ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nivsRnemd/nivsRnemd.tex
Revision: 3524
Committed: Mon Sep 21 20:28:37 2009 UTC (14 years, 9 months ago) by gezelter
Content type: application/x-tex
File size: 9172 byte(s)
Log Message:
initial import

File Contents

# User Rev Content
1 gezelter 3524 \documentclass[11pt]{article}
2     \usepackage{amsmath}
3     \usepackage{amssymb}
4     \usepackage{setspace}
5     \usepackage{endfloat}
6     \usepackage{caption}
7     %\usepackage{tabularx}
8     \usepackage{graphicx}
9     %\usepackage{booktabs}
10     %\usepackage{bibentry}
11     %\usepackage{mathrsfs}
12     \usepackage[ref]{overcite}
13     \pagestyle{plain} \pagenumbering{arabic} \oddsidemargin 0.0cm
14     \evensidemargin 0.0cm \topmargin -21pt \headsep 10pt \textheight
15     9.0in \textwidth 6.5in \brokenpenalty=10000
16    
17     % double space list of tables and figures
18     \AtBeginDelayedFloats{\renewcommand{\baselinestretch}{1.66}}
19     \setlength{\abovecaptionskip}{20 pt}
20     \setlength{\belowcaptionskip}{30 pt}
21    
22     \renewcommand\citemid{\ } % no comma in optional referenc note
23    
24     \begin{document}
25    
26     \title{A gentler approach to RNEMD: Non-isotropic Velocity Scaling for computing Thermal Conductivity and Shear Viscosity}
27    
28     \author{Shenyu Kuang and J. Daniel
29     Gezelter\footnote{Corresponding author. \ Electronic mail: gezelter@nd.edu} \\
30     Department of Chemistry and Biochemistry,\\
31     University of Notre Dame\\
32     Notre Dame, Indiana 46556}
33    
34     \date{\today}
35    
36     \maketitle
37    
38     \begin{doublespace}
39    
40     \begin{abstract}
41    
42     \end{abstract}
43    
44     \newpage
45    
46     %\narrowtext
47    
48     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
49     % BODY OF TEXT
50     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
51    
52    
53    
54     \section{Introduction}
55     The original formulation of Reverse Non-equilibrium Molecular Dynamics
56     (RNEMD) obtains transport coefficients (thermal conductivity and shear
57     viscosity) in a fluid by imposing an artificial momentum flux between
58     two thin parallel slabs of material that are spatially separated in
59     the simulation cell.\cite{MullerPlathe97,MullerPlathe99} The
60     artificial flux is typically created by periodically "swapping" either
61     the entire momentum vector $\vec{p}$ or single components of this
62     vector ($p_x$) between molecules in each of the two slabs. If the two
63     slabs are separated along the z coordinate, the imposed flux is either
64     directional ($J_z(p_x)$) or isotropic ($J_z$), and the response of a
65     simulated system to the imposed momentum flux will typically be a
66     velocity or thermal gradient. The transport coefficients (shear
67     viscosity and thermal conductivity) are easily obtained by assuming
68     linear response of the system,
69     \begin{eqnarray}
70     J_z(p_x) & = & -\eta \frac{\partial v_x}{\partial z}\\
71     J & = & \lambda \frac{\partial T}{\partial z}
72     \end{eqnarray}
73     RNEMD been widely used to provide computational estimates of thermal
74     conductivities and shear viscosities in a wide range of materials,
75     from liquid copper to monatomic liquids to molecular fluids
76     (e.g. ionic liquids).
77    
78     RNEMD is preferable in many ways to the forward NEMD methods because
79     it imposes what is typically difficult to measure (a flux or stress)
80     and it is typically much easier to compute momentum gradients or
81     strains (the response). For similar reasons, RNEMD is also preferable
82     to slowly-converging equilibrium methods for measuring thermal
83     conductivity and shear viscosity (using Green-Kubo relations or the
84     Helfand moment approach of Viscardy {\it et
85     al.}\cite{Viscardy2007a,Viscardy2007b}) because these rely on
86     computing difficult to measure quantities.
87    
88     Another attractive feature of RNEMD is that it conserves both total
89     linear momentum and total energy during the swaps (as long as the two
90     molecules have the same identity), so the swapped configurations are
91     typically samples from the same manifold of states in the
92     microcanonical ensemble.
93    
94     Recently, Tenney and Maginn have discovered some problems with the
95     original RNEMD swap technique. Notably, large momentum fluxes
96     (equivalent to frequent momentum swaps between the slabs) can result
97     in "notched", "peaked" and generally non-thermal momentum
98     distributions in the two slabs, as well as non-linear thermal and
99     velocity distributions along the direction of the imposed flux ($z$).
100     Tenney and Maginn obtained reasonable limits on imposed flux and
101     self-adjusting metrics for retaining the usability of the method.
102    
103     In this paper, we develop and test a method for non-isotropic velocity
104     scaling (NIVS-RNEMD) which retains the desirable features of RNEMD
105     (conservation of linear momentum and total energy, compatibility with
106     periodic boundary conditions) while establishing true thermal
107     distributions in each of the two slabs. In the next section, we
108     develop the method for determining the scaling constraints. We then
109     test the method on both single component, multi-component, and
110     non-isotropic mixtures and show that it is capable of providing
111     reasonable estimates of the thermal conductivity and shear viscosity
112     in these cases.
113    
114     \section{Methodology}
115     We retain the basic idea of Muller-Plathe's RNEMD method; the periodic
116     system is partitioned into a series of thin slabs along a particular
117     axis ($z$). One of the slabs at the end of the periodic box is
118     designated the ``hot'' slab, while the slab in the center of the box
119     is designated the ``cold'' slab. The artificial momentum flux will be
120     established by transferring momentum from the cold slab and into the
121     hot slab.
122    
123     Rather than using momentum swaps, we use a series of velocity scaling
124     moves. For molecules $\{i\}$ located within the hot slab,
125     \begin{equation}
126     \vec{v}_i \leftarrow \left( \begin{array}{c}
127     x \\
128     y \\
129     z \\
130     \end{array} \right) \cdot \vec{v}_i
131     \end{equation}
132     where ${x, y, z}$ are a set of 3 scaling variables for each of the
133     three directions in the system. Likewise, the molecules $\{j\}$
134     located in the cold bin will see a concomitant scaling of velocities,
135     \begin{equation}
136     \vec{v}_j \leftarrow \left( \begin{array}{c}
137     x^\prime \\
138     y^\prime \\
139     z^\prime \\
140     \end{array} \right) \cdot \vec{v}_j
141     \end{equation}
142    
143     Conservation of linear momentum in each of the three directions
144     ($\alpha = x,y,z$) ties the values of the hot and cold bin scaling
145     parameters together:
146     \begin{equation}
147     P_h^\alpha + P_c^\alpha = \alpha P_h^\alpha + \alpha^\prime P_c^\alpha
148     \end{equation}
149     where
150     \begin{equation}
151     \begin{array}{rcl}
152     P_h^\alpha & = & \sum_{i = 1}^{N_h} m_i \left[\vec{v}_i\right]_\alpha \\
153     P_c^\alpha & = & \sum_{j = 1}^{N_c} m_j \left[\vec{v}_j\right]_\alpha
154     \\
155     \end{array}
156     \label{eq:momentumdef}
157     \end{equation}
158     Therefore, for each of the three directions, the cold scaling
159     parameters are a simple function of the hot scaling parameters and
160     the instantaneous linear momentum in each of the two slabs.
161     \begin{equation}
162     \alpha^\prime = 1 + (1 - \alpha) \frac{P_h^\alpha}{P_c^\alpha}.
163     \label{eq:hotcoldscaling}
164     \end{equation}
165    
166     Conservation of total energy also places constraints on the scaling:
167     \begin{equation}
168     \sum_{\alpha = x,y,z} K_h^\alpha + K_c^\alpha = \sum_{\alpha = x,y,z}
169     \alpha^2 K_h^\alpha + \left(\alpha^\prime\right)^2 K_c^\alpha.
170     \end{equation}
171     where the kinetic energies, $K_h^\alpha$ and $K_c^\alpha$, are computed
172     for each of the three directions in a similar manner to the linear momenta
173     (Eq. \ref{eq:momentumdef}). Substituting in the expressions for the
174     cold scaling parameters ($\alpha^\prime$) from
175     Eq. (\ref{eq:hotcoldscaling}), we obtain the {\it constraint ellipsoid}:
176     \begin{equation}
177     C_x (1+x)^2 + C_y (1+y)^2 + C_z (1+z)^2 = 0,
178     \label{eq:constraintEllipsoid}
179     \end{equation}
180     where the constants are obtained from the instantaneous values of the
181     linear momenta and kinetic energies for the hot and cold slabs,
182     \begin{equation}
183     C_\alpha = \left( K_h^\alpha + K_c^\alpha
184     \left(\frac{P_h^\alpha}{P_c^\alpha}\right)^2\right)
185     \label{eq:constraintEllipsoidConsts}
186     \end{equation}
187     This ellipsoid defines the set of hot slab scaling parameters which can be
188     applied while preserving both linear momentum in all three directions
189     as well as total energy.
190    
191     The goal of using velocity scaling variables is to transfer linear
192     momentum or kinetic energy from the cold slab to the hot slab. If the
193     hot and cold slabs are separated along the z-axis, the energy flux is
194     given simply by the increase in kinetic energy of the hot bin:
195     \begin{equation}
196     (x^2-1) K_h^x + (y^2-1) K_h^y + (z^2-1) K_h^z = J_z
197     \end{equation}
198     The expression for the energy flux can be re-written as another
199     ellipsoid centered on $(x,y,z) = 0$:
200     \begin{equation}
201     x^2 K_h^x + y^2 K_h^y + z^2 K_h^z = (J_z + K_h^x + K_h^y + K_h^z)
202     \label{eq:fluxEllipsoid}
203     \end{equation}
204     The spatial extent of the {\it flux ellipsoid} is governed both by a
205     targetted value, $J_z$ as well as the instantaneous values of the
206     kinetic energy components in the hot bin.
207    
208     To satisfy an energetic flux as well as the conservation constraints,
209     it is sufficient to determine the points ${x,y,z}$ which lie on both
210     the constraint ellipsoid (Eq. \ref{eq:constraintEllipsoid}) and the
211     flux ellipsoid (Eq. \ref{eq:fluxEllipsoid}), i.e. the intersection of
212     the two ellipsoids in 3-space.
213    
214    
215     One may also define momentum flux (say along the x-direction) as:
216     \begin{equation}
217     (x-1) P_h^x = j_z(p_x)
218     \end{equation}
219    
220    
221    
222    
223    
224     \section{Acknowledgments}
225     Support for this project was provided by the National Science
226     Foundation under grant CHE-0848243. Computational time was provided by
227     the Center for Research Computing (CRC) at the University of Notre
228     Dame. \newpage
229    
230     \bibliographystyle{jcp2}
231     \bibliography{nivsRnemd}
232     \end{doublespace}
233     \end{document}
234