ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nivsRnemd/nivsRnemd.tex
Revision: 3621
Committed: Wed Aug 4 15:32:37 2010 UTC (14 years, 1 month ago) by gezelter
Content type: application/x-tex
File size: 40552 byte(s)
Log Message:
more edits

File Contents

# User Rev Content
1 gezelter 3524 \documentclass[11pt]{article}
2     \usepackage{amsmath}
3     \usepackage{amssymb}
4     \usepackage{setspace}
5     \usepackage{endfloat}
6     \usepackage{caption}
7     %\usepackage{tabularx}
8     \usepackage{graphicx}
9 gezelter 3609 \usepackage{multirow}
10 gezelter 3524 %\usepackage{booktabs}
11     %\usepackage{bibentry}
12     %\usepackage{mathrsfs}
13 gezelter 3616 %\usepackage[ref]{overcite}
14     \usepackage[square, comma, sort&compress]{natbib}
15     \usepackage{url}
16 gezelter 3524 \pagestyle{plain} \pagenumbering{arabic} \oddsidemargin 0.0cm
17     \evensidemargin 0.0cm \topmargin -21pt \headsep 10pt \textheight
18     9.0in \textwidth 6.5in \brokenpenalty=10000
19    
20     % double space list of tables and figures
21     \AtBeginDelayedFloats{\renewcommand{\baselinestretch}{1.66}}
22     \setlength{\abovecaptionskip}{20 pt}
23     \setlength{\belowcaptionskip}{30 pt}
24    
25 gezelter 3616 %\renewcommand\citemid{\ } % no comma in optional referenc note
26     \bibpunct{[}{]}{,}{s}{}{;}
27     \bibliographystyle{aip}
28 gezelter 3524
29     \begin{document}
30    
31     \title{A gentler approach to RNEMD: Non-isotropic Velocity Scaling for computing Thermal Conductivity and Shear Viscosity}
32    
33     \author{Shenyu Kuang and J. Daniel
34     Gezelter\footnote{Corresponding author. \ Electronic mail: gezelter@nd.edu} \\
35     Department of Chemistry and Biochemistry,\\
36     University of Notre Dame\\
37     Notre Dame, Indiana 46556}
38    
39     \date{\today}
40    
41     \maketitle
42    
43     \begin{doublespace}
44    
45     \begin{abstract}
46 gezelter 3583 We present a new method for introducing stable non-equilibrium
47 gezelter 3620 velocity and temperature gradients in molecular dynamics simulations
48     of heterogeneous systems. This method extends earlier Reverse
49     Non-Equilibrium Molecular Dynamics (RNEMD) methods which use
50     momentum exchange swapping moves. The standard swapping moves can
51     create non-thermal velocity distributions and are difficult to use
52     for interfacial calculations. By using non-isotropic velocity
53     scaling (NIVS) on the molecules in specific regions of a system, it
54     is possible to impose momentum or thermal flux between regions of a
55     simulation while conserving the linear momentum and total energy of
56     the system. To test the methods, we have computed the thermal
57     conductivity of model liquid and solid systems as well as the
58     interfacial thermal conductivity of a metal-water interface. We
59     find that the NIVS-RNEMD improves the problematic velocity
60 gezelter 3609 distributions that develop in other RNEMD methods.
61 gezelter 3524 \end{abstract}
62    
63     \newpage
64    
65     %\narrowtext
66    
67     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
68     % BODY OF TEXT
69     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
70    
71     \section{Introduction}
72     The original formulation of Reverse Non-equilibrium Molecular Dynamics
73     (RNEMD) obtains transport coefficients (thermal conductivity and shear
74     viscosity) in a fluid by imposing an artificial momentum flux between
75     two thin parallel slabs of material that are spatially separated in
76 skuang 3534 the simulation cell.\cite{MullerPlathe:1997xw,ISI:000080382700030} The
77 gezelter 3583 artificial flux is typically created by periodically ``swapping''
78     either the entire momentum vector $\vec{p}$ or single components of
79     this vector ($p_x$) between molecules in each of the two slabs. If
80     the two slabs are separated along the $z$ coordinate, the imposed flux
81     is either directional ($j_z(p_x)$) or isotropic ($J_z$), and the
82     response of a simulated system to the imposed momentum flux will
83     typically be a velocity or thermal gradient (Fig. \ref{thermalDemo}).
84     The shear viscosity ($\eta$) and thermal conductivity ($\lambda$) are
85     easily obtained by assuming linear response of the system,
86 gezelter 3524 \begin{eqnarray}
87 skuang 3532 j_z(p_x) & = & -\eta \frac{\partial v_x}{\partial z}\\
88 skuang 3575 J_z & = & \lambda \frac{\partial T}{\partial z}
89 gezelter 3524 \end{eqnarray}
90 gezelter 3600 RNEMD has been widely used to provide computational estimates of
91     thermal conductivities and shear viscosities in a wide range of
92     materials, from liquid copper to both monatomic and molecular fluids
93     (e.g. ionic
94     liquids).\cite{Bedrov:2000-1,Bedrov:2000,Muller-Plathe:2002,ISI:000184808400018,ISI:000231042800044,Maginn:2007,Muller-Plathe:2008,ISI:000258460400020,ISI:000258840700015,ISI:000261835100054}
95 gezelter 3524
96 skuang 3574 \begin{figure}
97     \includegraphics[width=\linewidth]{thermalDemo}
98 gezelter 3583 \caption{RNEMD methods impose an unphysical transfer of momentum or
99     kinetic energy between a ``hot'' slab and a ``cold'' slab in the
100     simulation box. The molecular system responds to this imposed flux
101     by generating a momentum or temperature gradient. The slope of the
102     gradient can then be used to compute transport properties (e.g.
103     shear viscosity and thermal conductivity).}
104 skuang 3574 \label{thermalDemo}
105     \end{figure}
106    
107 skuang 3591 RNEMD is preferable in many ways to the forward NEMD
108 skuang 3592 methods\cite{ISI:A1988Q205300014,hess:209,Vasquez:2004fk,backer:154503,ISI:000266247600008}
109     because it imposes what is typically difficult to measure (a flux or
110 gezelter 3600 stress) and it is typically much easier to compute the response
111 gezelter 3609 (momentum gradients or strains). For similar reasons, RNEMD is also
112 skuang 3592 preferable to slowly-converging equilibrium methods for measuring
113     thermal conductivity and shear viscosity (using Green-Kubo
114 skuang 3591 relations\cite{daivis:541,mondello:9327} or the Helfand moment
115     approach of Viscardy {\it et
116 skuang 3527 al.}\cite{Viscardy:2007bh,Viscardy:2007lq}) because these rely on
117 gezelter 3524 computing difficult to measure quantities.
118    
119     Another attractive feature of RNEMD is that it conserves both total
120     linear momentum and total energy during the swaps (as long as the two
121     molecules have the same identity), so the swapped configurations are
122     typically samples from the same manifold of states in the
123     microcanonical ensemble.
124    
125 gezelter 3620 Recently, Tenney and Maginn\cite{Maginn:2010} have discovered some
126     problems with the original RNEMD swap technique. Notably, large
127 skuang 3565 momentum fluxes (equivalent to frequent momentum swaps between the
128 skuang 3575 slabs) can result in ``notched'', ``peaked'' and generally non-thermal
129     momentum distributions in the two slabs, as well as non-linear thermal
130     and velocity distributions along the direction of the imposed flux
131     ($z$). Tenney and Maginn obtained reasonable limits on imposed flux
132 gezelter 3620 and proposed self-adjusting metrics for retaining the usability of the
133     method.
134 gezelter 3524
135     In this paper, we develop and test a method for non-isotropic velocity
136 gezelter 3600 scaling (NIVS) which retains the desirable features of RNEMD
137 gezelter 3524 (conservation of linear momentum and total energy, compatibility with
138     periodic boundary conditions) while establishing true thermal
139 gezelter 3600 distributions in each of the two slabs. In the next section, we
140 gezelter 3583 present the method for determining the scaling constraints. We then
141 gezelter 3600 test the method on both liquids and solids as well as a non-isotropic
142     liquid-solid interface and show that it is capable of providing
143 gezelter 3524 reasonable estimates of the thermal conductivity and shear viscosity
144 gezelter 3600 in all of these cases.
145 gezelter 3524
146     \section{Methodology}
147 gezelter 3583 We retain the basic idea of M\"{u}ller-Plathe's RNEMD method; the
148     periodic system is partitioned into a series of thin slabs along one
149 gezelter 3524 axis ($z$). One of the slabs at the end of the periodic box is
150     designated the ``hot'' slab, while the slab in the center of the box
151     is designated the ``cold'' slab. The artificial momentum flux will be
152     established by transferring momentum from the cold slab and into the
153     hot slab.
154    
155     Rather than using momentum swaps, we use a series of velocity scaling
156 gezelter 3583 moves. For molecules $\{i\}$ located within the cold slab,
157 gezelter 3524 \begin{equation}
158 skuang 3565 \vec{v}_i \leftarrow \left( \begin{array}{ccc}
159     x & 0 & 0 \\
160     0 & y & 0 \\
161     0 & 0 & z \\
162 gezelter 3524 \end{array} \right) \cdot \vec{v}_i
163     \end{equation}
164 gezelter 3600 where ${x, y, z}$ are a set of 3 velocity-scaling variables for each
165     of the three directions in the system. Likewise, the molecules
166     $\{j\}$ located in the hot slab will see a concomitant scaling of
167     velocities,
168 gezelter 3524 \begin{equation}
169 skuang 3565 \vec{v}_j \leftarrow \left( \begin{array}{ccc}
170     x^\prime & 0 & 0 \\
171     0 & y^\prime & 0 \\
172     0 & 0 & z^\prime \\
173 gezelter 3524 \end{array} \right) \cdot \vec{v}_j
174     \end{equation}
175    
176     Conservation of linear momentum in each of the three directions
177 gezelter 3583 ($\alpha = x,y,z$) ties the values of the hot and cold scaling
178 gezelter 3524 parameters together:
179     \begin{equation}
180 skuang 3528 P_h^\alpha + P_c^\alpha = \alpha^\prime P_h^\alpha + \alpha P_c^\alpha
181 gezelter 3524 \end{equation}
182     where
183 skuang 3565 \begin{eqnarray}
184 gezelter 3620 P_c^\alpha & = & \sum_{i = 1}^{N_c} m_i v_{i\alpha} \\
185     P_h^\alpha & = & \sum_{j = 1}^{N_h} m_j v_{j\alpha}
186 gezelter 3524 \label{eq:momentumdef}
187 skuang 3565 \end{eqnarray}
188 skuang 3528 Therefore, for each of the three directions, the hot scaling
189     parameters are a simple function of the cold scaling parameters and
190 gezelter 3620 the instantaneous linear momenta in each of the two slabs.
191 gezelter 3524 \begin{equation}
192 skuang 3528 \alpha^\prime = 1 + (1 - \alpha) p_\alpha
193 gezelter 3524 \label{eq:hotcoldscaling}
194     \end{equation}
195 skuang 3528 where
196     \begin{equation}
197     p_\alpha = \frac{P_c^\alpha}{P_h^\alpha}
198     \end{equation}
199     for convenience.
200 gezelter 3524
201     Conservation of total energy also places constraints on the scaling:
202     \begin{equation}
203 gezelter 3620 \sum_{\alpha = x,y,z} \left\{ K_h^\alpha + K_c^\alpha \right\} = \sum_{\alpha = x,y,z}
204     \left\{ \left(\alpha^\prime\right)^2 K_h^\alpha + \alpha^2 K_c^\alpha \right\}
205 gezelter 3524 \end{equation}
206 skuang 3575 where the translational kinetic energies, $K_h^\alpha$ and
207     $K_c^\alpha$, are computed for each of the three directions in a
208     similar manner to the linear momenta (Eq. \ref{eq:momentumdef}).
209     Substituting in the expressions for the hot scaling parameters
210     ($\alpha^\prime$) from Eq. (\ref{eq:hotcoldscaling}), we obtain the
211 gezelter 3583 {\it constraint ellipsoid}:
212 gezelter 3524 \begin{equation}
213 gezelter 3600 \sum_{\alpha = x,y,z} \left( a_\alpha \alpha^2 + b_\alpha \alpha +
214     c_\alpha \right) = 0
215 gezelter 3524 \label{eq:constraintEllipsoid}
216     \end{equation}
217     where the constants are obtained from the instantaneous values of the
218     linear momenta and kinetic energies for the hot and cold slabs,
219 skuang 3565 \begin{eqnarray}
220 skuang 3528 a_\alpha & = &\left(K_c^\alpha + K_h^\alpha
221     \left(p_\alpha\right)^2\right) \\
222     b_\alpha & = & -2 K_h^\alpha p_\alpha \left( 1 + p_\alpha\right) \\
223 skuang 3565 c_\alpha & = & K_h^\alpha p_\alpha^2 + 2 K_h^\alpha p_\alpha - K_c^\alpha
224 gezelter 3524 \label{eq:constraintEllipsoidConsts}
225 skuang 3565 \end{eqnarray}
226 gezelter 3583 This ellipsoid (Eq. \ref{eq:constraintEllipsoid}) defines the set of
227 gezelter 3600 cold slab scaling parameters which, when applied, preserve the linear
228     momentum of the system in all three directions as well as total
229     kinetic energy.
230 gezelter 3524
231 gezelter 3600 The goal of using these velocity scaling variables is to transfer
232 gezelter 3609 kinetic energy from the cold slab to the hot slab. If the hot and
233     cold slabs are separated along the z-axis, the energy flux is given
234     simply by the decrease in kinetic energy of the cold bin:
235 gezelter 3524 \begin{equation}
236 skuang 3534 (1-x^2) K_c^x + (1-y^2) K_c^y + (1-z^2) K_c^z = J_z\Delta t
237 gezelter 3524 \end{equation}
238     The expression for the energy flux can be re-written as another
239     ellipsoid centered on $(x,y,z) = 0$:
240     \begin{equation}
241 skuang 3604 \sum_{\alpha = x,y,z} K_c^\alpha \alpha^2 = \sum_{\alpha = x,y,z}
242     K_c^\alpha -J_z \Delta t
243 gezelter 3524 \label{eq:fluxEllipsoid}
244     \end{equation}
245 gezelter 3583 The spatial extent of the {\it thermal flux ellipsoid} is governed
246 gezelter 3600 both by the target flux, $J_z$ as well as the instantaneous values of
247     the kinetic energy components in the cold bin.
248 gezelter 3524
249     To satisfy an energetic flux as well as the conservation constraints,
250 gezelter 3600 we must determine the points ${x,y,z}$ that lie on both the constraint
251     ellipsoid (Eq. \ref{eq:constraintEllipsoid}) and the flux ellipsoid
252     (Eq. \ref{eq:fluxEllipsoid}), i.e. the intersection of the two
253     ellipsoids in 3-dimensional space.
254 gezelter 3524
255 gezelter 3569 \begin{figure}
256     \includegraphics[width=\linewidth]{ellipsoids}
257 gezelter 3600 \caption{Velocity scaling coefficients which maintain both constant
258     energy and constant linear momentum of the system lie on the surface
259     of the {\it constraint ellipsoid} while points which generate the
260     target momentum flux lie on the surface of the {\it flux ellipsoid}.
261     The velocity distributions in the cold bin are scaled by only those
262     points which lie on both ellipsoids.}
263 gezelter 3569 \label{ellipsoids}
264     \end{figure}
265    
266 gezelter 3600 Since ellipsoids can be expressed as polynomials up to second order in
267     each of the three coordinates, finding the the intersection points of
268     two ellipsoids is isomorphic to finding the roots a polynomial of
269     degree 16. There are a number of polynomial root-finding methods in
270 skuang 3614 the literature,\cite{Hoffman:2001sf,384119} but numerically finding
271     the roots of high-degree polynomials is generally an ill-conditioned
272 gezelter 3620 problem.\cite{Hoffman:2001sf} One simplification is to maintain
273     velocity scalings that are {\it as isotropic as possible}. To do
274     this, we impose $x=y$, and treat both the constraint and flux
275     ellipsoids as 2-dimensional ellipses. In reduced dimensionality, the
276 gezelter 3600 intersecting-ellipse problem reduces to finding the roots of
277 gezelter 3609 polynomials of degree 4.
278 gezelter 3600
279     Depending on the target flux and current velocity distributions, the
280     ellipsoids can have between 0 and 4 intersection points. If there are
281     no intersection points, it is not possible to satisfy the constraints
282     while performing a non-equilibrium scaling move, and no change is made
283     to the dynamics.
284    
285     With multiple intersection points, any of the scaling points will
286     conserve the linear momentum and kinetic energy of the system and will
287     generate the correct target flux. Although this method is inherently
288     non-isotropic, the goal is still to maintain the system as close to an
289     isotropic fluid as possible. With this in mind, we would like the
290     kinetic energies in the three different directions could become as
291     close as each other as possible after each scaling. Simultaneously,
292     one would also like each scaling as gentle as possible, i.e. ${x,y,z
293     \rightarrow 1}$, in order to avoid large perturbation to the system.
294 gezelter 3609 To do this, we pick the intersection point which maintains the three
295     scaling variables ${x, y, z}$ as well as the ratio of kinetic energies
296 gezelter 3600 ${K_c^z/K_c^x, K_c^z/K_c^y}$ as close as possible to 1.
297    
298     After the valid scaling parameters are arrived at by solving geometric
299     intersection problems in $x, y, z$ space in order to obtain cold slab
300     scaling parameters, Eq. (\ref{eq:hotcoldscaling}) is used to
301     determine the conjugate hot slab scaling variables.
302    
303     \subsection{Introducing shear stress via velocity scaling}
304 gezelter 3609 It is also possible to use this method to magnify the random
305     fluctuations of the average momentum in each of the bins to induce a
306     momentum flux. Doing this repeatedly will create a shear stress on
307     the system which will respond with an easily-measured strain. The
308     momentum flux (say along the $x$-direction) may be defined as:
309 gezelter 3524 \begin{equation}
310 skuang 3565 (1-x) P_c^x = j_z(p_x)\Delta t
311 skuang 3531 \label{eq:fluxPlane}
312 gezelter 3524 \end{equation}
313 gezelter 3600 This {\it momentum flux plane} is perpendicular to the $x$-axis, with
314     its position governed both by a target value, $j_z(p_x)$ as well as
315     the instantaneous value of the momentum along the $x$-direction.
316 gezelter 3524
317 gezelter 3583 In order to satisfy a momentum flux as well as the conservation
318     constraints, we must determine the points ${x,y,z}$ which lie on both
319     the constraint ellipsoid (Eq. \ref{eq:constraintEllipsoid}) and the
320     flux plane (Eq. \ref{eq:fluxPlane}), i.e. the intersection of an
321 gezelter 3600 ellipsoid and a plane in 3-dimensional space.
322 gezelter 3524
323 gezelter 3600 In the case of momentum flux transfer, we also impose another
324 gezelter 3609 constraint to set the kinetic energy transfer as zero. In other
325     words, we apply Eq. \ref{eq:fluxEllipsoid} and let ${J_z = 0}$. With
326 gezelter 3600 one variable fixed by Eq. \ref{eq:fluxPlane}, one now have a similar
327     set of quartic equations to the above kinetic energy transfer problem.
328 gezelter 3524
329 gezelter 3600 \section{Computational Details}
330 gezelter 3583
331 gezelter 3609 We have implemented this methodology in our molecular dynamics code,
332     OpenMD,\cite{Meineke:2005gd,openmd} performing the NIVS scaling moves
333 gezelter 3620 with a variable frequency after the molecular dynamics (MD) steps. We
334     have tested the method in a variety of different systems, including:
335     homogeneous fluids (Lennard-Jones and SPC/E water), crystalline
336     solids, using both the embedded atom method
337     (EAM)~\cite{PhysRevB.33.7983} and quantum Sutton-Chen
338     (QSC)~\cite{PhysRevB.59.3527} models for Gold, and heterogeneous
339     interfaces (QSC gold - SPC/E water). The last of these systems would
340     have been difficult to study using previous RNEMD methods, but the
341     current method can easily provide estimates of the interfacial thermal
342     conductivity ($G$).
343 gezelter 3524
344 gezelter 3609 \subsection{Simulation Cells}
345 gezelter 3524
346 gezelter 3609 In each of the systems studied, the dynamics was carried out in a
347     rectangular simulation cell using periodic boundary conditions in all
348     three dimensions. The cells were longer along the $z$ axis and the
349     space was divided into $N$ slabs along this axis (typically $N=20$).
350 skuang 3613 The top slab ($n=1$) was designated the ``hot'' slab, while the
351     central slab ($n= N/2 + 1$) was designated the ``cold'' slab. In all
352 gezelter 3609 cases, simulations were first thermalized in canonical ensemble (NVT)
353     using a Nos\'{e}-Hoover thermostat.\cite{Hoover85} then equilibrated in
354 gezelter 3600 microcanonical ensemble (NVE) before introducing any non-equilibrium
355     method.
356 skuang 3531
357 gezelter 3609 \subsection{RNEMD with M\"{u}ller-Plathe swaps}
358 skuang 3531
359 gezelter 3609 In order to compare our new methodology with the original
360     M\"{u}ller-Plathe swapping algorithm,\cite{ISI:000080382700030} we
361 gezelter 3620 first performed simulations using the original technique. MORE HERE
362 skuang 3531
363 gezelter 3609 \subsection{RNEMD with NIVS scaling}
364    
365     For each simulation utilizing the swapping method, a corresponding
366     NIVS-RNEMD simulation was carried out using a target momentum flux set
367 gezelter 3620 to produce the same flux experienced in the swapping simulation.
368 gezelter 3609
369 gezelter 3620 To test the temperature homogeneity, directional momentum and
370     temperature distributions were accumulated for molecules in each of
371     the slabs. Transport coefficients were computed using the temperature
372     (and momentum) gradients across the $z$-axis as well as the total
373     momentum flux the system experienced during data collection portion of
374     the simulation.
375 gezelter 3609
376     \subsection{Shear viscosities}
377    
378     The momentum flux was calculated using the total non-physical momentum
379     transferred (${P_x}$) and the data collection time ($t$):
380 skuang 3534 \begin{equation}
381     j_z(p_x) = \frac{P_x}{2 t L_x L_y}
382     \end{equation}
383 gezelter 3609 where $L_x$ and $L_y$ denote the $x$ and $y$ lengths of the simulation
384     box. The factor of two in the denominator is present because physical
385 gezelter 3620 momentum transfer between the slabs occurs in two directions ($+z$ and
386     $-z$). The velocity gradient ${\langle \partial v_x /\partial z
387     \rangle}$ was obtained using linear regression of the mean $x$
388     component of the velocity, $\langle v_x \rangle$, in each of the bins.
389     For Lennard-Jones simulations, shear viscosities are reported in
390     reduced units (${\eta^* = \eta \sigma^2 (\varepsilon m)^{-1/2}}$).
391 skuang 3532
392 gezelter 3609 \subsection{Thermal Conductivities}
393 skuang 3534
394 gezelter 3620 The energy flux was calculated in a similar manner to the momentum
395     flux, using the total non-physical energy transferred (${E_{total}}$)
396     and the data collection time $t$:
397 skuang 3534 \begin{equation}
398     J_z = \frac{E_{total}}{2 t L_x L_y}
399     \end{equation}
400 gezelter 3609 The temperature gradient ${\langle\partial T/\partial z\rangle}$ was
401     obtained by a linear regression of the temperature profile. For
402     Lennard-Jones simulations, thermal conductivities are reported in
403     reduced units (${\lambda^*=\lambda \sigma^2 m^{1/2}
404     k_B^{-1}\varepsilon^{-1/2}}$).
405 skuang 3534
406 gezelter 3609 \subsection{Interfacial Thermal Conductivities}
407 skuang 3563
408 gezelter 3620 For interfaces with a relatively low interfacial conductance, the bulk
409     regions on either side of an interface rapidly come to a state in
410     which the two phases have relatively homogeneous (but distinct)
411     temperatures. The interfacial thermal conductivity $G$ can therefore
412     be approximated as:
413 skuang 3573
414     \begin{equation}
415     G = \frac{E_{total}}{2 t L_x L_y \left( \langle T_{gold}\rangle -
416     \langle T_{water}\rangle \right)}
417     \label{interfaceCalc}
418     \end{equation}
419 gezelter 3609 where ${E_{total}}$ is the imposed non-physical kinetic energy
420     transfer and ${\langle T_{gold}\rangle}$ and ${\langle
421     T_{water}\rangle}$ are the average observed temperature of gold and
422 gezelter 3620 water phases respectively. If the interfacial conductance is {\it
423     not} small, it is also be possible to compute the interfacial
424     thermal conductivity using this method utilizing the change in the
425     slope of the thermal gradient ($\partial^2 \langle T \rangle / \partial
426     z^2$) at the interface.
427 skuang 3573
428 gezelter 3609 \section{Results}
429 skuang 3538
430 gezelter 3609 \subsection{Lennard-Jones Fluid}
431     2592 Lennard-Jones atoms were placed in an orthorhombic cell
432     ${10.06\sigma \times 10.06\sigma \times 30.18\sigma}$ on a side. The
433     reduced density ${\rho^* = \rho\sigma^3}$ was thus 0.85, which enabled
434     direct comparison between our results and previous methods. These
435     simulations were carried out with a reduced timestep ${\tau^* =
436     4.6\times10^{-4}}$. For the shear viscosity calculations, the mean
437     temperature was ${T^* = k_B T/\varepsilon = 0.72}$. For thermal
438 skuang 3617 conductivity calculations, simulations were run under reduced
439 gezelter 3609 temperature ${\langle T^*\rangle = 0.72}$ in the microcanonical
440 skuang 3617 ensemble. The simulations included $10^5$ steps of equilibration
441 gezelter 3609 without any momentum flux, $10^5$ steps of stablization with an
442     imposed momentum transfer to create a gradient, and $10^6$ steps of
443     data collection under RNEMD.
444    
445 gezelter 3611 \subsubsection*{Thermal Conductivity}
446    
447 gezelter 3609 Our thermal conductivity calculations show that the NIVS method agrees
448 skuang 3618 well with the swapping method. Five different swap intervals were
449 gezelter 3620 tested (Table \ref{LJ}). Similar thermal gradients were observed with
450     similar thermal flux under the two different methods (Figure
451     \ref{thermalGrad}). Furthermore, with appropriate choice of scaling
452     variables, the temperatures along $x$, $y$ and $z$ axes showed
453     observable difference. WHAT DOES THIS MEAN? (Figure TO BE ADDED). The
454     system is able to maintain temperature homogeneity even under high
455     flux.
456 gezelter 3609
457 skuang 3563 \begin{table*}
458 gezelter 3609 \begin{minipage}{\linewidth}
459     \begin{center}
460 skuang 3538
461 gezelter 3612 \caption{Thermal conductivity ($\lambda^*$) and shear viscosity
462     ($\eta^*$) (in reduced units) of a Lennard-Jones fluid at
463     ${\langle T^* \rangle = 0.72}$ and ${\rho^* = 0.85}$ computed
464     at various momentum fluxes. The original swapping method and
465     the velocity scaling method give similar results.
466     Uncertainties are indicated in parentheses.}
467 gezelter 3609
468 gezelter 3612 \begin{tabular}{|cc|cc|cc|}
469 gezelter 3609 \hline
470 gezelter 3612 \multicolumn{2}{|c}{Momentum Exchange} &
471     \multicolumn{2}{|c}{Swapping RNEMD} &
472 gezelter 3609 \multicolumn{2}{|c|}{NIVS-RNEMD} \\
473     \hline
474 gezelter 3612 \multirow{2}{*}{Swap Interval (fs)} & Equivalent $J_z^*$ or &
475     \multirow{2}{*}{$\lambda^*_{swap}$} &
476     \multirow{2}{*}{$\eta^*_{swap}$} &
477     \multirow{2}{*}{$\lambda^*_{scale}$} &
478     \multirow{2}{*}{$\eta^*_{scale}$} \\
479 skuang 3617 & $j_z^*(p_x)$ (reduced units) & & & & \\
480 gezelter 3609 \hline
481 skuang 3617 250 & 0.16 & 7.03(0.34) & 3.57(0.06) & 7.30(0.10) & 3.54(0.04)\\
482 gezelter 3612 500 & 0.09 & 7.03(0.14) & 3.64(0.05) & 6.95(0.09) & 3.76(0.09)\\
483     1000 & 0.047 & 6.91(0.42) & 3.52(0.16) & 7.19(0.07) & 3.66(0.06)\\
484     2000 & 0.024 & 7.52(0.15) & 3.72(0.05) & 7.19(0.28) & 3.32(0.18)\\
485 skuang 3617 2500 & 0.019 & 7.41(0.29) & 3.42(0.06) & 7.98(0.33) & 3.43(0.08)\\
486 gezelter 3609 \hline
487     \end{tabular}
488 gezelter 3612 \label{LJ}
489 gezelter 3609 \end{center}
490     \end{minipage}
491 skuang 3563 \end{table*}
492    
493     \begin{figure}
494 gezelter 3612 \includegraphics[width=\linewidth]{thermalGrad}
495 gezelter 3620 \caption{The NIVS-RNEMD method (b) creates similar temperature gradients
496 skuang 3619 compared with the swapping method (a) under a variety of imposed
497     kinetic energy flux values. Furthermore, the implementation of
498     Non-Isotropic Velocity Scaling does not cause temperature
499 gezelter 3620 differences among the three dimensions (c).}
500 gezelter 3612 \label{thermalGrad}
501 skuang 3563 \end{figure}
502    
503 gezelter 3612 \subsubsection*{Velocity Distributions}
504    
505 gezelter 3609 During these simulations, velocities were recorded every 1000 steps
506 gezelter 3620 and were used to produce distributions of both velocity and speed in
507 gezelter 3609 each of the slabs. From these distributions, we observed that under
508 skuang 3613 relatively high non-physical kinetic energy flux, the speed of
509 gezelter 3609 molecules in slabs where swapping occured could deviate from the
510     Maxwell-Boltzmann distribution. This behavior was also noted by Tenney
511 gezelter 3620 and Maginn.\cite{Maginn:2010} Figure \ref{thermalHist} shows how these
512     distributions deviate from an ideal distribution. In the ``hot'' slab,
513     the probability density is notched at low speeds and has a substantial
514 skuang 3619 shoulder at higher speeds relative to the ideal MB distribution. In
515 gezelter 3609 the cold slab, the opposite notching and shouldering occurs. This
516 skuang 3619 phenomenon is more obvious at higher swapping rates.
517 skuang 3563
518 gezelter 3620 The peak of the velocity distribution is substantially flattened in
519     the hot slab, and is overly sharp (with truncated wings) in the cold
520     slab. This problem is rooted in the mechanism of the swapping method.
521     Continually depleting low (high) speed particles in the high (low)
522     temperature slab is not complemented by diffusions of low (high) speed
523     particles from neighboring slabs, unless the swapping rate is
524     sufficiently small. Simutaneously, surplus low speed particles in the
525     low temperature slab do not have sufficient time to diffuse to
526     neighboring slabs. Since the thermal exchange rate must reach a
527     minimum level to produce an observable thermal gradient, the
528     swapping-method RNEMD has a relatively narrow choice of exchange times
529     that can be utilized.
530 skuang 3578
531 gezelter 3609 For comparison, NIVS-RNEMD produces a speed distribution closer to the
532     Maxwell-Boltzmann curve (Figure \ref{thermalHist}). The reason for
533     this is simple; upon velocity scaling, a Gaussian distribution remains
534     Gaussian. Although a single scaling move is non-isotropic in three
535     dimensions, our criteria for choosing a set of scaling coefficients
536     helps maintain the distributions as close to isotropic as possible.
537     Consequently, NIVS-RNEMD is able to impose an unphysical thermal flux
538     as the previous RNEMD methods but without large perturbations to the
539     velocity distributions in the two slabs.
540    
541 skuang 3568 \begin{figure}
542 skuang 3589 \includegraphics[width=\linewidth]{thermalHist}
543 skuang 3619 \caption{Speed distribution for thermal conductivity using
544     ``swapping'' and NIVS-RNEMD methods. Shown is from simulations under
545     ${\langle T^* \rangle = 0.8}$ with an swapping interval of 200
546     time steps (equivalent ${J_z^*\sim 0.2}$). In circled areas,
547     distributions from ``swapping'' RNEMD simulation have deviations
548     from ideal Maxwell-Boltzmann distributions.}
549 skuang 3589 \label{thermalHist}
550 skuang 3568 \end{figure}
551    
552 gezelter 3611
553     \subsubsection*{Shear Viscosity}
554 gezelter 3620 Our calculations (Table \ref{LJ}) show that velocity-scaling RNEMD
555     predicted comparable shear viscosities to swap RNEMD method. The
556     average molecular momentum gradients of these samples are shown in
557     Figure \ref{shear} (a) and (b).
558 gezelter 3611
559     \begin{figure}
560     \includegraphics[width=\linewidth]{shear}
561     \caption{Average momentum gradients in shear viscosity simulations,
562     using (a) ``swapping'' method and (b) NIVS-RNEMD method
563 skuang 3619 respectively. (c) Temperature difference among $x$ and $y, z$
564     dimensions observed when using NIVS-RNEMD with ${j_z^*(p_x)\sim 0.09}$.}
565 gezelter 3611 \label{shear}
566     \end{figure}
567    
568 gezelter 3620 Observations of the three one-dimensional temperatures in each of the
569     slabs shows that NIVS-RNEMD does produce some thermal anisotropy,
570     particularly in the hot and cold slabs. Figure \ref{shear} (c)
571     indicates that with a relatively large imposed momentum flux,
572     $j_z(p_x)$, the $x$ direction approaches a different temperature from
573     the $y$ and $z$ directions in both the hot and cold bins. This is an
574     artifact of the scaling constraints. After the momentum gradient has
575     been established, $P_c^x < 0$. Consequently, the scaling factor $x$
576     is nearly always greater than one in order to satisfy the constraints.
577     This will continually increase the kinetic energy in $x$-dimension,
578     $K_c^x$. If there is not enough time for the kinetic energy to
579     exchange among different directions and different slabs, the system
580     will exhibit the observed thermal anisotropy in the hot and cold bins.
581 gezelter 3611
582     Although results between scaling and swapping methods are comparable,
583 gezelter 3620 the inherent temperature anisotropy does make NIVS-RNEMD method less
584     attractive than swapping RNEMD for shear viscosity calculations. We
585     note that this problem appears only when momentum flux is applied, and
586     does not appear in thermal flux calculations.
587 gezelter 3611
588 gezelter 3609 \subsection{Bulk SPC/E water}
589    
590     We compared the thermal conductivity of SPC/E water using NIVS-RNEMD
591     to the work of Bedrov {\it et al.}\cite{Bedrov:2000}, which employed
592     the original swapping RNEMD method. Bedrov {\it et
593 gezelter 3594 al.}\cite{Bedrov:2000} argued that exchange of the molecule
594 skuang 3579 center-of-mass velocities instead of single atom velocities in a
595 gezelter 3609 molecule conserves the total kinetic energy and linear momentum. This
596 gezelter 3620 principle is also adopted Fin our simulations. Scaling was applied to
597 gezelter 3609 the center-of-mass velocities of the rigid bodies of SPC/E model water
598     molecules.
599 skuang 3563
600 gezelter 3609 To construct the simulations, a simulation box consisting of 1000
601     molecules were first equilibrated under ambient pressure and
602     temperature conditions using the isobaric-isothermal (NPT)
603     ensemble.\cite{melchionna93} A fixed volume was chosen to match the
604     average volume observed in the NPT simulations, and this was followed
605     by equilibration, first in the canonical (NVT) ensemble, followed by a
606 gezelter 3620 100~ps period under constant-NVE conditions without any momentum flux.
607     Another 100~ps was allowed to stabilize the system with an imposed
608     momentum transfer to create a gradient, and 1~ns was allotted for data
609     collection under RNEMD.
610 gezelter 3609
611 gezelter 3620 In our simulations, the established temperature gradients were similar
612     to the previous work. Our simulation results at 318K are in good
613 skuang 3619 agreement with those from Bedrov {\it et al.} (Table
614 skuang 3615 \ref{spceThermal}). And both methods yield values in reasonable
615 gezelter 3620 agreement with experimental values.
616 gezelter 3609
617 skuang 3570 \begin{figure}
618 gezelter 3609 \includegraphics[width=\linewidth]{spceGrad}
619     \caption{Temperature gradients in SPC/E water thermal conductivity
620     simulations.}
621     \label{spceGrad}
622 skuang 3570 \end{figure}
623    
624     \begin{table*}
625 gezelter 3609 \begin{minipage}{\linewidth}
626     \begin{center}
627    
628     \caption{Thermal conductivity of SPC/E water under various
629     imposed thermal gradients. Uncertainties are indicated in
630     parentheses.}
631    
632 skuang 3615 \begin{tabular}{|c|c|ccc|}
633 gezelter 3609 \hline
634 skuang 3615 \multirow{2}{*}{$\langle T\rangle$(K)} &
635     \multirow{2}{*}{$\langle dT/dz\rangle$(K/\AA)} &
636     \multicolumn{3}{|c|}{$\lambda (\mathrm{W m}^{-1}
637     \mathrm{K}^{-1})$} \\
638     & & This work & Previous simulations\cite{Bedrov:2000} &
639 gezelter 3609 Experiment\cite{WagnerKruse}\\
640     \hline
641 skuang 3615 \multirow{3}{*}{300} & 0.38 & 0.816(0.044) & &
642     \multirow{3}{*}{0.61}\\
643     & 0.81 & 0.770(0.008) & & \\
644     & 1.54 & 0.813(0.007) & & \\
645 gezelter 3609 \hline
646 skuang 3615 \multirow{2}{*}{318} & 0.75 & 0.750(0.032) & 0.784 &
647     \multirow{2}{*}{0.64}\\
648     & 1.59 & 0.778(0.019) & 0.730 & \\
649     \hline
650 gezelter 3609 \end{tabular}
651     \label{spceThermal}
652     \end{center}
653     \end{minipage}
654     \end{table*}
655 skuang 3570
656 gezelter 3609 \subsection{Crystalline Gold}
657 skuang 3570
658 gezelter 3609 To see how the method performed in a solid, we calculated thermal
659     conductivities using two atomistic models for gold. Several different
660     potential models have been developed that reasonably describe
661     interactions in transition metals. In particular, the Embedded Atom
662 gezelter 3620 Model (EAM)~\cite{PhysRevB.33.7983} and Sutton-Chen (SC)~\cite{Chen90}
663     potential have been used to study a wide range of phenomena in both
664     bulk materials and
665 gezelter 3609 nanoparticles.\cite{ISI:000207079300006,Clancy:1992,Vardeman:2008fk,Vardeman-II:2001jn,ShibataT._ja026764r,Sankaranarayanan:2005lr,Chui:2003fk,Wang:2005qy,Medasani:2007uq}
666     Both potentials are based on a model of a metal which treats the
667     nuclei and core electrons as pseudo-atoms embedded in the electron
668     density due to the valence electrons on all of the other atoms in the
669 gezelter 3620 system. The SC potential has a simple form that closely resembles the
670     Lennard Jones potential,
671 gezelter 3609 \begin{equation}
672     \label{eq:SCP1}
673     U_{tot}=\sum _{i}\left[ \frac{1}{2}\sum _{j\neq i}D_{ij}V^{pair}_{ij}(r_{ij})-c_{i}D_{ii}\sqrt{\rho_{i}}\right] ,
674     \end{equation}
675     where $V^{pair}_{ij}$ and $\rho_{i}$ are given by
676     \begin{equation}
677     \label{eq:SCP2}
678     V^{pair}_{ij}(r)=\left( \frac{\alpha_{ij}}{r_{ij}}\right)^{n_{ij}}, \rho_{i}=\sum_{j\neq i}\left( \frac{\alpha_{ij}}{r_{ij}}\right) ^{m_{ij}}.
679     \end{equation}
680     $V^{pair}_{ij}$ is a repulsive pairwise potential that accounts for
681     interactions between the pseudoatom cores. The $\sqrt{\rho_i}$ term in
682     Eq. (\ref{eq:SCP1}) is an attractive many-body potential that models
683     the interactions between the valence electrons and the cores of the
684     pseudo-atoms. $D_{ij}$, $D_{ii}$ set the appropriate overall energy
685     scale, $c_i$ scales the attractive portion of the potential relative
686     to the repulsive interaction and $\alpha_{ij}$ is a length parameter
687     that assures a dimensionless form for $\rho$. These parameters are
688     tuned to various experimental properties such as the density, cohesive
689     energy, and elastic moduli for FCC transition metals. The quantum
690 gezelter 3620 Sutton-Chen (QSC) formulation matches these properties while including
691     zero-point quantum corrections for different transition
692     metals.\cite{PhysRevB.59.3527} The EAM functional forms differ
693     slightly from SC but the overall method is very similar.
694 skuang 3570
695 gezelter 3620 In this work, we have utilized both the EAM and the QSC potentials to
696     test the behavior of scaling RNEMD.
697 skuang 3570
698 gezelter 3609 A face-centered-cubic (FCC) lattice was prepared containing 2880 Au
699 skuang 3613 atoms (i.e. ${6\times 6\times 20}$ unit cells). Simulations were run
700     both with and without isobaric-isothermal (NPT)~\cite{melchionna93}
701 gezelter 3609 pre-equilibration at a target pressure of 1 atm. When equilibrated
702     under NPT conditions, our simulation box expanded by approximately 1\%
703 skuang 3613 in volume. Following adjustment of the box volume, equilibrations in
704     both the canonical and microcanonical ensembles were carried out. With
705     the simulation cell divided evenly into 10 slabs, different thermal
706     gradients were established by applying a set of target thermal
707     transfer fluxes.
708 skuang 3570
709 gezelter 3609 The results for the thermal conductivity of gold are shown in Table
710     \ref{AuThermal}. In these calculations, the end and middle slabs were
711 gezelter 3620 excluded in thermal gradient linear regession. EAM predicts slightly
712     larger thermal conductivities than QSC. However, both values are
713     smaller than experimental value by a factor of more than 200. This
714     behavior has been observed previously by Richardson and Clancy, and
715     has been attributed to the lack of electronic contribution in these
716     force fields.\cite{Clancy:1992} It should be noted that the density of
717     the metal being simulated has an effect on thermal conductance. With
718     an expanded lattice, lower thermal conductance is expected (and
719     observed). We also observed a decrease in thermal conductance at
720     higher temperatures, a trend that agrees with experimental
721     measurements.\cite{AshcroftMermin}
722 skuang 3570
723 gezelter 3609 \begin{table*}
724     \begin{minipage}{\linewidth}
725     \begin{center}
726    
727     \caption{Calculated thermal conductivity of crystalline gold
728     using two related force fields. Calculations were done at both
729     experimental and equilibrated densities and at a range of
730 skuang 3617 temperatures and thermal flux rates. Uncertainties are
731     indicated in parentheses. Richardson {\it et
732 gezelter 3621 al.}\cite{Clancy:1992} give an estimate of 1.74 $\mathrm{W
733     m}^{-1}\mathrm{K}^{-1}$ for EAM gold
734     at a density of 19.263 g / cm$^3$.}
735 gezelter 3609
736     \begin{tabular}{|c|c|c|cc|}
737     \hline
738     Force Field & $\rho$ (g/cm$^3$) & ${\langle T\rangle}$ (K) &
739     $\langle dT/dz\rangle$ (K/\AA) & $\lambda (\mathrm{W m}^{-1} \mathrm{K}^{-1})$\\
740     \hline
741 gezelter 3621 \multirow{7}{*}{QSC} & \multirow{3}{*}{19.188} & \multirow{3}{*}{300} & 1.44 & 1.10(0.06)\\
742 gezelter 3609 & & & 2.86 & 1.08(0.05)\\
743     & & & 5.14 & 1.15(0.07)\\\cline{2-5}
744     & \multirow{4}{*}{19.263} & \multirow{2}{*}{300} & 2.31 & 1.25(0.06)\\
745     & & & 3.02 & 1.26(0.05)\\\cline{3-5}
746     & & \multirow{2}{*}{575} & 3.02 & 1.02(0.07)\\
747     & & & 4.84 & 0.92(0.05)\\
748     \hline
749 gezelter 3621 \multirow{8}{*}{EAM} & \multirow{3}{*}{19.045} & \multirow{3}{*}{300} & 1.24 & 1.24(0.16)\\
750 gezelter 3609 & & & 2.06 & 1.37(0.04)\\
751     & & & 2.55 & 1.41(0.07)\\\cline{2-5}
752     & \multirow{5}{*}{19.263} & \multirow{3}{*}{300} & 1.06 & 1.45(0.13)\\
753     & & & 2.04 & 1.41(0.07)\\
754     & & & 2.41 & 1.53(0.10)\\\cline{3-5}
755     & & \multirow{2}{*}{575} & 2.82 & 1.08(0.03)\\
756     & & & 4.14 & 1.08(0.05)\\
757     \hline
758     \end{tabular}
759     \label{AuThermal}
760     \end{center}
761     \end{minipage}
762 skuang 3580 \end{table*}
763    
764 gezelter 3609 \subsection{Thermal Conductance at the Au/H$_2$O interface}
765     The most attractive aspect of the scaling approach for RNEMD is the
766     ability to use the method in non-homogeneous systems, where molecules
767     of different identities are segregated in different slabs. To test
768     this application, we simulated a Gold (111) / water interface. To
769     construct the interface, a box containing a lattice of 1188 Au atoms
770 skuang 3619 (with the 111 surface in the $+z$ and $-z$ directions) was allowed to
771 gezelter 3609 relax under ambient temperature and pressure. A separate (but
772     identically sized) box of SPC/E water was also equilibrated at ambient
773     conditions. The two boxes were combined by removing all water
774 skuang 3613 molecules within 3 \AA radius of any gold atom. The final
775 gezelter 3609 configuration contained 1862 SPC/E water molecules.
776 skuang 3580
777 gezelter 3620 The Spohr potential was adopted in depicting the interaction between
778     metal atoms and water molecules.\cite{ISI:000167766600035} A similar
779     protocol of equilibration to our water simulations was followed. We
780     observed that the two phases developed large temperature differences
781     even under a relatively low thermal flux.
782 gezelter 3609
783 gezelter 3620 The low interfacial conductance is probably due to the hydrophobic
784 skuang 3595 surface in our system. Figure \ref{interface} (a) demonstrates mass
785 skuang 3581 density change along $z$-axis, which is perpendicular to the
786     gold/water interface. It is observed that water density significantly
787     decreases when approaching the surface. Under this low thermal
788     conductance, both gold and water phase have sufficient time to
789     eliminate temperature difference inside respectively (Figure
790 skuang 3595 \ref{interface} b). With indistinguishable temperature difference
791 skuang 3581 within respective phase, it is valid to assume that the temperature
792     difference between gold and water on surface would be approximately
793     the same as the difference between the gold and water phase. This
794 gezelter 3620 assumption enables convenient calculation of $G$ using Eq.
795     \ref{interfaceCalc} instead of measuring temperatures of thin layer of
796     water and gold close enough to surface, which would have greater
797     fluctuation and lower accuracy. Reported results (Table
798 skuang 3581 \ref{interfaceRes}) are of two orders of magnitude smaller than our
799     calculations on homogeneous systems, and thus have larger relative
800     errors than our calculation results on homogeneous systems.
801 skuang 3573
802 skuang 3571 \begin{figure}
803 skuang 3595 \includegraphics[width=\linewidth]{interface}
804     \caption{Simulation results for Gold/Water interfacial thermal
805     conductivity: (a) Significant water density decrease is observed on
806 skuang 3597 crystalline gold surface, which indicates low surface contact and
807     leads to low thermal conductance. (b) Temperature profiles for a
808     series of simulations. Temperatures of different slabs in the same
809     phase show no significant differences.}
810 skuang 3595 \label{interface}
811 skuang 3571 \end{figure}
812    
813 skuang 3572 \begin{table*}
814 gezelter 3612 \begin{minipage}{\linewidth}
815     \begin{center}
816    
817     \caption{Computed interfacial thermal conductivity ($G$) values
818     for the Au(111) / water interface at ${\langle T\rangle \sim}$
819     300K using a range of energy fluxes. Uncertainties are
820     indicated in parentheses. }
821    
822 gezelter 3616 \begin{tabular}{|cccc| }
823 gezelter 3612 \hline
824     $J_z$ (MW/m$^2$) & $\langle T_{gold} \rangle$ (K) & $\langle
825     T_{water} \rangle$ (K) & $G$
826     (MW/m$^2$/K)\\
827     \hline
828     98.0 & 355.2 & 295.8 & 1.65(0.21) \\
829     78.8 & 343.8 & 298.0 & 1.72(0.32) \\
830     73.6 & 344.3 & 298.0 & 1.59(0.24) \\
831     49.2 & 330.1 & 300.4 & 1.65(0.35) \\
832     \hline
833     \end{tabular}
834     \label{interfaceRes}
835     \end{center}
836     \end{minipage}
837 skuang 3572 \end{table*}
838    
839 skuang 3576
840 skuang 3574 \section{Conclusions}
841     NIVS-RNEMD simulation method is developed and tested on various
842 skuang 3581 systems. Simulation results demonstrate its validity in thermal
843     conductivity calculations, from Lennard-Jones fluid to multi-atom
844     molecule like water and metal crystals. NIVS-RNEMD improves
845 gezelter 3616 non-Boltzmann-Maxwell distributions, which exist inb previous RNEMD
846 skuang 3581 methods. Furthermore, it develops a valid means for unphysical thermal
847     transfer between different species of molecules, and thus extends its
848     applicability to interfacial systems. Our calculation of gold/water
849     interfacial thermal conductivity demonstrates this advantage over
850     previous RNEMD methods. NIVS-RNEMD has also limited application on
851     shear viscosity calculations, but could cause temperature difference
852     among different dimensions under high momentum flux. Modification is
853     necessary to extend the applicability of NIVS-RNEMD in shear viscosity
854     calculations.
855 skuang 3572
856 gezelter 3524 \section{Acknowledgments}
857     Support for this project was provided by the National Science
858     Foundation under grant CHE-0848243. Computational time was provided by
859     the Center for Research Computing (CRC) at the University of Notre
860     Dame. \newpage
861    
862     \bibliography{nivsRnemd}
863 gezelter 3583
864 gezelter 3524 \end{doublespace}
865     \end{document}
866