiseuille flow; flow simulation; Lennard-Jones potential; viscosity; boundary layers; computational fluid dynamics},
497     Number = {15},
498     Numpages = {6},
499     Pages = {154503},
500     Publisher = {AIP},
501     Title = {Poiseuille flow to measure the viscosity of particle model fluids},
502     Url = {http://link.aip.org/link/?JCP/122/154503/1},
503     Volume = {122},
504     Year = {2005},
505     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/122/154503/1},
506     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1883163}}
507    
508     @article{daivis:541,
509     Author = {Peter J. Daivis and Denis J. Evans},
510     Date-Added = {2010-04-16 12:05:36 -0400},
511     Date-Modified = {2010-04-16 12:05:36 -0400},
512     Doi = {10.1063/1.466970},
513 gezelter 3594 Journal = {J. Chem. Phys.},
514 skuang 3591 Keywords = {SHEAR; DECANE; FLOW MODELS; VOLUME; PRESSURE; NONEQUILIBRIUM; MOLECULAR DYNAMICS CALCULATIONS; COMPARATIVE EVALUATIONS; SIMULATION; STRAIN RATE; VISCOSITY; KUBO FORMULA},
515     Number = {1},
516     Pages = {541-547},
517     Publisher = {AIP},
518     Title = {Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane},
519     Url = {http://link.aip.org/link/?JCP/100/541/1},
520     Volume = {100},
521     Year = {1994},
522     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/100/541/1},
523     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.466970}}
524    
525     @article{mondello:9327,
526     Author = {Maurizio Mondello and Gary S. Grest},
527     Date-Added = {2010-04-16 12:05:36 -0400},
528     Date-Modified = {2010-04-16 12:05:36 -0400},
529     Doi = {10.1063/1.474002},
530 gezelter 3594 Journal = {J. Chem. Phys.},
531 skuang 3591 Keywords = {organic compounds; viscosity; digital simulation; molecular dynamics method},
532     Number = {22},
533     Pages = {9327-9336},
534     Publisher = {AIP},
535     Title = {Viscosity calculations of [bold n]-alkanes by equilibrium molecular dynamics},
536     Url = {http://link.aip.org/link/?JCP/106/9327/1},
537     Volume = {106},
538     Year = {1997},
539     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/106/9327/1},
540     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.474002}}
541    
542 skuang 3588 @article{ISI:A1988Q205300014,
543 gezelter 3594 Address = {ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE},
544     Affiliation = {VOGELSANG, R (Reprint Author), RUHR UNIV BOCHUM,UNIV STR 150,D-4630 BOCHUM,FED REP GER. UNIV DUISBURG,THERMODYNAM,D-4100 DUISBURG,FED REP GER.},
545     Author = {Vogelsang, R and Hoheisel, G and Luckas, M},
546 skuang 3588 Date-Added = {2010-04-14 16:20:24 -0400},
547     Date-Modified = {2010-04-14 16:20:24 -0400},
548 gezelter 3594 Doc-Delivery-Number = {Q2053},
549     Issn = {0026-8976},
550     Journal = {Mol. Phys.},
551     Journal-Iso = {Mol. Phys.},
552     Language = {English},
553     Month = {AUG 20},
554     Number = {6},
555     Number-Of-Cited-References = {14},
556     Pages = {1203-1213},
557     Publisher = {TAYLOR \& FRANCIS LTD},
558     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
559     Times-Cited = {12},
560     Title = {SHEAR VISCOSITY AND THERMAL-CONDUCTIVITY OF THE LENNARD-JONES LIQUID COMPUTED USING MOLECULAR-DYNAMICS AND PREDICTED BY A MEMORY FUNCTION MODEL FOR A LARGE NUMBER OF STATES},
561     Type = {Article},
562     Unique-Id = {ISI:A1988Q205300014},
563     Volume = {64},
564 gezelter 3609 Year = {1988}}
565 skuang 3588
566 skuang 3587 @article{ISI:000261835100054,
567 gezelter 3594 Abstract = {Transport properties of liquid methanol and ethanol are predicted by
568 skuang 3587 molecular dynamics simulation. The molecular models for the alcohols
569     are rigid, nonpolarizable, and of united-atom type. They were developed
570     in preceding work using experimental vapor-liquid equilibrium data
571     only. Self- and Maxwell-Stefan diffusion coefficients as well as the
572     shear viscosity of methanol, ethanol, and their binary mixture are
573     determined using equilibrium molecular dynamics and the Green-Kubo
574     formalism. Nonequilibrium molecular dynamics is used for predicting the
575     thermal conductivity of the two pure substances. The transport
576     properties of the fluids are calculated over a wide temperature range
577     at ambient pressure and compared with experimental and simulation data
578     from the literature. Overall, a very good agreement with the experiment
579     is found. For instance, the self-diffusion coefficient and the shear
580     viscosity are predicted with average deviations of less than 8\% for
581     the pure alcohols and 12\% for the mixture. The predicted thermal
582     conductivity agrees on average within 5\% with the experimental data.
583     Additionally, some velocity and shear viscosity autocorrelation
584     functions are presented and discussed. Radial distribution functions
585     for ethanol are also presented. The predicted excess volume, excess
586     enthalpy, and the vapor-liquid equilibrium of the binary mixture
587 gezelter 3594 methanol + ethanol are assessed and agree well with experimental data.},
588     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
589     Affiliation = {Vrabec, J (Reprint Author), Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Vrabec, Jadran] Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Guevara-Carrion, Gabriela; Hasse, Hans] Univ Kaiserslautern, Lab Engn Thermodynam, D-67663 Kaiserslautern, Germany. {[}Nieto-Draghi, Carlos] Inst Francais Petr, F-92852 Rueil Malmaison, France.},
590 skuang 3587 Author = {Guevara-Carrion, Gabriela and Nieto-Draghi, Carlos and Vrabec, Jadran and Hasse, Hans},
591 gezelter 3594 Author-Email = {vrabec@itt.uni-stuttgart.de},
592 skuang 3587 Date-Added = {2010-04-14 15:43:29 -0400},
593     Date-Modified = {2010-04-14 15:43:29 -0400},
594 gezelter 3594 Doc-Delivery-Number = {385SY},
595     Doi = {10.1021/jp805584d},
596     Issn = {1520-6106},
597     Journal = {J. Phys. Chem. B},
598     Journal-Iso = {J. Phys. Chem. B},
599     Keywords-Plus = {STEFAN DIFFUSION-COEFFICIENTS; MONTE-CARLO CALCULATIONS; ATOM FORCE-FIELD; SELF-DIFFUSION; DYNAMICS SIMULATION; PHASE-EQUILIBRIA; LIQUID METHANOL; TEMPERATURE-DEPENDENCE; COMPUTER-SIMULATION; MONOHYDRIC ALCOHOLS},
600     Language = {English},
601     Month = {DEC 25},
602     Number = {51},
603     Number-Of-Cited-References = {86},
604     Pages = {16664-16674},
605     Publisher = {AMER CHEMICAL SOC},
606     Subject-Category = {Chemistry, Physical},
607     Times-Cited = {5},
608     Title = {Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture},
609     Type = {Article},
610     Unique-Id = {ISI:000261835100054},
611     Volume = {112},
612     Year = {2008},
613 skuang 3587 Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp805584d%7D}}
614    
615     @article{ISI:000258460400020,
616 gezelter 3594 Abstract = {Nonequilibrium molecular dynamics simulations with the nonpolarizable
617 skuang 3587 SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the
618     polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121,
619     9549) force fields have been employed to calculate the thermal
620     conductivity and other associated properties of methane hydrate over a
621     temperature range from 30 to 260 K. The calculated results are compared
622     to experimental data over this same range. The values of the thermal
623     conductivity calculated with the COS/G2 model are closer to the
624     experimental values than are those calculated with the nonpolarizable
625     SPC/E model. The calculations match the temperature trend in the
626     experimental data at temperatures below 50 K; however, they exhibit a
627     slight decrease in thermal conductivity at higher temperatures in
628     comparison to an opposite trend in the experimental data. The
629     calculated thermal conductivity values are found to be relatively
630     insensitive to the occupancy of the cages except at low (T <= 50 K)
631     temperatures, which indicates that the differences between the two
632     lattice structures may have a more dominant role than generally thought
633     in explaining the low thermal conductivity of methane hydrate compared
634     to ice Ih. The introduction of defects into the water lattice is found
635     to cause a reduction in the thermal conductivity but to have a
636 gezelter 3594 negligible impact on its temperature dependence.},
637     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
638     Affiliation = {Jordan, KD (Reprint Author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Myshakin, Evgeniy M.; Jordan, Kenneth D.; Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol \& Mat Simulat, Pittsburgh, PA 15260 USA. {[}Myshakin, Evgeniy M.] Parsons Project Serv Inc, South Pk, PA 15129 USA.},
639 skuang 3587 Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
640     Date-Added = {2010-04-14 15:38:14 -0400},
641     Date-Modified = {2010-04-14 15:38:14 -0400},
642 gezelter 3594 Doc-Delivery-Number = {337UG},
643     Doi = {10.1021/jp802942v},
644     Funding-Acknowledgement = {E.M.M. ; National Energy Technology Laboratory's Office of Research and Development {[}41817.660.01.03]; ORISE Part-Time Faculty Program ; {[}DE-AM26-04NT41817]; {[}41817.606.06.03]},
645     Funding-Text = {We thank Drs. John Tse, Niall English, and Alan McGaughey for their comments. H.J. and K.D.J. performed this work under Contract DE-AM26-04NT41817, Subtask 41817.606.06.03, and E.M.M. performed this work under the same contract, Subtask 41817.660.01.03, in support of the National Energy Technology Laboratory's Office of Research and Development. K.D.J. was also supported at NETL by the ORISE Part-Time Faculty Program during the early stages of this work.},
646     Issn = {1520-6106},
647     Journal = {J. Phys. Chem. B},
648     Journal-Iso = {J. Phys. Chem. B},
649     Keywords-Plus = {LIQUID WATER; CLATHRATE HYDRATE; HEAT-CAPACITY; FORCE-FIELDS; ICE; ANHARMONICITY; SUMMATION; MODELS; SILICA},
650     Language = {English},
651     Month = {AUG 21},
652     Number = {33},
653     Number-Of-Cited-References = {51},
654     Pages = {10207-10216},
655     Publisher = {AMER CHEMICAL SOC},
656     Subject-Category = {Chemistry, Physical},
657     Times-Cited = {8},
658     Title = {Molecular dynamics Simulations of the thermal conductivity of methane hydrate},
659     Type = {Article},
660     Unique-Id = {ISI:000258460400020},
661     Volume = {112},
662     Year = {2008},
663 skuang 3587 Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp802942v%7D}}
664    
665 skuang 3585 @article{ISI:000184808400018,
666 gezelter 3594 Abstract = {A new non-equilibrium molecular dynamics algorithm is presented based
667 skuang 3585 on the original work of Willer-Plathe, (1997, J. chem. Phys., 106,
668     6082), for the non-equilibrium simulation of heat transport maintaining
669     fixed the total momentum as well as the total energy of the system. The
670     presented scheme preserves these properties but, unlike the original
671     algorithm, is able to deal with multicomponent systems, that is with
672     particles of different mass independently of their relative
673     concentration. The main idea behind the new procedure is to consider an
674     exchange of momentum and energy between the particles in the hot and
675     cold regions, to maintain the non-equilibrium conditions, as if they
676     undergo a hypothetical elastic collision. The new algorithm can also be
677     employed in multicomponent systems for molecular fluids and in a wide
678 gezelter 3594 range of thermodynamic conditions.},
679     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
680     Affiliation = {Nieto-Draghi, C (Reprint Author), Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain. Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Tarragona 43007, Spain.},
681 skuang 3585 Author = {Nieto-Draghi, C and Avalos, JB},
682     Date-Added = {2010-04-14 12:48:08 -0400},
683     Date-Modified = {2010-04-14 12:48:08 -0400},
684 gezelter 3594 Doc-Delivery-Number = {712QM},
685     Doi = {10.1080/0026897031000154338},
686     Issn = {0026-8976},
687     Journal = {Mol. Phys.},
688     Journal-Iso = {Mol. Phys.},
689     Keywords-Plus = {BINARY-LIQUID MIXTURES; THERMAL-CONDUCTIVITY; MATTER TRANSPORT; WATER},
690     Language = {English},
691     Month = {JUL 20},
692     Number = {14},
693     Number-Of-Cited-References = {20},
694     Pages = {2303-2307},
695     Publisher = {TAYLOR \& FRANCIS LTD},
696     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
697     Times-Cited = {13},
698     Title = {Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems},
699     Type = {Article},
700     Unique-Id = {ISI:000184808400018},
701     Volume = {101},
702     Year = {2003},
703 skuang 3585 Bdsk-Url-1 = {http://dx.doi.org/10.1080/0026897031000154338%7D}}
704    
705     @article{Bedrov:2000-1,
706 gezelter 3594 Abstract = {The thermal conductivity of liquid
707 skuang 3585 octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been
708     determined from imposed heat flux non-equilibrium molecular dynamics
709     (NEMD) simulations using a previously published quantum chemistry-based
710     atomistic potential. The thermal conductivity was determined in the
711     temperature domain 550 less than or equal to T less than or equal to
712     800 K, which corresponds approximately to the existence limits of the
713     liquid phase of HMX at atmospheric pressure. The NEMD predictions,
714     which comprise the first reported values for thermal conductivity of
715     HMX liquid, were found to be consistent with measured values for
716     crystalline HMX. The thermal conductivity of liquid HMX was found to
717     exhibit a much weaker temperature dependence than the shear viscosity
718     and self-diffusion coefficients. (C) 2000 Elsevier Science B.V. All
719 gezelter 3594 rights reserved.},
720     Address = {PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS},
721     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Mat Sci \& Engn, 122 S Cent Campus Dr,Room 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.},
722 skuang 3585 Author = {Bedrov, D and Smith, GD and Sewell, TD},
723     Date-Added = {2010-04-14 12:26:59 -0400},
724     Date-Modified = {2010-04-14 12:27:52 -0400},
725 gezelter 3594 Doc-Delivery-Number = {330PF},
726     Issn = {0009-2614},
727     Journal = {Chem. Phys. Lett.},
728     Journal-Iso = {Chem. Phys. Lett.},
729     Keywords-Plus = {FORCE-FIELD},
730     Language = {English},
731     Month = {JUN 30},
732     Number = {1-3},
733     Number-Of-Cited-References = {17},
734     Pages = {64-68},
735     Publisher = {ELSEVIER SCIENCE BV},
736     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
737     Times-Cited = {19},
738     Title = {Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations},
739     Type = {Article},
740     Unique-Id = {ISI:000087969900011},
741     Volume = {324},
742 gezelter 3609 Year = {2000}}
743 skuang 3585
744     @article{ISI:000258840700015,
745 gezelter 3594 Abstract = {By using the embedded-atom method (EAM), a series of molecular dynamics
746 skuang 3585 (MD) simulations are carried out to calculate the viscosity and
747     self-diffusion coefficient of liquid copper from the normal to the
748     undercooled states. The simulated results are in reasonable agreement
749     with the experimental values available above the melting temperature
750     that is also predicted from a solid-liquid-solid sandwich structure.
751     The relationship between the viscosity and the self-diffusion
752     coefficient is evaluated. It is found that the Stokes-Einstein and
753     Sutherland-Einstein relations qualitatively describe this relationship
754     within the simulation temperature range. However, the predicted
755     constant from MD simulation is close to 1/(3 pi), which is larger than
756 gezelter 3594 the constants of the Stokes-Einstein and Sutherland-Einstein relations.},
757     Address = {233 SPRING ST, NEW YORK, NY 10013 USA},
758     Affiliation = {Chen, M (Reprint Author), Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China. {[}Han, X. J.; Chen, M.; Lue, Y. J.] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.},
759 skuang 3585 Author = {Han, X. J. and Chen, M. and Lue, Y. J.},
760 gezelter 3594 Author-Email = {mchen@tsinghua.edu.cn},
761 skuang 3585 Date-Added = {2010-04-14 12:00:38 -0400},
762     Date-Modified = {2010-04-14 12:00:38 -0400},
763 gezelter 3594 Doc-Delivery-Number = {343GH},
764     Doi = {10.1007/s10765-008-0489-7},
765     Funding-Acknowledgement = {China Postdoctoral Science Foundation ; National Natural Science Foundation of China {[}50395101, 50371043]},
766     Funding-Text = {This work was financially supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China under grant Nos. of 50395101 and 50371043. The computations are carried out at the Tsinghua National Laboratory for Information Science and Technology, China. The authors are grateful to Mr. D. Q. Yu for valuable discussions.},
767     Issn = {0195-928X},
768     Journal = {Int. J. Thermophys.},
769     Journal-Iso = {Int. J. Thermophys.},
770     Keywords = {copper; molecular simulation; self-diffusion coefficient; viscosity; undercooled},
771     Keywords-Plus = {EMBEDDED-ATOM MODEL; THERMOPHYSICAL PROPERTIES; COMPUTER-SIMULATION; TRANSITION-METALS; SHEAR VISCOSITY; ALLOYS; TEMPERATURE; DIFFUSION; BINDING; SURFACE},
772     Language = {English},
773     Month = {AUG},
774     Number = {4},
775     Number-Of-Cited-References = {39},
776     Pages = {1408-1421},
777     Publisher = {SPRINGER/PLENUM PUBLISHERS},
778     Subject-Category = {Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied},
779     Times-Cited = {2},
780     Title = {Transport properties of undercooled liquid copper: A molecular dynamics study},
781     Type = {Article},
782     Unique-Id = {ISI:000258840700015},
783     Volume = {29},
784     Year = {2008},
785 skuang 3585 Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-008-0489-7%7D}}
786    
787     @article{Muller-Plathe:2008,
788 gezelter 3594 Abstract = {Reverse nonequilibrium molecular dynamics and equilibrium molecular
789 skuang 3585 dynamics simulations were carried out to compute the shear viscosity of
790     the pure ionic liquid system {[}bmim]{[}PF6] at 300 K. The two methods
791     yielded consistent results which were also compared to experiments. The
792     results showed that the reverse nonequilibrium molecular dynamics
793     (RNEMD) methodology can successfully be applied to computation of
794     highly viscous ionic liquids. Moreover, this study provides a
795     validation of the atomistic force-field developed by Bhargava and
796     Balasubramanian (J. Chem. Phys. 2007, 127, 114510) for dynamic
797 gezelter 3594 properties.},
798     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
799     Affiliation = {Wei, Z (Reprint Author), Tech Univ Darmstadt, Petersenstr 30, D-64287 Darmstadt, Germany. {[}Wei Zhao; Leroy, Frederic; Mueller-Plathe, Florian] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. {[}Balasubramanian, Sundaram] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chem \& Phys Mat Unit, Bangalore 560064, Karnataka, India.},
800     Author = {Wei Zhao and Leroy, Frederic and Balasubramanian, Sundaram and M\"{u}ller-Plathe, Florian},
801     Author-Email = {w.zhao@theo.chemie.tu-darmstadt.de},
802 skuang 3585 Date-Added = {2010-04-14 11:53:37 -0400},
803     Date-Modified = {2010-04-14 11:54:20 -0400},
804 gezelter 3594 Doc-Delivery-Number = {321VS},
805     Doi = {10.1021/jp8017869},
806     Issn = {1520-6106},
807     Journal = {J. Phys. Chem. B},
808     Journal-Iso = {J. Phys. Chem. B},
809     Keywords-Plus = {TRANSPORT-PROPERTIES; FORCE-FIELD; TEMPERATURE; SIMULATION; IMIDAZOLIUM; FLUIDS; MODEL; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; PYRIDINIUM; CHLORIDE},
810     Language = {English},
811     Month = {JUL 10},
812     Number = {27},
813     Number-Of-Cited-References = {49},
814     Pages = {8129-8133},
815     Publisher = {AMER CHEMICAL SOC},
816     Subject-Category = {Chemistry, Physical},
817     Times-Cited = {2},
818     Title = {Shear viscosity of the ionic liquid 1-n-butyl 3-methylimidazolium hexafluorophosphate {[}bmim]{[}PF6] computed by reverse nonequilibrium molecular dynamics},
819     Type = {Article},
820     Unique-Id = {ISI:000257335200022},
821     Volume = {112},
822     Year = {2008},
823 skuang 3585 Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp8017869%7D}}
824    
825     @article{Muller-Plathe:2002,
826 gezelter 3594 Abstract = {The reverse nonequilibrium molecular dynamics {[}F. Muller-Plathe,
827 skuang 3585 Phys. Rev. E 49, 359 (1999)] presented for the calculation of the shear
828     viscosity of Lennard-Jones liquids has been extended to atomistic
829     models of molecular liquids. The method is improved to overcome the
830     problems due to the detailed molecular models. The new technique is
831     besides a test with a Lennard-Jones fluid, applied on different
832     realistic systems: liquid nitrogen, water, and hexane, in order to
833     cover a large range of interactions and systems/architectures. We show
834     that all the advantages of the method itemized previously are still
835     valid, and that it has a very good efficiency and accuracy making it
836 gezelter 3594 very competitive. (C) 2002 American Institute of Physics.},
837     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
838     Affiliation = {Bordat, P (Reprint Author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymer Res, D-55128 Mainz, Germany.},
839     Author = {Bordat, P and M\"{u}ller-Plathe, F},
840 skuang 3585 Date-Added = {2010-04-14 11:34:42 -0400},
841     Date-Modified = {2010-04-14 11:35:35 -0400},
842 gezelter 3594 Doc-Delivery-Number = {521QV},
843     Doi = {10.1063/1.1436124},
844     Issn = {0021-9606},
845     Journal = {J. Chem. Phys.},
846     Journal-Iso = {J. Chem. Phys.},
847     Keywords-Plus = {TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; LIQUID ALKANES; N-HEPTADECANE; SIMULATION; WATER; FLOW; MIXTURES; BUTANE; NITROGEN},
848     Language = {English},
849     Month = {FEB 22},
850     Number = {8},
851     Number-Of-Cited-References = {47},
852     Pages = {3362-3369},
853     Publisher = {AMER INST PHYSICS},
854     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
855     Times-Cited = {33},
856     Title = {The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics},
857     Type = {Article},
858     Unique-Id = {ISI:000173853600023},
859     Volume = {116},
860     Year = {2002},
861 skuang 3585 Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1436124%7D}}
862    
863 skuang 3580 @article{ISI:000207079300006,
864 skuang 3585 Abstract = {Non-equilibrium Molecular Dynamics Simulation
865 gezelter 3583 methods have been used to study the ability of
866     Embedded Atom Method models of the metals copper and
867     gold to reproduce the equilibrium and
868     non-equilibrium behavior of metals at a stationary
869     and at a moving solid/liquid interface. The
870     equilibrium solid/vapor interface was shown to
871     display a simple termination of the bulk until the
872     temperature of the solid reaches approximate to 90\%
873     of the bulk melting point. At and above such
874     temperatures the systems exhibit a surface
875     disodering known as surface melting. Non-equilibrium
876     simulations emulating the action of a picosecond
877     laser on the metal were performed to determine the
878     regrowth velocity. For copper, the action of a 20 ps
879     laser with an absorbed energy of 2-5 mJ/cm(2)
880     produced a regrowth velocity of 83-100 m/s, in
881     reasonable agreement with the value obtained by
882     experiment (>60 m/s). For gold, similar conditions
883     produced a slower regrowth velocity of 63 m/s at an
884     absorbed energy of 5 mJ/cm(2). This is almost a
885     factor of two too low in comparison to experiment
886     (>100 m/s). The regrowth velocities of the metals
887     seems unexpectedly close to experiment considering
888     that the free-electron contribution is ignored in
889     the Embeeded Atom Method models used.},
890 skuang 3585 Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
891     Affiliation = {Clancy, P (Reprint Author), Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA.},
892     Author = {Richardson, Clifton F. and Clancy, Paulette},
893     Date-Added = {2010-04-07 11:24:36 -0400},
894     Date-Modified = {2010-04-07 11:24:36 -0400},
895     Doc-Delivery-Number = {V04SY},
896     Issn = {0892-7022},
897 gezelter 3594 Journal = {Mol. Simul.},
898 skuang 3585 Journal-Iso = {Mol. Simul.},
899     Keywords = {Non-equilibrium computer simulation; molecular dynamics; crystal growth; Embedded Atom Method models of metals},
900     Language = {English},
901     Number = {5-6},
902     Number-Of-Cited-References = {36},
903     Pages = {335-355},
904     Publisher = {TAYLOR \& FRANCIS LTD},
905     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
906     Times-Cited = {7},
907     Title = {PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A COMPUTER SIMULATION STUDY},
908     Type = {Article},
909     Unique-Id = {ISI:000207079300006},
910     Volume = {7},
911     Year = {1991}}
912 skuang 3580
913 skuang 3573 @article{ISI:000167766600035,
914 skuang 3585 Abstract = {Molecular dynamics simulations are used to
915 gezelter 3583 investigate the separation of water films adjacent
916     to a hot metal surface. The simulations clearly show
917     that the water layers nearest the surface overheat
918     and undergo explosive boiling. For thick films, the
919     expansion of the vaporized molecules near the
920     surface forces the outer water layers to move away
921     from the surface. These results are of interest for
922     mass spectrometry of biological molecules, steam
923     cleaning of surfaces, and medical procedures.},
924 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
925     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
926     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
927     Date-Added = {2010-03-11 15:32:14 -0500},
928     Date-Modified = {2010-03-11 15:32:14 -0500},
929     Doc-Delivery-Number = {416ED},
930     Issn = {1089-5639},
931     Journal = {J. Phys. Chem. A},
932     Journal-Iso = {J. Phys. Chem. A},
933     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
934     Language = {English},
935     Month = {MAR 29},
936     Number = {12},
937     Number-Of-Cited-References = {65},
938     Pages = {2748-2755},
939     Publisher = {AMER CHEMICAL SOC},
940     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
941     Times-Cited = {66},
942     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
943     Type = {Article},
944     Unique-Id = {ISI:000167766600035},
945     Volume = {105},
946     Year = {2001}}
947 skuang 3573
948 skuang 3585 @article{Maginn:2010,
949     Abstract = {The reverse nonequilibrium molecular dynamics
950 gezelter 3583 (RNEMD) method calculates the shear viscosity of a
951     fluid by imposing a nonphysical exchange of momentum
952     and measuring the resulting shear velocity
953     gradient. In this study we investigate the range of
954     momentum flux values over which RNEMD yields usable
955     (linear) velocity gradients. We find that nonlinear
956     velocity profiles result primarily from gradients in
957     fluid temperature and density. The temperature
958     gradient results from conversion of heat into bulk
959     kinetic energy, which is transformed back into heat
960     elsewhere via viscous heating. An expression is
961     derived to predict the temperature profile resulting
962     from a specified momentum flux for a given fluid and
963     simulation cell. Although primarily bounded above,
964     we also describe milder low-flux limitations. RNEMD
965     results for a Lennard-Jones fluid agree with
966     equilibrium molecular dynamics and conventional
967     nonequilibrium molecular dynamics calculations at
968     low shear, but RNEMD underpredicts viscosity
969     relative to conventional NEMD at high shear.},
970 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
971     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
972     Article-Number = {014103},
973     Author = {Tenney, Craig M. and Maginn, Edward J.},
974     Author-Email = {ed@nd.edu},
975     Date-Added = {2010-03-09 13:08:41 -0500},
976 gezelter 3616 Date-Modified = {2010-07-19 16:21:35 -0400},
977 skuang 3585 Doc-Delivery-Number = {542DQ},
978     Doi = {10.1063/1.3276454},
979     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
980     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
981     Issn = {0021-9606},
982     Journal = {J. Chem. Phys.},
983     Journal-Iso = {J. Chem. Phys.},
984     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
985     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
986     Language = {English},
987     Month = {JAN 7},
988     Number = {1},
989     Number-Of-Cited-References = {20},
990 gezelter 3616 Pages = {014103},
991 skuang 3585 Publisher = {AMER INST PHYSICS},
992     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
993     Times-Cited = {0},
994     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
995     Type = {Article},
996     Unique-Id = {ISI:000273472300004},
997     Volume = {132},
998     Year = {2010},
999     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1000 skuang 3565
1001 skuang 3582 @article{Clancy:1992,
1002 skuang 3585 Abstract = {The regrowth velocity of a crystal from a melt
1003 gezelter 3583 depends on contributions from the thermal
1004     conductivity, heat gradient, and latent heat. The
1005     relative contributions of these terms to the
1006     regrowth velocity of the pure metals copper and gold
1007     during liquid-phase epitaxy are evaluated. These
1008     results are used to explain how results from
1009     previous nonequilibrium molecular-dynamics
1010     simulations using classical potentials are able to
1011     predict regrowth velocities that are close to the
1012     experimental values. Results from equilibrium
1013     molecular dynamics showing the nature of the
1014     solid-vapor interface of an
1015     embedded-atom-method-modeled Cu57Ni43 alloy at a
1016     temperature corresponding to 62\% of the melting
1017     point are presented. The regrowth of this alloy
1018     following a simulation of a laser-processing
1019     experiment is also given, with use of nonequilibrium
1020     molecular-dynamics techniques. The thermal
1021     conductivity and temperature gradient in the
1022     simulation of the alloy are compared to those for
1023     the pure metals.},
1024 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1025     Affiliation = {CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.},
1026     Author = {Richardson, C.~F. and Clancy, P},
1027     Date-Added = {2010-01-12 16:17:33 -0500},
1028     Date-Modified = {2010-04-08 17:18:25 -0400},
1029     Doc-Delivery-Number = {HX378},
1030     Issn = {0163-1829},
1031     Journal = {Phys. Rev. B},
1032     Journal-Iso = {Phys. Rev. B},
1033     Keywords-Plus = {SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI},
1034     Language = {English},
1035     Month = {JUN 1},
1036     Number = {21},
1037     Number-Of-Cited-References = {24},
1038     Pages = {12260-12268},
1039     Publisher = {AMERICAN PHYSICAL SOC},
1040     Subject-Category = {Physics, Condensed Matter},
1041     Times-Cited = {11},
1042     Title = {CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS},
1043     Type = {Article},
1044     Unique-Id = {ISI:A1992HX37800010},
1045     Volume = {45},
1046     Year = {1992}}
1047 skuang 3563
1048 skuang 3585 @article{Bedrov:2000,
1049     Abstract = {We have applied a new nonequilibrium molecular
1050 gezelter 3583 dynamics (NEMD) method {[}F. Muller-Plathe,
1051     J. Chem. Phys. 106, 6082 (1997)] previously applied
1052     to monatomic Lennard-Jones fluids in the
1053     determination of the thermal conductivity of
1054     molecular fluids. The method was modified in order
1055     to be applicable to systems with holonomic
1056     constraints. Because the method involves imposing a
1057     known heat flux it is particularly attractive for
1058     systems involving long-range and many-body
1059     interactions where calculation of the microscopic
1060     heat flux is difficult. The predicted thermal
1061     conductivities of liquid n-butane and water using
1062     the imposed-flux NEMD method were found to be in a
1063     good agreement with previous simulations and
1064     experiment. (C) 2000 American Institute of
1065     Physics. {[}S0021-9606(00)50841-1].},
1066 skuang 3585 Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1067     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1068     Author = {Bedrov, D and Smith, GD},
1069     Date-Added = {2009-11-05 18:21:18 -0500},
1070     Date-Modified = {2010-04-14 11:50:48 -0400},
1071     Doc-Delivery-Number = {369BF},
1072     Issn = {0021-9606},
1073     Journal = {J. Chem. Phys.},
1074     Journal-Iso = {J. Chem. Phys.},
1075     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1076     Language = {English},
1077     Month = {NOV 8},
1078     Number = {18},
1079     Number-Of-Cited-References = {26},
1080     Pages = {8080-8084},
1081     Publisher = {AMER INST PHYSICS},
1082     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1083     Times-Cited = {23},
1084     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
1085     Type = {Article},
1086     Unique-Id = {ISI:000090151400044},
1087     Volume = {113},
1088     Year = {2000}}
1089 skuang 3563
1090     @article{ISI:000231042800044,
1091 skuang 3585 Abstract = {The reverse nonequilibrium molecular dynamics
1092 gezelter 3583 method for thermal conductivities is adapted to the
1093     investigation of molecular fluids. The method
1094     generates a heat flux through the system by suitably
1095     exchanging velocities of particles located in
1096     different regions. From the resulting temperature
1097     gradient, the thermal conductivity is then
1098     calculated. Different variants of the algorithm and
1099     their combinations with other system parameters are
1100     tested: exchange of atomic velocities versus
1101     exchange of molecular center-of-mass velocities,
1102     different exchange frequencies, molecular models
1103     with bond constraints versus models with flexible
1104     bonds, united-atom versus all-atom models, and
1105     presence versus absence of a thermostat. To help
1106     establish the range of applicability, the algorithm
1107     is tested on different models of benzene,
1108     cyclohexane, water, and n-hexane. We find that the
1109     algorithm is robust and that the calculated thermal
1110     conductivities are insensitive to variations in its
1111     control parameters. The force field, in contrast,
1112     has a major influence on the value of the thermal
1113     conductivity. While calculated and experimental
1114     thermal conductivities fall into the same order of
1115     magnitude, in most cases the calculated values are
1116     systematically larger. United-atom force fields seem
1117     to do better than all-atom force fields, possibly
1118     because they remove high-frequency degrees of
1119     freedom from the simulation, which, in nature, are
1120     quantum-mechanical oscillators in their ground state
1121     and do not contribute to heat conduction.},
1122 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1123     Affiliation = {Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.},
1124     Author = {Zhang, MM and Lussetti, E and de Souza, LES and M\"{u}ller-Plathe, F},
1125     Date-Added = {2009-11-05 18:17:33 -0500},
1126     Date-Modified = {2009-11-05 18:17:33 -0500},
1127     Doc-Delivery-Number = {952YQ},
1128     Doi = {10.1021/jp0512255},
1129     Issn = {1520-6106},
1130     Journal = {J. Phys. Chem. B},
1131     Journal-Iso = {J. Phys. Chem. B},
1132     Keywords-Plus = {LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION},
1133     Language = {English},
1134     Month = {AUG 11},
1135     Number = {31},
1136     Number-Of-Cited-References = {42},
1137     Pages = {15060-15067},
1138     Publisher = {AMER CHEMICAL SOC},
1139     Subject-Category = {Chemistry, Physical},
1140     Times-Cited = {17},
1141     Title = {Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics},
1142     Type = {Article},
1143     Unique-Id = {ISI:000231042800044},
1144     Volume = {109},
1145     Year = {2005},
1146     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
1147 skuang 3563
1148     @article{ISI:A1997YC32200056,
1149 skuang 3585 Abstract = {Equilibrium molecular dynamics simulations have
1150 gezelter 3583 been carried out in the microcanonical ensemble at
1151     300 and 255 K on the extended simple point charge
1152     (SPC/E) model of water {[}Berendsen et al.,
1153     J. Phys. Chem. 91, 6269 (1987)]. In addition to a
1154     number of static and dynamic properties, thermal
1155     conductivity lambda has been calculated via
1156     Green-Kubo integration of the heat current time
1157     correlation functions (CF's) in the atomic and
1158     molecular formalism, at wave number k=0. The
1159     calculated values (0.67 +/- 0.04 W/mK at 300 K and
1160     0.52 +/- 0.03 W/mK at 255 K) are in good agreement
1161     with the experimental data (0.61 W/mK at 300 K and
1162     0.49 W/mK at 255 K). A negative long-time tail of
1163     the heat current CF, more apparent at 255 K, is
1164     responsible for the anomalous decrease of lambda
1165     with temperature. An analysis of the dynamical modes
1166     contributing to lambda has shown that its value is
1167     due to two low-frequency exponential-like modes, a
1168     faster collisional mode, with positive contribution,
1169     and a slower one, which determines the negative
1170     long-time tail. A comparison of the molecular and
1171     atomic spectra of the heat current CF has suggested
1172     that higher-frequency modes should not contribute to
1173     lambda in this temperature range. Generalized
1174     thermal diffusivity D-T(k) decreases as a function
1175     of k, after an initial minor increase at k =
1176     k(min). The k dependence of the generalized
1177     thermodynamic properties has been calculated in the
1178     atomic and molecular formalisms. The observed
1179     differences have been traced back to intramolecular
1180     or intermolecular rotational effects and related to
1181     the partial structure functions. Finally, from the
1182     results we calculated it appears that the SPC/E
1183     model gives results in better agreement with
1184     experimental data than the transferable
1185     intermolecular potential with four points TIP4P
1186     water model {[}Jorgensen et al., J. Chem. Phys. 79,
1187     926 (1983)], with a larger improvement for, e.g.,
1188     diffusion, viscosities, and dielectric properties
1189     and a smaller one for thermal conductivity. The
1190     SPC/E model shares, to a smaller extent, the
1191     insufficient slowing down of dynamics at low
1192     temperature already found for the TIP4P water
1193     model.},
1194 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1195     Affiliation = {UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.},
1196     Author = {Bertolini, D and Tani, A},
1197     Date-Added = {2009-10-30 15:41:21 -0400},
1198     Date-Modified = {2009-10-30 15:41:21 -0400},
1199     Doc-Delivery-Number = {YC322},
1200     Issn = {1063-651X},
1201     Journal = {Phys. Rev. E},
1202     Journal-Iso = {Phys. Rev. E},
1203     Keywords-Plus = {TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS},
1204     Language = {English},
1205     Month = {OCT},
1206     Number = {4},
1207     Number-Of-Cited-References = {35},
1208     Pages = {4135-4151},
1209     Publisher = {AMERICAN PHYSICAL SOC},
1210     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1211     Times-Cited = {18},
1212     Title = {Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results},
1213     Type = {Article},
1214     Unique-Id = {ISI:A1997YC32200056},
1215     Volume = {56},
1216     Year = {1997}}
1217 skuang 3563
1218 skuang 3532 @article{Meineke:2005gd,
1219 skuang 3585 Abstract = {OOPSE is a new molecular dynamics simulation program
1220 gezelter 3583 that is capable of efficiently integrating equations
1221     of motion for atom types with orientational degrees
1222     of freedom (e.g. #sticky# atoms and point
1223     dipoles). Transition metals can also be simulated
1224     using the embedded atom method (EAM) potential
1225     included in the code. Parallel simulations are
1226     carried out using the force-based decomposition
1227     method. Simulations are specified using a very
1228     simple C-based meta-data language. A number of
1229     advanced integrators are included, and the basic
1230     integrator for orientational dynamics provides
1231     substantial improvements over older quaternion-based
1232     schemes.},
1233 skuang 3585 Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1234     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1235     Date-Added = {2009-10-01 18:43:03 -0400},
1236     Date-Modified = {2010-04-13 09:11:16 -0400},
1237     Doi = {DOI 10.1002/jcc.20161},
1238     Isi = {000226558200006},
1239     Isi-Recid = {142688207},
1240     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1241     Journal = {J. Comp. Chem.},
1242     Keywords = {OOPSE; molecular dynamics},
1243     Month = feb,
1244     Number = {3},
1245     Pages = {252-271},
1246     Publisher = {JOHN WILEY \& SONS INC},
1247     Times-Cited = {9},
1248     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
1249     Volume = {26},
1250     Year = {2005},
1251     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1252     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1253 skuang 3532
1254     @article{ISI:000080382700030,
1255 skuang 3585 Abstract = {A nonequilibrium method for calculating the shear
1256 gezelter 3583 viscosity is presented. It reverses the
1257     cause-and-effect picture customarily used in
1258     nonequilibrium molecular dynamics: the effect, the
1259     momentum flux or stress, is imposed, whereas the
1260     cause, the velocity gradient or shear rate, is
1261     obtained from the simulation. It differs from other
1262     Norton-ensemble methods by the way in which the
1263     steady-state momentum flux is maintained. This
1264     method involves a simple exchange of particle
1265     momenta, which is easy to implement. Moreover, it
1266     can be made to conserve the total energy as well as
1267     the total linear momentum, so no coupling to an
1268     external temperature bath is needed. The resulting
1269     raw data, the velocity profile, is a robust and
1270     rapidly converging property. The method is tested on
1271     the Lennard-Jones fluid near its triple point. It
1272     yields a viscosity of 3.2-3.3, in Lennard-Jones
1273     reduced units, in agreement with literature
1274     results. {[}S1063-651X(99)03105-0].},
1275 skuang 3585 Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1276     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1277     Author = {M\"{u}ller-Plathe, F},
1278     Date-Added = {2009-10-01 14:07:30 -0400},
1279     Date-Modified = {2009-10-01 14:07:30 -0400},
1280     Doc-Delivery-Number = {197TX},
1281     Issn = {1063-651X},
1282     Journal = {Phys. Rev. E},
1283     Journal-Iso = {Phys. Rev. E},
1284     Language = {English},
1285     Month = {MAY},
1286     Number = {5, Part A},
1287     Number-Of-Cited-References = {17},
1288     Pages = {4894-4898},
1289     Publisher = {AMERICAN PHYSICAL SOC},
1290     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1291     Times-Cited = {57},
1292     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
1293     Type = {Article},
1294     Unique-Id = {ISI:000080382700030},
1295     Volume = {59},
1296     Year = {1999}}
1297 skuang 3532
1298 skuang 3585 @article{Maginn:2007,
1299     Abstract = {Atomistic simulations are conducted to examine the
1300 gezelter 3583 dependence of the viscosity of
1301     1-ethyl-3-methylimidazolium
1302     bis(trifluoromethanesulfonyl)imide on temperature
1303     and water content. A nonequilibrium molecular
1304     dynamics procedure is utilized along with an
1305     established fixed charge force field. It is found
1306     that the simulations quantitatively capture the
1307     temperature dependence of the viscosity as well as
1308     the drop in viscosity that occurs with increasing
1309     water content. Using mixture viscosity models, we
1310     show that the relative drop in viscosity with water
1311     content is actually less than that that would be
1312     predicted for an ideal system. This finding is at
1313     odds with the popular notion that small amounts of
1314     water cause an unusually large drop in the viscosity
1315     of ionic liquids. The simulations suggest that, due
1316     to preferential association of water with anions and
1317     the formation of water clusters, the excess molar
1318     volume is negative. This means that dissolved water
1319     is actually less effective at lowering the viscosity
1320     of these mixtures when compared to a solute obeying
1321     ideal mixing behavior. The use of a nonequilibrium
1322     simulation technique enables diffusive behavior to
1323     be observed on the time scale of the simulations,
1324     and standard equilibrium molecular dynamics resulted
1325     in sub-diffusive behavior even over 2 ns of
1326     simulation time.},
1327 skuang 3585 Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1328     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1329     Author = {Kelkar, Manish S. and Maginn, Edward J.},
1330     Author-Email = {ed@nd.edu},
1331     Date-Added = {2009-09-29 17:07:17 -0400},
1332     Date-Modified = {2010-04-14 12:51:02 -0400},
1333     Doc-Delivery-Number = {163VA},
1334     Doi = {10.1021/jp0686893},
1335     Issn = {1520-6106},
1336     Journal = {J. Phys. Chem. B},
1337     Journal-Iso = {J. Phys. Chem. B},
1338     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
1339     Language = {English},
1340     Month = {MAY 10},
1341     Number = {18},
1342     Number-Of-Cited-References = {57},
1343     Pages = {4867-4876},
1344     Publisher = {AMER CHEMICAL SOC},
1345     Subject-Category = {Chemistry, Physical},
1346     Times-Cited = {35},
1347     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
1348     Type = {Article},
1349     Unique-Id = {ISI:000246190100032},
1350     Volume = {111},
1351     Year = {2007},
1352     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D},
1353     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0686893}}
1354 skuang 3528
1355 skuang 3527 @article{MullerPlathe:1997xw,
1356 skuang 3585 Abstract = {A nonequilibrium molecular dynamics method for
1357 gezelter 3583 calculating the thermal conductivity is
1358     presented. It reverses the usual cause and effect
1359     picture. The ''effect,'' the heat flux, is imposed
1360     on the system and the ''cause,'' the temperature
1361     gradient is obtained from the simulation. Besides
1362     being very simple to implement, the scheme offers
1363     several advantages such as compatibility with
1364     periodic boundary conditions, conservation of total
1365     energy and total linear momentum, and the sampling
1366     of a rapidly converging quantity (temperature
1367     gradient) rather than a slowly converging one (heat
1368     flux). The scheme is tested on the Lennard-Jones
1369     fluid. (C) 1997 American Institute of Physics.},
1370 skuang 3585 Address = {WOODBURY},
1371     Author = {M\"{u}ller-Plathe, F.},
1372     Cited-Reference-Count = {13},
1373     Date = {APR 8},
1374     Date-Added = {2009-09-21 16:51:21 -0400},
1375     Date-Modified = {2009-09-21 16:51:21 -0400},
1376     Document-Type = {Article},
1377     Isi = {ISI:A1997WR62000032},
1378     Isi-Document-Delivery-Number = {WR620},
1379     Iso-Source-Abbreviation = {J. Chem. Phys.},
1380     Issn = {0021-9606},
1381     Journal = {J. Chem. Phys.},
1382     Language = {English},
1383     Month = {Apr},
1384     Number = {14},
1385     Page-Count = {4},
1386     Pages = {6082--6085},
1387     Publication-Type = {J},
1388     Publisher = {AMER INST PHYSICS},
1389     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1390     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1391     Source = {J CHEM PHYS},
1392     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1393     Times-Cited = {106},
1394     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
1395     Volume = {106},
1396     Year = {1997}}
1397 skuang 3527
1398     @article{Muller-Plathe:1999ek,
1399 skuang 3585 Abstract = {A novel non-equilibrium method for calculating
1400 gezelter 3583 transport coefficients is presented. It reverses the
1401     experimental cause-and-effect picture, e.g. for the
1402     calculation of viscosities: the effect, the momentum
1403     flux or stress, is imposed, whereas the cause, the
1404     velocity gradient or shear rates, is obtained from
1405     the simulation. It differs from other
1406     Norton-ensemble methods by the way, in which the
1407     steady-state fluxes are maintained. This method
1408     involves a simple exchange of particle momenta,
1409     which is easy to implement and to analyse. Moreover,
1410     it can be made to conserve the total energy as well
1411     as the total linear momentum, so no thermostatting
1412     is needed. The resulting raw data are robust and
1413     rapidly converging. The method is tested on the
1414     calculation of the shear viscosity, the thermal
1415     conductivity and the Soret coefficient (thermal
1416     diffusion) for the Lennard-Jones (LJ) fluid near its
1417     triple point. Possible applications to other
1418     transport coefficients and more complicated systems
1419     are discussed. (C) 1999 Elsevier Science Ltd. All
1420     rights reserved.},
1421 skuang 3585 Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
1422     Author = {M\"{u}ller-Plathe, F and Reith, D},
1423     Date-Added = {2009-09-21 16:47:07 -0400},
1424     Date-Modified = {2009-09-21 16:47:07 -0400},
1425     Isi = {000082266500004},
1426     Isi-Recid = {111564960},
1427     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
1428     Journal = {Computational and Theoretical Polymer Science},
1429     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
1430     Number = {3-4},
1431     Pages = {203-209},
1432     Publisher = {ELSEVIER SCI LTD},
1433     Times-Cited = {15},
1434     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
1435     Volume = {9},
1436     Year = {1999},
1437     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
1438 skuang 3527
1439     @article{Viscardy:2007lq,
1440 skuang 3585 Abstract = {The thermal conductivity is calculated with the
1441 gezelter 3583 Helfand-moment method in the Lennard-Jones fluid
1442     near the triple point. The Helfand moment of thermal
1443     conductivity is here derived for molecular dynamics
1444     with periodic boundary conditions. Thermal
1445     conductivity is given by a generalized Einstein
1446     relation with this Helfand moment. The authors
1447     compute thermal conductivity by this new method and
1448     compare it with their own values obtained by the
1449     standard Green-Kubo method. The agreement is
1450     excellent. (C) 2007 American Institute of Physics.},
1451 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1452     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1453     Date-Added = {2009-09-21 16:37:20 -0400},
1454 gezelter 3616 Date-Modified = {2010-07-19 16:18:44 -0400},
1455 skuang 3585 Doi = {DOI 10.1063/1.2724821},
1456     Isi = {000246453900035},
1457     Isi-Recid = {156192451},
1458     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
1459     Journal = {J. Chem. Phys.},
1460     Month = may,
1461     Number = {18},
1462 gezelter 3616 Pages = {184513},
1463 skuang 3585 Publisher = {AMER INST PHYSICS},
1464     Times-Cited = {3},
1465     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
1466     Volume = {126},
1467     Year = {2007},
1468     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035},
1469     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724821}}
1470 skuang 3527
1471     @article{Viscardy:2007bh,
1472 skuang 3585 Abstract = {The authors propose a new method, the Helfand-moment
1473 gezelter 3583 method, to compute the shear viscosity by
1474     equilibrium molecular dynamics in periodic
1475     systems. In this method, the shear viscosity is
1476     written as an Einstein-type relation in terms of the
1477     variance of the so-called Helfand moment. This
1478     quantity is modified in order to satisfy systems
1479     with periodic boundary conditions usually considered
1480     in molecular dynamics. They calculate the shear
1481     viscosity in the Lennard-Jones fluid near the triple
1482     point thanks to this new technique. They show that
1483     the results of the Helfand-moment method are in
1484     excellent agreement with the results of the standard
1485     Green-Kubo method. (C) 2007 American Institute of
1486     Physics.},
1487 skuang 3585 Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1488     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1489     Date-Added = {2009-09-21 16:37:19 -0400},
1490 gezelter 3616 Date-Modified = {2010-07-19 16:19:03 -0400},
1491 skuang 3585 Doi = {DOI 10.1063/1.2724820},
1492     Isi = {000246453900034},
1493     Isi-Recid = {156192449},
1494     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
1495     Journal = {J. Chem. Phys.},
1496     Month = may,
1497     Number = {18},
1498 gezelter 3616 Pages = {184512},
1499 skuang 3585 Publisher = {AMER INST PHYSICS},
1500     Times-Cited = {1},
1501     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
1502     Volume = {126},
1503     Year = {2007},
1504     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034},
1505     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724820}}
1506 skuang 3613
1507     @inproceedings{384119,
1508     Address = {New York, NY, USA},
1509     Author = {Fortune, Steven},
1510     Booktitle = {ISSAC '01: Proceedings of the 2001 international symposium on Symbolic and algebraic computation},
1511     Doi = {http://doi.acm.org/10.1145/384101.384119},
1512     Isbn = {1-58113-417-7},
1513     Location = {London, Ontario, Canada},
1514     Pages = {121--128},
1515     Publisher = {ACM},
1516     Title = {Polynomial root finding using iterated Eigenvalue computation},
1517     Year = {2001},
1518     Bdsk-Url-1 = {http://doi.acm.org/10.1145/384101.384119}}