ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nivsRnemd/nivsRnemd.tex
(Generate patch)

Comparing trunk/nivsRnemd/nivsRnemd.tex (file contents):
Revision 3573 by skuang, Thu Mar 11 23:41:33 2010 UTC vs.
Revision 3574 by skuang, Fri Mar 12 21:36:16 2010 UTC

# Line 74 | Line 74 | from liquid copper to monatomic liquids to molecular f
74   conductivities and shear viscosities in a wide range of materials,
75   from liquid copper to monatomic liquids to molecular fluids
76   (e.g. ionic liquids).\cite{ISI:000246190100032}
77 +
78 + \begin{figure}
79 + \includegraphics[width=\linewidth]{thermalDemo}
80 + \caption{Demostration of thermal gradient estalished by RNEMD method.}
81 + \label{thermalDemo}
82 + \end{figure}
83  
84   RNEMD is preferable in many ways to the forward NEMD methods because
85   it imposes what is typically difficult to measure (a flux or stress)
# Line 576 | Line 582 | Experiment$^a$\\
582   \end{table*}
583  
584   \subsubsection{Crystal Gold}
585 + Our results of gold thermal conductivity used QSC force field are
586 + shown in Table \ref{AuThermal}. Although our calculation is smaller
587 + than experimental value by an order of more than 100, this difference
588 + is mainly attributed to the lack of electron interaction
589 + representation in our force field parameters. Richardson {\it et
590 +  al.}\cite{ISI:A1992HX37800010} used similar force field parameters
591 + in their metal thermal conductivity calculations. The EMD method they
592 + employed in their simulations produced comparable results to
593 + ours. Therefore, it is confident to conclude that NIVS-RNEMD is
594 + applicable to metal force field system.
595  
596   \begin{figure}
597   \includegraphics[width=\linewidth]{AuGrad}
# Line 606 | Line 622 | $\langle dT/dz\rangle$(K/\AA) & $\lambda$(W/m/K)\\
622   \end{minipage}
623   \end{table*}
624  
609
625   \subsection{Interfaciel Thermal Conductivity}
626 <
626 > After valid simulations of homogeneous water and gold systems using
627 > NIVS-RNEMD method, calculation of gold/water interfacial thermal
628 > conductivity was followed. It is found out that the interfacial
629 > conductance is low due to a hydrophobic surface in our system. Figure
630 > \ref{interfaceDensity} demonstrates this observance. Consequently, our
631 > reported results (Table \ref{interfaceRes}) are of two orders of
632 > magnitude smaller than our calculations on homogeneous systems.
633  
634   \begin{figure}
635   \includegraphics[width=\linewidth]{interfaceDensity}
# Line 617 | Line 638 | $\langle dT/dz\rangle$(K/\AA) & $\lambda$(W/m/K)\\
638   \label{interfaceDensity}
639   \end{figure}
640  
620
641   \begin{figure}
642   \includegraphics[width=\linewidth]{interfaceGrad}
643   \caption{Temperature profiles for interfacial thermal conductivity
# Line 625 | Line 645 | $\langle dT/dz\rangle$(K/\AA) & $\lambda$(W/m/K)\\
645   \label{interfaceGrad}
646   \end{figure}
647  
628
629
648   \begin{table*}
649   \begin{minipage}{\linewidth}
650   \begin{center}
# Line 645 | Line 663 | $J_z$(MW/m$^2$) & $T_{gold}$ & $T_{water}$ & $G$(MW/m$
663   49.2 & 330.1 & 300.4 & 1.65(0.35) \\
664   \hline
665   \end{tabular}
666 < \label{AuThermal}
666 > \label{interfaceRes}
667   \end{center}
668   \end{minipage}
669   \end{table*}
670  
671 + \section{Conclusions}
672 + NIVS-RNEMD simulation method is developed and tested on various
673 + systems. Simulation results demonstrate its validity of thermal
674 + conductivity calculations. NIVS-RNEMD improves non-Boltzmann-Maxwell
675 + distributions existing in previous RNEMD methods, and extends its
676 + applicability to interfacial systems. NIVS-RNEMD has also limited
677 + application on shear viscosity calculations, but under high momentum
678 + flux, it  could cause temperature difference among different
679 + dimensions. Modification is necessary to extend the applicability of
680 + NIVS-RNEMD in shear viscosity calculations.
681  
682   \section{Acknowledgments}
683   Support for this project was provided by the National Science

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines