ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nivsRnemd/nivsRnemd.tex
Revision: 3646
Committed: Thu Sep 16 19:39:44 2010 UTC (13 years, 11 months ago) by skuang
Content type: application/x-tex
File size: 42861 byte(s)
Log Message:
minor change.

File Contents

# User Rev Content
1 gezelter 3524 \documentclass[11pt]{article}
2     \usepackage{amsmath}
3     \usepackage{amssymb}
4     \usepackage{setspace}
5     \usepackage{endfloat}
6     \usepackage{caption}
7     %\usepackage{tabularx}
8     \usepackage{graphicx}
9 gezelter 3609 \usepackage{multirow}
10 gezelter 3524 %\usepackage{booktabs}
11     %\usepackage{bibentry}
12     %\usepackage{mathrsfs}
13 gezelter 3616 %\usepackage[ref]{overcite}
14     \usepackage[square, comma, sort&compress]{natbib}
15     \usepackage{url}
16 gezelter 3524 \pagestyle{plain} \pagenumbering{arabic} \oddsidemargin 0.0cm
17     \evensidemargin 0.0cm \topmargin -21pt \headsep 10pt \textheight
18     9.0in \textwidth 6.5in \brokenpenalty=10000
19    
20     % double space list of tables and figures
21     \AtBeginDelayedFloats{\renewcommand{\baselinestretch}{1.66}}
22     \setlength{\abovecaptionskip}{20 pt}
23     \setlength{\belowcaptionskip}{30 pt}
24    
25 gezelter 3616 %\renewcommand\citemid{\ } % no comma in optional referenc note
26     \bibpunct{[}{]}{,}{s}{}{;}
27     \bibliographystyle{aip}
28 gezelter 3524
29     \begin{document}
30    
31     \title{A gentler approach to RNEMD: Non-isotropic Velocity Scaling for computing Thermal Conductivity and Shear Viscosity}
32    
33     \author{Shenyu Kuang and J. Daniel
34     Gezelter\footnote{Corresponding author. \ Electronic mail: gezelter@nd.edu} \\
35     Department of Chemistry and Biochemistry,\\
36     University of Notre Dame\\
37     Notre Dame, Indiana 46556}
38    
39     \date{\today}
40    
41     \maketitle
42    
43     \begin{doublespace}
44    
45     \begin{abstract}
46 gezelter 3583 We present a new method for introducing stable non-equilibrium
47 gezelter 3620 velocity and temperature gradients in molecular dynamics simulations
48     of heterogeneous systems. This method extends earlier Reverse
49     Non-Equilibrium Molecular Dynamics (RNEMD) methods which use
50     momentum exchange swapping moves. The standard swapping moves can
51     create non-thermal velocity distributions and are difficult to use
52     for interfacial calculations. By using non-isotropic velocity
53     scaling (NIVS) on the molecules in specific regions of a system, it
54     is possible to impose momentum or thermal flux between regions of a
55     simulation while conserving the linear momentum and total energy of
56 gezelter 3631 the system. To test the method, we have computed the thermal
57 gezelter 3620 conductivity of model liquid and solid systems as well as the
58     interfacial thermal conductivity of a metal-water interface. We
59     find that the NIVS-RNEMD improves the problematic velocity
60 gezelter 3609 distributions that develop in other RNEMD methods.
61 gezelter 3524 \end{abstract}
62    
63     \newpage
64    
65     %\narrowtext
66    
67     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
68     % BODY OF TEXT
69     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
70    
71     \section{Introduction}
72     The original formulation of Reverse Non-equilibrium Molecular Dynamics
73     (RNEMD) obtains transport coefficients (thermal conductivity and shear
74     viscosity) in a fluid by imposing an artificial momentum flux between
75     two thin parallel slabs of material that are spatially separated in
76 skuang 3534 the simulation cell.\cite{MullerPlathe:1997xw,ISI:000080382700030} The
77 gezelter 3583 artificial flux is typically created by periodically ``swapping''
78     either the entire momentum vector $\vec{p}$ or single components of
79     this vector ($p_x$) between molecules in each of the two slabs. If
80     the two slabs are separated along the $z$ coordinate, the imposed flux
81     is either directional ($j_z(p_x)$) or isotropic ($J_z$), and the
82     response of a simulated system to the imposed momentum flux will
83     typically be a velocity or thermal gradient (Fig. \ref{thermalDemo}).
84     The shear viscosity ($\eta$) and thermal conductivity ($\lambda$) are
85     easily obtained by assuming linear response of the system,
86 gezelter 3524 \begin{eqnarray}
87 skuang 3532 j_z(p_x) & = & -\eta \frac{\partial v_x}{\partial z}\\
88 skuang 3575 J_z & = & \lambda \frac{\partial T}{\partial z}
89 gezelter 3524 \end{eqnarray}
90 gezelter 3600 RNEMD has been widely used to provide computational estimates of
91     thermal conductivities and shear viscosities in a wide range of
92     materials, from liquid copper to both monatomic and molecular fluids
93     (e.g. ionic
94     liquids).\cite{Bedrov:2000-1,Bedrov:2000,Muller-Plathe:2002,ISI:000184808400018,ISI:000231042800044,Maginn:2007,Muller-Plathe:2008,ISI:000258460400020,ISI:000258840700015,ISI:000261835100054}
95 gezelter 3524
96 skuang 3574 \begin{figure}
97     \includegraphics[width=\linewidth]{thermalDemo}
98 gezelter 3583 \caption{RNEMD methods impose an unphysical transfer of momentum or
99     kinetic energy between a ``hot'' slab and a ``cold'' slab in the
100     simulation box. The molecular system responds to this imposed flux
101     by generating a momentum or temperature gradient. The slope of the
102     gradient can then be used to compute transport properties (e.g.
103     shear viscosity and thermal conductivity).}
104 skuang 3574 \label{thermalDemo}
105     \end{figure}
106    
107 skuang 3591 RNEMD is preferable in many ways to the forward NEMD
108 skuang 3592 methods\cite{ISI:A1988Q205300014,hess:209,Vasquez:2004fk,backer:154503,ISI:000266247600008}
109     because it imposes what is typically difficult to measure (a flux or
110 gezelter 3600 stress) and it is typically much easier to compute the response
111 skuang 3645 (momentum gradients or strains). For similar reasons, RNEMD is also
112 skuang 3592 preferable to slowly-converging equilibrium methods for measuring
113     thermal conductivity and shear viscosity (using Green-Kubo
114 skuang 3591 relations\cite{daivis:541,mondello:9327} or the Helfand moment
115     approach of Viscardy {\it et
116 skuang 3527 al.}\cite{Viscardy:2007bh,Viscardy:2007lq}) because these rely on
117 gezelter 3631 computing and integrating long-time correlation functions that are
118     subject to noise issues.
119 gezelter 3524
120     Another attractive feature of RNEMD is that it conserves both total
121     linear momentum and total energy during the swaps (as long as the two
122     molecules have the same identity), so the swapped configurations are
123     typically samples from the same manifold of states in the
124 skuang 3645 microcanonical ensemble. Furthermore, the method is applicable with
125     different ensembles, unlike the heat-exchange algorithm proposed by
126     Hafskjold {\it et al.} \cite{HeX:1994,HeX:1993}, which is incompatible
127     with non-microcanonical ensemble.
128 gezelter 3524
129 gezelter 3620 Recently, Tenney and Maginn\cite{Maginn:2010} have discovered some
130     problems with the original RNEMD swap technique. Notably, large
131 skuang 3565 momentum fluxes (equivalent to frequent momentum swaps between the
132 skuang 3575 slabs) can result in ``notched'', ``peaked'' and generally non-thermal
133     momentum distributions in the two slabs, as well as non-linear thermal
134     and velocity distributions along the direction of the imposed flux
135     ($z$). Tenney and Maginn obtained reasonable limits on imposed flux
136 gezelter 3620 and proposed self-adjusting metrics for retaining the usability of the
137     method.
138 gezelter 3524
139     In this paper, we develop and test a method for non-isotropic velocity
140 gezelter 3600 scaling (NIVS) which retains the desirable features of RNEMD
141 gezelter 3524 (conservation of linear momentum and total energy, compatibility with
142     periodic boundary conditions) while establishing true thermal
143 gezelter 3600 distributions in each of the two slabs. In the next section, we
144 gezelter 3583 present the method for determining the scaling constraints. We then
145 gezelter 3600 test the method on both liquids and solids as well as a non-isotropic
146     liquid-solid interface and show that it is capable of providing
147 gezelter 3524 reasonable estimates of the thermal conductivity and shear viscosity
148 gezelter 3600 in all of these cases.
149 gezelter 3524
150     \section{Methodology}
151 gezelter 3583 We retain the basic idea of M\"{u}ller-Plathe's RNEMD method; the
152     periodic system is partitioned into a series of thin slabs along one
153 gezelter 3524 axis ($z$). One of the slabs at the end of the periodic box is
154     designated the ``hot'' slab, while the slab in the center of the box
155     is designated the ``cold'' slab. The artificial momentum flux will be
156     established by transferring momentum from the cold slab and into the
157     hot slab.
158    
159     Rather than using momentum swaps, we use a series of velocity scaling
160 gezelter 3583 moves. For molecules $\{i\}$ located within the cold slab,
161 gezelter 3524 \begin{equation}
162 skuang 3565 \vec{v}_i \leftarrow \left( \begin{array}{ccc}
163     x & 0 & 0 \\
164     0 & y & 0 \\
165     0 & 0 & z \\
166 gezelter 3524 \end{array} \right) \cdot \vec{v}_i
167     \end{equation}
168 gezelter 3600 where ${x, y, z}$ are a set of 3 velocity-scaling variables for each
169     of the three directions in the system. Likewise, the molecules
170     $\{j\}$ located in the hot slab will see a concomitant scaling of
171     velocities,
172 gezelter 3524 \begin{equation}
173 skuang 3565 \vec{v}_j \leftarrow \left( \begin{array}{ccc}
174     x^\prime & 0 & 0 \\
175     0 & y^\prime & 0 \\
176     0 & 0 & z^\prime \\
177 gezelter 3524 \end{array} \right) \cdot \vec{v}_j
178     \end{equation}
179    
180     Conservation of linear momentum in each of the three directions
181 gezelter 3583 ($\alpha = x,y,z$) ties the values of the hot and cold scaling
182 gezelter 3524 parameters together:
183     \begin{equation}
184 skuang 3528 P_h^\alpha + P_c^\alpha = \alpha^\prime P_h^\alpha + \alpha P_c^\alpha
185 gezelter 3524 \end{equation}
186     where
187 skuang 3565 \begin{eqnarray}
188 gezelter 3620 P_c^\alpha & = & \sum_{i = 1}^{N_c} m_i v_{i\alpha} \\
189     P_h^\alpha & = & \sum_{j = 1}^{N_h} m_j v_{j\alpha}
190 gezelter 3524 \label{eq:momentumdef}
191 skuang 3565 \end{eqnarray}
192 skuang 3528 Therefore, for each of the three directions, the hot scaling
193     parameters are a simple function of the cold scaling parameters and
194 gezelter 3620 the instantaneous linear momenta in each of the two slabs.
195 gezelter 3524 \begin{equation}
196 skuang 3528 \alpha^\prime = 1 + (1 - \alpha) p_\alpha
197 gezelter 3524 \label{eq:hotcoldscaling}
198     \end{equation}
199 skuang 3528 where
200     \begin{equation}
201     p_\alpha = \frac{P_c^\alpha}{P_h^\alpha}
202     \end{equation}
203     for convenience.
204 gezelter 3524
205     Conservation of total energy also places constraints on the scaling:
206     \begin{equation}
207 gezelter 3620 \sum_{\alpha = x,y,z} \left\{ K_h^\alpha + K_c^\alpha \right\} = \sum_{\alpha = x,y,z}
208     \left\{ \left(\alpha^\prime\right)^2 K_h^\alpha + \alpha^2 K_c^\alpha \right\}
209 gezelter 3524 \end{equation}
210 skuang 3575 where the translational kinetic energies, $K_h^\alpha$ and
211     $K_c^\alpha$, are computed for each of the three directions in a
212     similar manner to the linear momenta (Eq. \ref{eq:momentumdef}).
213     Substituting in the expressions for the hot scaling parameters
214     ($\alpha^\prime$) from Eq. (\ref{eq:hotcoldscaling}), we obtain the
215 gezelter 3583 {\it constraint ellipsoid}:
216 gezelter 3524 \begin{equation}
217 gezelter 3600 \sum_{\alpha = x,y,z} \left( a_\alpha \alpha^2 + b_\alpha \alpha +
218     c_\alpha \right) = 0
219 gezelter 3524 \label{eq:constraintEllipsoid}
220     \end{equation}
221     where the constants are obtained from the instantaneous values of the
222     linear momenta and kinetic energies for the hot and cold slabs,
223 skuang 3565 \begin{eqnarray}
224 skuang 3528 a_\alpha & = &\left(K_c^\alpha + K_h^\alpha
225     \left(p_\alpha\right)^2\right) \\
226     b_\alpha & = & -2 K_h^\alpha p_\alpha \left( 1 + p_\alpha\right) \\
227 skuang 3565 c_\alpha & = & K_h^\alpha p_\alpha^2 + 2 K_h^\alpha p_\alpha - K_c^\alpha
228 gezelter 3524 \label{eq:constraintEllipsoidConsts}
229 skuang 3565 \end{eqnarray}
230 gezelter 3583 This ellipsoid (Eq. \ref{eq:constraintEllipsoid}) defines the set of
231 gezelter 3600 cold slab scaling parameters which, when applied, preserve the linear
232     momentum of the system in all three directions as well as total
233     kinetic energy.
234 gezelter 3524
235 gezelter 3600 The goal of using these velocity scaling variables is to transfer
236 gezelter 3609 kinetic energy from the cold slab to the hot slab. If the hot and
237     cold slabs are separated along the z-axis, the energy flux is given
238     simply by the decrease in kinetic energy of the cold bin:
239 gezelter 3524 \begin{equation}
240 skuang 3534 (1-x^2) K_c^x + (1-y^2) K_c^y + (1-z^2) K_c^z = J_z\Delta t
241 gezelter 3524 \end{equation}
242     The expression for the energy flux can be re-written as another
243     ellipsoid centered on $(x,y,z) = 0$:
244     \begin{equation}
245 skuang 3604 \sum_{\alpha = x,y,z} K_c^\alpha \alpha^2 = \sum_{\alpha = x,y,z}
246     K_c^\alpha -J_z \Delta t
247 gezelter 3524 \label{eq:fluxEllipsoid}
248     \end{equation}
249 gezelter 3583 The spatial extent of the {\it thermal flux ellipsoid} is governed
250 gezelter 3600 both by the target flux, $J_z$ as well as the instantaneous values of
251     the kinetic energy components in the cold bin.
252 gezelter 3524
253     To satisfy an energetic flux as well as the conservation constraints,
254 gezelter 3600 we must determine the points ${x,y,z}$ that lie on both the constraint
255     ellipsoid (Eq. \ref{eq:constraintEllipsoid}) and the flux ellipsoid
256     (Eq. \ref{eq:fluxEllipsoid}), i.e. the intersection of the two
257     ellipsoids in 3-dimensional space.
258 gezelter 3524
259 gezelter 3569 \begin{figure}
260     \includegraphics[width=\linewidth]{ellipsoids}
261 gezelter 3600 \caption{Velocity scaling coefficients which maintain both constant
262     energy and constant linear momentum of the system lie on the surface
263     of the {\it constraint ellipsoid} while points which generate the
264     target momentum flux lie on the surface of the {\it flux ellipsoid}.
265     The velocity distributions in the cold bin are scaled by only those
266     points which lie on both ellipsoids.}
267 gezelter 3569 \label{ellipsoids}
268     \end{figure}
269    
270 gezelter 3600 Since ellipsoids can be expressed as polynomials up to second order in
271     each of the three coordinates, finding the the intersection points of
272     two ellipsoids is isomorphic to finding the roots a polynomial of
273     degree 16. There are a number of polynomial root-finding methods in
274 skuang 3614 the literature,\cite{Hoffman:2001sf,384119} but numerically finding
275     the roots of high-degree polynomials is generally an ill-conditioned
276 gezelter 3620 problem.\cite{Hoffman:2001sf} One simplification is to maintain
277     velocity scalings that are {\it as isotropic as possible}. To do
278     this, we impose $x=y$, and treat both the constraint and flux
279     ellipsoids as 2-dimensional ellipses. In reduced dimensionality, the
280 gezelter 3600 intersecting-ellipse problem reduces to finding the roots of
281 gezelter 3609 polynomials of degree 4.
282 gezelter 3600
283     Depending on the target flux and current velocity distributions, the
284     ellipsoids can have between 0 and 4 intersection points. If there are
285     no intersection points, it is not possible to satisfy the constraints
286     while performing a non-equilibrium scaling move, and no change is made
287     to the dynamics.
288    
289     With multiple intersection points, any of the scaling points will
290     conserve the linear momentum and kinetic energy of the system and will
291     generate the correct target flux. Although this method is inherently
292     non-isotropic, the goal is still to maintain the system as close to an
293     isotropic fluid as possible. With this in mind, we would like the
294     kinetic energies in the three different directions could become as
295     close as each other as possible after each scaling. Simultaneously,
296 gezelter 3631 one would also like each scaling to be as gentle as possible, i.e.
297 gezelter 3632 ${x,y,z \rightarrow 1}$, in order to avoid large perturbations to the
298 gezelter 3631 system. To do this, we pick the intersection point which maintains
299     the three scaling variables ${x, y, z}$ as well as the ratio of
300     kinetic energies ${K_c^z/K_c^x, K_c^z/K_c^y}$ as close as possible to
301     1.
302 gezelter 3600
303     After the valid scaling parameters are arrived at by solving geometric
304     intersection problems in $x, y, z$ space in order to obtain cold slab
305     scaling parameters, Eq. (\ref{eq:hotcoldscaling}) is used to
306     determine the conjugate hot slab scaling variables.
307    
308     \subsection{Introducing shear stress via velocity scaling}
309 gezelter 3609 It is also possible to use this method to magnify the random
310     fluctuations of the average momentum in each of the bins to induce a
311     momentum flux. Doing this repeatedly will create a shear stress on
312     the system which will respond with an easily-measured strain. The
313     momentum flux (say along the $x$-direction) may be defined as:
314 gezelter 3524 \begin{equation}
315 skuang 3565 (1-x) P_c^x = j_z(p_x)\Delta t
316 skuang 3531 \label{eq:fluxPlane}
317 gezelter 3524 \end{equation}
318 gezelter 3600 This {\it momentum flux plane} is perpendicular to the $x$-axis, with
319     its position governed both by a target value, $j_z(p_x)$ as well as
320     the instantaneous value of the momentum along the $x$-direction.
321 gezelter 3524
322 gezelter 3583 In order to satisfy a momentum flux as well as the conservation
323     constraints, we must determine the points ${x,y,z}$ which lie on both
324     the constraint ellipsoid (Eq. \ref{eq:constraintEllipsoid}) and the
325     flux plane (Eq. \ref{eq:fluxPlane}), i.e. the intersection of an
326 gezelter 3600 ellipsoid and a plane in 3-dimensional space.
327 gezelter 3524
328 gezelter 3600 In the case of momentum flux transfer, we also impose another
329 gezelter 3609 constraint to set the kinetic energy transfer as zero. In other
330     words, we apply Eq. \ref{eq:fluxEllipsoid} and let ${J_z = 0}$. With
331 gezelter 3600 one variable fixed by Eq. \ref{eq:fluxPlane}, one now have a similar
332     set of quartic equations to the above kinetic energy transfer problem.
333 gezelter 3524
334 gezelter 3600 \section{Computational Details}
335 gezelter 3583
336 gezelter 3609 We have implemented this methodology in our molecular dynamics code,
337     OpenMD,\cite{Meineke:2005gd,openmd} performing the NIVS scaling moves
338 gezelter 3620 with a variable frequency after the molecular dynamics (MD) steps. We
339     have tested the method in a variety of different systems, including:
340     homogeneous fluids (Lennard-Jones and SPC/E water), crystalline
341     solids, using both the embedded atom method
342     (EAM)~\cite{PhysRevB.33.7983} and quantum Sutton-Chen
343     (QSC)~\cite{PhysRevB.59.3527} models for Gold, and heterogeneous
344 skuang 3645 interfaces (QSC gold - SPC/E water). Even though previous RNEMD
345     methods might remain usable for the last of these systems, energy
346     transfer from imaginary elastic collisions would be less effective
347     when the two particles involved have larger mass difference, and thus
348     affect the actuall implementation of these methods. However, our
349 gezelter 3620 current method can easily provide estimates of the interfacial thermal
350     conductivity ($G$).
351 gezelter 3524
352 gezelter 3609 \subsection{Simulation Cells}
353 gezelter 3524
354 gezelter 3609 In each of the systems studied, the dynamics was carried out in a
355     rectangular simulation cell using periodic boundary conditions in all
356     three dimensions. The cells were longer along the $z$ axis and the
357     space was divided into $N$ slabs along this axis (typically $N=20$).
358 skuang 3613 The top slab ($n=1$) was designated the ``hot'' slab, while the
359     central slab ($n= N/2 + 1$) was designated the ``cold'' slab. In all
360 gezelter 3609 cases, simulations were first thermalized in canonical ensemble (NVT)
361     using a Nos\'{e}-Hoover thermostat.\cite{Hoover85} then equilibrated in
362 gezelter 3600 microcanonical ensemble (NVE) before introducing any non-equilibrium
363     method.
364 skuang 3531
365 gezelter 3609 \subsection{RNEMD with M\"{u}ller-Plathe swaps}
366 skuang 3531
367 gezelter 3609 In order to compare our new methodology with the original
368     M\"{u}ller-Plathe swapping algorithm,\cite{ISI:000080382700030} we
369 gezelter 3625 first performed simulations using the original technique. At fixed
370     intervals, kinetic energy or momentum exchange moves were performed
371     between the hot and the cold slabs. The interval between exchange
372     moves governs the effective momentum flux ($j_z(p_x)$) or energy flux
373     ($J_z$) between the two slabs so to vary this quantity, we performed
374     simulations with a variety of delay intervals between the swapping moves.
375 skuang 3531
376 gezelter 3625 For thermal conductivity measurements, the particle with smallest
377     speed in the hot slab and the one with largest speed in the cold slab
378     had their entire momentum vectors swapped. In the test cases run
379     here, all particles had the same chemical identity and mass, so this
380     move preserves both total linear momentum and total energy. It is
381     also possible to exchange energy by assuming an elastic collision
382     between the two particles which are exchanging energy.
383    
384     For shear stress simulations, the particle with the most negative
385     $p_x$ in the hot slab and the one with the most positive $p_x$ in the
386     cold slab exchanged only this component of their momentum vectors.
387    
388 gezelter 3609 \subsection{RNEMD with NIVS scaling}
389    
390     For each simulation utilizing the swapping method, a corresponding
391     NIVS-RNEMD simulation was carried out using a target momentum flux set
392 gezelter 3620 to produce the same flux experienced in the swapping simulation.
393 gezelter 3609
394 gezelter 3631 To test the temperature homogeneity, momentum and temperature
395     distributions (for all three dimensions) were accumulated for
396     molecules in each of the slabs. Transport coefficients were computed
397     using the temperature (and momentum) gradients across the $z$-axis as
398     well as the total momentum flux the system experienced during data
399     collection portion of the simulation.
400 gezelter 3609
401     \subsection{Shear viscosities}
402    
403     The momentum flux was calculated using the total non-physical momentum
404     transferred (${P_x}$) and the data collection time ($t$):
405 skuang 3534 \begin{equation}
406     j_z(p_x) = \frac{P_x}{2 t L_x L_y}
407     \end{equation}
408 gezelter 3609 where $L_x$ and $L_y$ denote the $x$ and $y$ lengths of the simulation
409     box. The factor of two in the denominator is present because physical
410 gezelter 3620 momentum transfer between the slabs occurs in two directions ($+z$ and
411     $-z$). The velocity gradient ${\langle \partial v_x /\partial z
412     \rangle}$ was obtained using linear regression of the mean $x$
413     component of the velocity, $\langle v_x \rangle$, in each of the bins.
414     For Lennard-Jones simulations, shear viscosities are reported in
415     reduced units (${\eta^* = \eta \sigma^2 (\varepsilon m)^{-1/2}}$).
416 skuang 3532
417 gezelter 3609 \subsection{Thermal Conductivities}
418 skuang 3534
419 gezelter 3620 The energy flux was calculated in a similar manner to the momentum
420     flux, using the total non-physical energy transferred (${E_{total}}$)
421     and the data collection time $t$:
422 skuang 3534 \begin{equation}
423     J_z = \frac{E_{total}}{2 t L_x L_y}
424     \end{equation}
425 gezelter 3609 The temperature gradient ${\langle\partial T/\partial z\rangle}$ was
426     obtained by a linear regression of the temperature profile. For
427     Lennard-Jones simulations, thermal conductivities are reported in
428     reduced units (${\lambda^*=\lambda \sigma^2 m^{1/2}
429     k_B^{-1}\varepsilon^{-1/2}}$).
430 skuang 3534
431 gezelter 3609 \subsection{Interfacial Thermal Conductivities}
432 skuang 3563
433 gezelter 3620 For interfaces with a relatively low interfacial conductance, the bulk
434     regions on either side of an interface rapidly come to a state in
435     which the two phases have relatively homogeneous (but distinct)
436     temperatures. The interfacial thermal conductivity $G$ can therefore
437     be approximated as:
438 skuang 3573
439     \begin{equation}
440 gezelter 3631 G = \frac{E_{total}}{2 t L_x L_y \left( \langle T_\mathrm{hot}\rangle -
441     \langle T_\mathrm{cold}\rangle \right)}
442 skuang 3573 \label{interfaceCalc}
443     \end{equation}
444 gezelter 3609 where ${E_{total}}$ is the imposed non-physical kinetic energy
445 gezelter 3631 transfer and ${\langle T_\mathrm{hot}\rangle}$ and ${\langle
446     T_\mathrm{cold}\rangle}$ are the average observed temperature of the
447     two separated phases. If the interfacial conductance is {\it not}
448     small, it would also be possible to compute the interfacial thermal
449 gezelter 3632 conductivity using this method by computing the change in the slope of
450 gezelter 3631 the thermal gradient ($\partial^2 \langle T \rangle /
451     \partial z^2$) at the interface.
452 skuang 3573
453 gezelter 3609 \section{Results}
454 skuang 3538
455 gezelter 3609 \subsection{Lennard-Jones Fluid}
456     2592 Lennard-Jones atoms were placed in an orthorhombic cell
457     ${10.06\sigma \times 10.06\sigma \times 30.18\sigma}$ on a side. The
458     reduced density ${\rho^* = \rho\sigma^3}$ was thus 0.85, which enabled
459     direct comparison between our results and previous methods. These
460     simulations were carried out with a reduced timestep ${\tau^* =
461     4.6\times10^{-4}}$. For the shear viscosity calculations, the mean
462     temperature was ${T^* = k_B T/\varepsilon = 0.72}$. For thermal
463 skuang 3617 conductivity calculations, simulations were run under reduced
464 gezelter 3609 temperature ${\langle T^*\rangle = 0.72}$ in the microcanonical
465 skuang 3617 ensemble. The simulations included $10^5$ steps of equilibration
466 gezelter 3609 without any momentum flux, $10^5$ steps of stablization with an
467     imposed momentum transfer to create a gradient, and $10^6$ steps of
468     data collection under RNEMD.
469    
470 gezelter 3611 \subsubsection*{Thermal Conductivity}
471    
472 gezelter 3609 Our thermal conductivity calculations show that the NIVS method agrees
473 skuang 3618 well with the swapping method. Five different swap intervals were
474 gezelter 3620 tested (Table \ref{LJ}). Similar thermal gradients were observed with
475 gezelter 3631 similar thermal flux under the two different methods (Fig.
476 gezelter 3625 \ref{thermalGrad}). Furthermore, the 1-d temperature profiles showed
477 gezelter 3631 no observable differences between the $x$, $y$ and $z$ axes (lower
478     panel of Fig. \ref{thermalGrad}), so even though we are using a
479     non-isotropic scaling method, none of the three directions are
480     experience disproportionate heating due to the velocity scaling.
481 gezelter 3609
482 skuang 3563 \begin{table*}
483 gezelter 3609 \begin{minipage}{\linewidth}
484     \begin{center}
485 skuang 3538
486 gezelter 3612 \caption{Thermal conductivity ($\lambda^*$) and shear viscosity
487     ($\eta^*$) (in reduced units) of a Lennard-Jones fluid at
488     ${\langle T^* \rangle = 0.72}$ and ${\rho^* = 0.85}$ computed
489     at various momentum fluxes. The original swapping method and
490     the velocity scaling method give similar results.
491     Uncertainties are indicated in parentheses.}
492 gezelter 3609
493 gezelter 3612 \begin{tabular}{|cc|cc|cc|}
494 gezelter 3609 \hline
495 gezelter 3612 \multicolumn{2}{|c}{Momentum Exchange} &
496     \multicolumn{2}{|c}{Swapping RNEMD} &
497 gezelter 3609 \multicolumn{2}{|c|}{NIVS-RNEMD} \\
498     \hline
499 skuang 3646 \multirow{2}{*}{Swap Interval} & Equivalent $J_z^*$ or &
500     \multirow{2}{*}{$\lambda^*_{swap}$} &
501 gezelter 3612 \multirow{2}{*}{$\eta^*_{swap}$} &
502     \multirow{2}{*}{$\lambda^*_{scale}$} &
503     \multirow{2}{*}{$\eta^*_{scale}$} \\
504 skuang 3646 (timesteps) & $j_z^*(p_x)$ (reduced units) & & & & \\
505 gezelter 3609 \hline
506 skuang 3617 250 & 0.16 & 7.03(0.34) & 3.57(0.06) & 7.30(0.10) & 3.54(0.04)\\
507 gezelter 3612 500 & 0.09 & 7.03(0.14) & 3.64(0.05) & 6.95(0.09) & 3.76(0.09)\\
508     1000 & 0.047 & 6.91(0.42) & 3.52(0.16) & 7.19(0.07) & 3.66(0.06)\\
509     2000 & 0.024 & 7.52(0.15) & 3.72(0.05) & 7.19(0.28) & 3.32(0.18)\\
510 skuang 3617 2500 & 0.019 & 7.41(0.29) & 3.42(0.06) & 7.98(0.33) & 3.43(0.08)\\
511 gezelter 3609 \hline
512     \end{tabular}
513 gezelter 3612 \label{LJ}
514 gezelter 3609 \end{center}
515     \end{minipage}
516 skuang 3563 \end{table*}
517    
518     \begin{figure}
519 gezelter 3612 \includegraphics[width=\linewidth]{thermalGrad}
520 gezelter 3625 \caption{The NIVS-RNEMD method creates similar temperature gradients
521     compared with the swapping method under a variety of imposed
522 skuang 3619 kinetic energy flux values. Furthermore, the implementation of
523     Non-Isotropic Velocity Scaling does not cause temperature
524 gezelter 3625 anisotropy to develop in thermal conductivity calculations.}
525 gezelter 3612 \label{thermalGrad}
526 skuang 3563 \end{figure}
527    
528 gezelter 3612 \subsubsection*{Velocity Distributions}
529    
530 gezelter 3631 To test the effects on the velocity distributions, we accumulated
531     velocities every 100 steps and produced distributions of both velocity
532     and speed in each of the slabs. From these distributions, we observed
533     that under high non-physical kinetic energy flux, the speed of
534     molecules in slabs where {\it swapping} occured could deviate from the
535 gezelter 3609 Maxwell-Boltzmann distribution. This behavior was also noted by Tenney
536 gezelter 3620 and Maginn.\cite{Maginn:2010} Figure \ref{thermalHist} shows how these
537     distributions deviate from an ideal distribution. In the ``hot'' slab,
538     the probability density is notched at low speeds and has a substantial
539 gezelter 3631 shoulder at higher speeds relative to the ideal distribution. In the
540     cold slab, the opposite notching and shouldering occurs. This
541     phenomenon is more obvious at high swapping rates.
542 skuang 3563
543 gezelter 3620 The peak of the velocity distribution is substantially flattened in
544     the hot slab, and is overly sharp (with truncated wings) in the cold
545     slab. This problem is rooted in the mechanism of the swapping method.
546     Continually depleting low (high) speed particles in the high (low)
547 gezelter 3631 temperature slab is not complemented by diffusion of low (high) speed
548     particles from neighboring slabs unless the swapping rate is
549 gezelter 3620 sufficiently small. Simutaneously, surplus low speed particles in the
550 gezelter 3631 cold slab do not have sufficient time to diffuse to neighboring slabs.
551     Since the thermal exchange rate must reach a minimum level to produce
552     an observable thermal gradient, the swapping-method RNEMD has a
553     relatively narrow choice of exchange times that can be utilized.
554 skuang 3578
555 gezelter 3609 For comparison, NIVS-RNEMD produces a speed distribution closer to the
556 gezelter 3631 Maxwell-Boltzmann curve (Fig. \ref{thermalHist}). The reason for this
557     is simple; upon velocity scaling, a Gaussian distribution remains
558 gezelter 3609 Gaussian. Although a single scaling move is non-isotropic in three
559     dimensions, our criteria for choosing a set of scaling coefficients
560     helps maintain the distributions as close to isotropic as possible.
561 gezelter 3631 Consequently, NIVS-RNEMD is able to impose a non-physical thermal flux
562     without large perturbations to the velocity distributions in the two
563     slabs.
564 gezelter 3609
565 skuang 3568 \begin{figure}
566 skuang 3589 \includegraphics[width=\linewidth]{thermalHist}
567 gezelter 3629 \caption{Velocity and speed distributions that develop under the
568     swapping and NIVS-RNEMD methods at high flux. The distributions for
569     the hot bins (upper panels) and cold bins (lower panels) were
570     obtained from Lennard-Jones simulations with $\langle T^* \rangle =
571 skuang 3630 4.5$ with a flux of $J_z^* \sim 5$ (equivalent to a swapping interval
572 gezelter 3629 of 10 time steps). This is a relatively large flux which shows the
573     non-thermal distributions that develop under the swapping method.
574     NIVS does a better job of producing near-thermal distributions in
575     the bins.}
576 skuang 3589 \label{thermalHist}
577 skuang 3568 \end{figure}
578    
579 gezelter 3611
580     \subsubsection*{Shear Viscosity}
581 gezelter 3620 Our calculations (Table \ref{LJ}) show that velocity-scaling RNEMD
582 gezelter 3631 predicted similar values for shear viscosities to the swapping RNEMD
583     method. The average molecular momentum gradients of these samples are
584     shown in the upper two panels of Fig. \ref{shear}.
585 gezelter 3611
586     \begin{figure}
587     \includegraphics[width=\linewidth]{shear}
588     \caption{Average momentum gradients in shear viscosity simulations,
589 gezelter 3625 using ``swapping'' method (top panel) and NIVS-RNEMD method
590     (middle panel). NIVS-RNEMD produces a thermal anisotropy artifact
591     in the hot and cold bins when used for shear viscosity. This
592     artifact does not appear in thermal conductivity calculations.}
593 gezelter 3611 \label{shear}
594     \end{figure}
595    
596 gezelter 3620 Observations of the three one-dimensional temperatures in each of the
597     slabs shows that NIVS-RNEMD does produce some thermal anisotropy,
598 skuang 3645 particularly in the hot and cold slabs. Note that these temperature
599     measurements have been taken into account of the kinetic energy
600     contributed by the slab field velocity. However, this contribution has
601     only a comparable order of magnitude to the errors of data, and does
602     not significantly affect our observation. The lower panel of Fig.
603 gezelter 3631 \ref{shear} indicates that with a relatively large imposed momentum
604     flux, $j_z(p_x)$, the $x$ direction approaches a different temperature
605     from the $y$ and $z$ directions in both the hot and cold bins. This
606     is an artifact of the scaling constraints. After a momentum gradient
607     has been established, $P_c^x$ is always less than zero. Consequently,
608     the scaling factor $x$ is always greater than one in order to satisfy
609     the constraints. This will continually increase the kinetic energy in
610     $x$-dimension, $K_c^x$. If there is not enough time for the kinetic
611     energy to exchange among different directions and different slabs, the
612     system will exhibit the observed thermal anisotropy in the hot and
613     cold bins.
614 gezelter 3611
615     Although results between scaling and swapping methods are comparable,
616 gezelter 3620 the inherent temperature anisotropy does make NIVS-RNEMD method less
617     attractive than swapping RNEMD for shear viscosity calculations. We
618 gezelter 3631 note that this problem appears only when a large {\it linear} momentum
619     flux is applied, and does not appear in {\it thermal} flux
620     calculations.
621 gezelter 3611
622 gezelter 3609 \subsection{Bulk SPC/E water}
623    
624     We compared the thermal conductivity of SPC/E water using NIVS-RNEMD
625     to the work of Bedrov {\it et al.}\cite{Bedrov:2000}, which employed
626     the original swapping RNEMD method. Bedrov {\it et
627 gezelter 3631 al.}\cite{Bedrov:2000} argued that exchange of the molecular
628     center-of-mass velocities instead of single atom velocities conserves
629     the total kinetic energy and linear momentum. This principle is also
630     adopted in our simulations. Scaling was applied to the center-of-mass
631     velocities of SPC/E water molecules.
632 skuang 3563
633 gezelter 3609 To construct the simulations, a simulation box consisting of 1000
634     molecules were first equilibrated under ambient pressure and
635     temperature conditions using the isobaric-isothermal (NPT)
636     ensemble.\cite{melchionna93} A fixed volume was chosen to match the
637     average volume observed in the NPT simulations, and this was followed
638     by equilibration, first in the canonical (NVT) ensemble, followed by a
639 gezelter 3620 100~ps period under constant-NVE conditions without any momentum flux.
640     Another 100~ps was allowed to stabilize the system with an imposed
641     momentum transfer to create a gradient, and 1~ns was allotted for data
642 skuang 3645 collection under RNEMD. Total system energy is recorded to ensure that
643     it is not drifted noticeably without a thermostat although
644     electrostatic interactions are involved.
645 gezelter 3609
646 gezelter 3620 In our simulations, the established temperature gradients were similar
647     to the previous work. Our simulation results at 318K are in good
648 skuang 3619 agreement with those from Bedrov {\it et al.} (Table
649 skuang 3615 \ref{spceThermal}). And both methods yield values in reasonable
650 gezelter 3620 agreement with experimental values.
651 gezelter 3609
652 skuang 3570 \begin{table*}
653 gezelter 3609 \begin{minipage}{\linewidth}
654     \begin{center}
655    
656     \caption{Thermal conductivity of SPC/E water under various
657     imposed thermal gradients. Uncertainties are indicated in
658     parentheses.}
659    
660 skuang 3615 \begin{tabular}{|c|c|ccc|}
661 gezelter 3609 \hline
662 skuang 3615 \multirow{2}{*}{$\langle T\rangle$(K)} &
663     \multirow{2}{*}{$\langle dT/dz\rangle$(K/\AA)} &
664     \multicolumn{3}{|c|}{$\lambda (\mathrm{W m}^{-1}
665     \mathrm{K}^{-1})$} \\
666     & & This work & Previous simulations\cite{Bedrov:2000} &
667 gezelter 3609 Experiment\cite{WagnerKruse}\\
668     \hline
669 skuang 3615 \multirow{3}{*}{300} & 0.38 & 0.816(0.044) & &
670     \multirow{3}{*}{0.61}\\
671     & 0.81 & 0.770(0.008) & & \\
672     & 1.54 & 0.813(0.007) & & \\
673 gezelter 3609 \hline
674 skuang 3615 \multirow{2}{*}{318} & 0.75 & 0.750(0.032) & 0.784 &
675     \multirow{2}{*}{0.64}\\
676     & 1.59 & 0.778(0.019) & 0.730 & \\
677     \hline
678 gezelter 3609 \end{tabular}
679     \label{spceThermal}
680     \end{center}
681     \end{minipage}
682     \end{table*}
683 skuang 3570
684 gezelter 3609 \subsection{Crystalline Gold}
685 skuang 3570
686 gezelter 3609 To see how the method performed in a solid, we calculated thermal
687     conductivities using two atomistic models for gold. Several different
688     potential models have been developed that reasonably describe
689     interactions in transition metals. In particular, the Embedded Atom
690 gezelter 3620 Model (EAM)~\cite{PhysRevB.33.7983} and Sutton-Chen (SC)~\cite{Chen90}
691     potential have been used to study a wide range of phenomena in both
692     bulk materials and
693 gezelter 3609 nanoparticles.\cite{ISI:000207079300006,Clancy:1992,Vardeman:2008fk,Vardeman-II:2001jn,ShibataT._ja026764r,Sankaranarayanan:2005lr,Chui:2003fk,Wang:2005qy,Medasani:2007uq}
694     Both potentials are based on a model of a metal which treats the
695     nuclei and core electrons as pseudo-atoms embedded in the electron
696     density due to the valence electrons on all of the other atoms in the
697 gezelter 3620 system. The SC potential has a simple form that closely resembles the
698     Lennard Jones potential,
699 gezelter 3609 \begin{equation}
700     \label{eq:SCP1}
701     U_{tot}=\sum _{i}\left[ \frac{1}{2}\sum _{j\neq i}D_{ij}V^{pair}_{ij}(r_{ij})-c_{i}D_{ii}\sqrt{\rho_{i}}\right] ,
702     \end{equation}
703     where $V^{pair}_{ij}$ and $\rho_{i}$ are given by
704     \begin{equation}
705     \label{eq:SCP2}
706     V^{pair}_{ij}(r)=\left( \frac{\alpha_{ij}}{r_{ij}}\right)^{n_{ij}}, \rho_{i}=\sum_{j\neq i}\left( \frac{\alpha_{ij}}{r_{ij}}\right) ^{m_{ij}}.
707     \end{equation}
708     $V^{pair}_{ij}$ is a repulsive pairwise potential that accounts for
709     interactions between the pseudoatom cores. The $\sqrt{\rho_i}$ term in
710     Eq. (\ref{eq:SCP1}) is an attractive many-body potential that models
711     the interactions between the valence electrons and the cores of the
712     pseudo-atoms. $D_{ij}$, $D_{ii}$ set the appropriate overall energy
713     scale, $c_i$ scales the attractive portion of the potential relative
714     to the repulsive interaction and $\alpha_{ij}$ is a length parameter
715     that assures a dimensionless form for $\rho$. These parameters are
716     tuned to various experimental properties such as the density, cohesive
717     energy, and elastic moduli for FCC transition metals. The quantum
718 gezelter 3620 Sutton-Chen (QSC) formulation matches these properties while including
719     zero-point quantum corrections for different transition
720     metals.\cite{PhysRevB.59.3527} The EAM functional forms differ
721     slightly from SC but the overall method is very similar.
722 skuang 3570
723 gezelter 3620 In this work, we have utilized both the EAM and the QSC potentials to
724     test the behavior of scaling RNEMD.
725 skuang 3570
726 gezelter 3609 A face-centered-cubic (FCC) lattice was prepared containing 2880 Au
727 skuang 3613 atoms (i.e. ${6\times 6\times 20}$ unit cells). Simulations were run
728     both with and without isobaric-isothermal (NPT)~\cite{melchionna93}
729 gezelter 3609 pre-equilibration at a target pressure of 1 atm. When equilibrated
730     under NPT conditions, our simulation box expanded by approximately 1\%
731 skuang 3613 in volume. Following adjustment of the box volume, equilibrations in
732     both the canonical and microcanonical ensembles were carried out. With
733     the simulation cell divided evenly into 10 slabs, different thermal
734 gezelter 3631 gradients were established by applying a set of target thermal fluxes.
735 skuang 3570
736 gezelter 3609 The results for the thermal conductivity of gold are shown in Table
737     \ref{AuThermal}. In these calculations, the end and middle slabs were
738 gezelter 3631 excluded from the thermal gradient linear regession. EAM predicts
739     slightly larger thermal conductivities than QSC. However, both values
740     are smaller than experimental value by a factor of more than 200. This
741 gezelter 3620 behavior has been observed previously by Richardson and Clancy, and
742     has been attributed to the lack of electronic contribution in these
743     force fields.\cite{Clancy:1992} It should be noted that the density of
744     the metal being simulated has an effect on thermal conductance. With
745     an expanded lattice, lower thermal conductance is expected (and
746     observed). We also observed a decrease in thermal conductance at
747     higher temperatures, a trend that agrees with experimental
748     measurements.\cite{AshcroftMermin}
749 skuang 3570
750 gezelter 3609 \begin{table*}
751     \begin{minipage}{\linewidth}
752     \begin{center}
753    
754     \caption{Calculated thermal conductivity of crystalline gold
755     using two related force fields. Calculations were done at both
756     experimental and equilibrated densities and at a range of
757 skuang 3617 temperatures and thermal flux rates. Uncertainties are
758     indicated in parentheses. Richardson {\it et
759 gezelter 3621 al.}\cite{Clancy:1992} give an estimate of 1.74 $\mathrm{W
760     m}^{-1}\mathrm{K}^{-1}$ for EAM gold
761     at a density of 19.263 g / cm$^3$.}
762 gezelter 3609
763     \begin{tabular}{|c|c|c|cc|}
764     \hline
765     Force Field & $\rho$ (g/cm$^3$) & ${\langle T\rangle}$ (K) &
766     $\langle dT/dz\rangle$ (K/\AA) & $\lambda (\mathrm{W m}^{-1} \mathrm{K}^{-1})$\\
767     \hline
768 gezelter 3621 \multirow{7}{*}{QSC} & \multirow{3}{*}{19.188} & \multirow{3}{*}{300} & 1.44 & 1.10(0.06)\\
769 gezelter 3609 & & & 2.86 & 1.08(0.05)\\
770     & & & 5.14 & 1.15(0.07)\\\cline{2-5}
771     & \multirow{4}{*}{19.263} & \multirow{2}{*}{300} & 2.31 & 1.25(0.06)\\
772     & & & 3.02 & 1.26(0.05)\\\cline{3-5}
773     & & \multirow{2}{*}{575} & 3.02 & 1.02(0.07)\\
774     & & & 4.84 & 0.92(0.05)\\
775     \hline
776 gezelter 3621 \multirow{8}{*}{EAM} & \multirow{3}{*}{19.045} & \multirow{3}{*}{300} & 1.24 & 1.24(0.16)\\
777 gezelter 3609 & & & 2.06 & 1.37(0.04)\\
778     & & & 2.55 & 1.41(0.07)\\\cline{2-5}
779     & \multirow{5}{*}{19.263} & \multirow{3}{*}{300} & 1.06 & 1.45(0.13)\\
780     & & & 2.04 & 1.41(0.07)\\
781     & & & 2.41 & 1.53(0.10)\\\cline{3-5}
782     & & \multirow{2}{*}{575} & 2.82 & 1.08(0.03)\\
783     & & & 4.14 & 1.08(0.05)\\
784     \hline
785     \end{tabular}
786     \label{AuThermal}
787     \end{center}
788     \end{minipage}
789 skuang 3580 \end{table*}
790    
791 gezelter 3609 \subsection{Thermal Conductance at the Au/H$_2$O interface}
792     The most attractive aspect of the scaling approach for RNEMD is the
793     ability to use the method in non-homogeneous systems, where molecules
794     of different identities are segregated in different slabs. To test
795     this application, we simulated a Gold (111) / water interface. To
796     construct the interface, a box containing a lattice of 1188 Au atoms
797 skuang 3619 (with the 111 surface in the $+z$ and $-z$ directions) was allowed to
798 gezelter 3609 relax under ambient temperature and pressure. A separate (but
799     identically sized) box of SPC/E water was also equilibrated at ambient
800     conditions. The two boxes were combined by removing all water
801 gezelter 3631 molecules within 3 \AA~ radius of any gold atom. The final
802 gezelter 3609 configuration contained 1862 SPC/E water molecules.
803 skuang 3580
804 gezelter 3620 The Spohr potential was adopted in depicting the interaction between
805     metal atoms and water molecules.\cite{ISI:000167766600035} A similar
806     protocol of equilibration to our water simulations was followed. We
807     observed that the two phases developed large temperature differences
808     even under a relatively low thermal flux.
809 gezelter 3609
810 gezelter 3625 The low interfacial conductance is probably due to an acoustic
811     impedance mismatch between the solid and the liquid
812     phase.\cite{Cahill:793,RevModPhys.61.605} Experiments on the thermal
813     conductivity of gold nanoparticles and nanorods in solvent and in
814     glass cages have predicted values for $G$ between 100 and 350
815 gezelter 3632 (MW/m$^2$/K), two orders of magnitude larger than the value reported
816     here. The experiments typically have multiple surfaces that have been
817     protected by ionic surfactants, either
818     citrate\cite{Wilson:2002uq,plech:195423} or cetyltrimethylammonium
819     bromide (CTAB), or which are in direct contact with various glassy
820     solids. In these cases, the acoustic impedance mismatch would be
821     substantially reduced, leading to much higher interfacial
822     conductances. It is also possible, however, that the lack of
823     electronic effects that gives rise to the low thermal conductivity of
824     EAM gold is also causing a low reading for this particular interface.
825 gezelter 3625
826 skuang 3633 Under this low thermal conductance, both gold and water phases have
827 gezelter 3631 sufficient time to eliminate local temperature differences (Fig.
828 gezelter 3632 \ref{interface}). With flat thermal profiles within each phase, it is
829 gezelter 3631 valid to assume that the temperature difference between gold and water
830 skuang 3633 surfaces would be approximately the same as the difference between the
831     gold and water bulk regions. This assumption enables convenient
832     calculation of $G$ using Eq. \ref{interfaceCalc}.
833 skuang 3573
834 skuang 3571 \begin{figure}
835 skuang 3595 \includegraphics[width=\linewidth]{interface}
836 gezelter 3625 \caption{Temperature profiles of the Gold / Water interface at four
837     different values for the thermal flux. Temperatures for slabs
838     either in the gold or in the water show no significant differences,
839     although there is a large discontinuity between the materials
840     because of the relatively low interfacial thermal conductivity.}
841 skuang 3595 \label{interface}
842 skuang 3571 \end{figure}
843    
844 skuang 3572 \begin{table*}
845 gezelter 3612 \begin{minipage}{\linewidth}
846     \begin{center}
847    
848     \caption{Computed interfacial thermal conductivity ($G$) values
849     for the Au(111) / water interface at ${\langle T\rangle \sim}$
850     300K using a range of energy fluxes. Uncertainties are
851     indicated in parentheses. }
852    
853 gezelter 3616 \begin{tabular}{|cccc| }
854 gezelter 3612 \hline
855     $J_z$ (MW/m$^2$) & $\langle T_{gold} \rangle$ (K) & $\langle
856     T_{water} \rangle$ (K) & $G$
857     (MW/m$^2$/K)\\
858     \hline
859     98.0 & 355.2 & 295.8 & 1.65(0.21) \\
860     78.8 & 343.8 & 298.0 & 1.72(0.32) \\
861     73.6 & 344.3 & 298.0 & 1.59(0.24) \\
862     49.2 & 330.1 & 300.4 & 1.65(0.35) \\
863     \hline
864     \end{tabular}
865     \label{interfaceRes}
866     \end{center}
867     \end{minipage}
868 skuang 3572 \end{table*}
869    
870 skuang 3576
871 skuang 3574 \section{Conclusions}
872 gezelter 3631
873     Our simulations demonstrate that validity of non-isotropic velocity
874     scaling (NIVS) in RNEMD calculations of thermal conductivity in atomic
875     and molecular liquids and solids. NIVS-RNEMD improves the problematic
876     velocity distributions which can develop in other RNEMD methods.
877     Furthermore, it provides a means for carrying out non-physical thermal
878 skuang 3581 transfer between different species of molecules, and thus extends its
879 gezelter 3631 applicability to interfacial systems. Our calculation of the gold /
880     water interfacial thermal conductivity demonstrates this advantage
881     over previous RNEMD methods. NIVS-RNEMD also has limited applications
882     for shear viscosity calculations, but has the potential to cause
883     temperature anisotropy under high momentum fluxes. Further work will
884     be necessary to eliminate the one-dimensional heating if shear
885     viscosities are required.
886 skuang 3572
887 gezelter 3524 \section{Acknowledgments}
888 gezelter 3624 The authors would like to thank Craig Tenney and Ed Maginn for many
889     helpful discussions. Support for this project was provided by the
890     National Science Foundation under grant CHE-0848243. Computational
891     time was provided by the Center for Research Computing (CRC) at the
892     University of Notre Dame.
893     \newpage
894 gezelter 3524
895     \bibliography{nivsRnemd}
896 gezelter 3583
897 gezelter 3524 \end{doublespace}
898     \end{document}
899