ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nonperiodicVSS.tex
Revision: 3926
Committed: Fri Aug 2 19:28:10 2013 UTC (10 years, 10 months ago) by kstocke1
Content type: application/x-tex
File size: 12009 byte(s)
Log Message:
Initial Import

File Contents

# User Rev Content
1 kstocke1 3926 \documentclass[journal = jctcce, manuscript = article]{achemso}
2     \setkeys{acs}{usetitle = true}
3    
4     \usepackage{caption}
5     \usepackage{float}
6     \usepackage{geometry}
7     \usepackage{natbib}
8     \usepackage{setspace}
9     \usepackage{xkeyval}
10     %%%%%%%%%%%%%%%%%%%%%%%
11     \usepackage{amsmath}
12     \usepackage{amssymb}
13     \usepackage{times}
14     \usepackage{mathptm}
15     \usepackage{setspace}
16     \usepackage{endfloat}
17     \usepackage{caption}
18     \usepackage{tabularx}
19     \usepackage{longtable}
20     \usepackage{graphicx}
21     \usepackage{multirow}
22     \usepackage{multicol}
23     \usepackage{achemso}
24     \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
25     % \usepackage[square, comma, sort&compress]{natbib}
26     \usepackage{url}
27     \pagestyle{plain} \pagenumbering{arabic} \oddsidemargin 0.0cm
28     \evensidemargin 0.0cm \topmargin -21pt \headsep 10pt \textheight
29     9.0in \textwidth 6.5in \brokenpenalty=10000
30    
31     % double space list of tables and figures
32     % \AtBeginDelayedFloats{\renewcomand{\baselinestretch}{1.66}}
33     \setlength{\abovecaptionskip}{20 pt}
34     \setlength{\belowcaptionskip}{30 pt}
35    
36     % \bibpunct{}{}{,}{s}{}{;}
37    
38     % \citestyle{nature}
39     % \bibliographystyle{achemso}
40    
41     \title{A Method for Creating Thermal and Angular Momentum Fluxes in Non-Periodic Systems}
42    
43     \author{Kelsey M. Stocker}
44     \author{J. Daniel Gezelter}
45     \email{gezelter@nd.edu}
46     \affiliation[University of Notre Dame]{251 Nieuwland Science Hall\\ Department of Chemistry and Biochemistry\\ University of Notre Dame\\ Notre Dame, Indiana 46556}
47    
48     \begin{document}
49    
50     \newcolumntype{A}{p{1.5in}}
51     \newcolumntype{B}{p{0.75in}}
52    
53     % \author{Kelsey M. Stocker and J. Daniel
54     % Gezelter\footnote{Corresponding author. \ Electronic mail:
55     % gezelter@nd.edu} \\
56     % 251 Nieuwland Science Hall, \\
57     % Department of Chemistry and Biochemistry,\\
58     % University of Notre Dame\\
59     % Notre Dame, Indiana 46556}
60    
61     \date{\today}
62    
63     \maketitle
64    
65     \begin{doublespace}
66    
67     \begin{abstract}
68    
69     We have adapted the Velocity Shearing and Scaling Reverse Non-Equilibium Molecular Dynamics (VSS-RNEMD) method for use with aperiodic system geometries. This new method is capable of creating stable temperature and angular velocity gradients in heterogeneous non-periodic systems while conserving total energy and angular momentum. To demonstrate the method, we have computed the thermal conductivities of a gold nanoparticle and water cluster, the shear viscosity of a water cluster, the interfacial thermal conductivity of a solvated gold nanoparticle and the interfacial friction of solvated gold nanostructures.
70    
71     \end{abstract}
72    
73     \newpage
74    
75     %\narrowtext
76    
77     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
78     % **INTRODUCTION**
79     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
80     \section{Introduction}
81    
82    
83     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
84     % **METHODOLOGY**
85     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
86     \section{Methodology}
87    
88     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
89     % FORCE FIELD PARAMETERS
90     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
91     \subsection{Force field parameters}
92    
93     We have chosen the SPC/E water model for these simulations. There are many values for physical properties from previous simulations available for direct comparison.
94    
95     Gold-gold interactions are described by the quantum Sutton-Chen (QSC) model. The QSC parameters are tuned to experimental properties such as density, cohesive energy, and elastic moduli and include zero-point quantum corrections.
96    
97     Hexane molecules are described by the TraPPE united atom model. This model provides good computational efficiency and reasonable accuracy for bulk thermal conductivity values.
98    
99     Metal-nonmetal interactions are governed by parameters derived from Luedtke and Landman.
100    
101    
102     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
103     % NON-PERIODIC DYNAMICS
104     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
105     \subsection{Dynamics for non-periodic systems}
106    
107     We have run all tests using the Langevin Hull nonperiodic simulation methodology. The Langevin Hull uses a Delaunay tesselation to create a dynamic convex hull composed of triangular facets with vertices at atomic sites. Atomic sites included in the hull are coupled to an external bath defined by a temperature, pressure and viscosity. Atoms not included in the hull are subject to standard Newtonian dynamics. Thermal coupling to the bath was turned off to avoid interference with any imposed kinetic flux. Systems containing liquids were run under moderate pressure ($\sim$ 5 atm) to avoid the formation of a substantial vapor phase, which would have a hull created out of a relatively small number of molecules.
108    
109     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
110     % NON-PERIODIC RNEMD
111     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
112     \subsection{VSS-RNEMD for non-periodic systems}
113    
114     The adaptation of VSS-RNEMD for non-periodic systems is relatively
115     straightforward. The major modifications to the method are the addition of a rotational shearing term and the use of more versatile hot / cold regions instead
116     of rectangular slabs. A temperature profile along the $r$ coordinate is created by recording the average temperature of concentric spherical shells.
117    
118     At each time interval, the particle velocities ($\mathbf{v}_i$ and
119     $\mathbf{v}_j$) in the cold and hot shells ($C$ and $H$) are modified by a
120     velocity scaling coefficient ($c$ and $h$), an additive linear velocity shearing
121     term ($\mathbf{a}_c$ and $\mathbf{a}_h$), and an additive angular velocity
122     shearing term ($\mathbf{b}_c$ and $\mathbf{b}_h$). Here, $\langle
123     \mathbf{v}_{i,j} \rangle$ and $\langle \mathbf{\omega}_{i,j} \rangle$ are the
124     average linear and angular velocities for each shell.
125    
126     \begin{displaymath}
127     \begin{array}{rclcl}
128     & \underline{~~~~~~~~~~\mathrm{scaling}~~~~~~~~~~} & &
129     \underline{\mathrm{rotational \; shearing}} \\ \\
130     \mathbf{v}_i $~~~$\leftarrow &
131     c \, \left(\mathbf{v}_i - \langle \omega_c
132     \rangle \times r_i\right) & + & \mathbf{b}_c \times r_i \\
133     \mathbf{v}_j $~~~$\leftarrow &
134     h \, \left(\mathbf{v}_j - \langle \omega_h
135     \rangle \times r_j\right) & + & \mathbf{b}_h \times r_j
136     \end{array}
137     \end{displaymath}
138    
139     \begin{eqnarray}
140     \mathbf{b}_c & = & - \mathbf{j}_r(\mathbf{L}) \; \Delta \, t \; I_c^{-1} + \langle \omega_c \rangle \label{eq:bc}\\
141     \mathbf{b}_h & = & + \mathbf{j}_r(\mathbf{L}) \; \Delta \, t \; I_h^{-1} + \langle \omega_h \rangle \label{eq:bh}
142     \end{eqnarray}
143    
144     The total energy is constrained via two quadratic formulae,
145    
146     \begin{eqnarray}
147     K_c - J_r \; \Delta \, t & = & c^2 \, (K_c - \frac{1}{2}\langle \omega_c \rangle \cdot I_c\langle \omega_c \rangle) + \frac{1}{2} \mathbf{b}_c \cdot I_c \, \mathbf{b}_c \label{eq:Kc}\\
148     K_h + J_r \; \Delta \, t & = & h^2 \, (K_h - \frac{1}{2}\langle \omega_h \rangle \cdot I_h\langle \omega_h \rangle) + \frac{1}{2} \mathbf{b}_h \cdot I_h \, \mathbf{b}_h \label{eq:Kh}
149     \end{eqnarray}
150    
151     the simultaneous
152     solution of which provide the velocity scaling coefficients $c$ and $h$. Given an
153     imposed angular momentum flux, $\mathbf{j}_{r} \left( \mathbf{L} \right)$, and/or
154     thermal flux, $J_r$, equations \ref{eq:bc} - \ref{eq:Kh} are sufficient to obtain
155     the velocity scaling ($c$ and $h$) and shearing ($\mathbf{b}_c,\,$ and $\mathbf{b}_h$) at each time interval.
156    
157     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
158     % **TESTS AND APPLICATIONS**
159     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
160     \section{Tests and Applications}
161    
162     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
163     % THERMAL CONDUCTIVITIES
164     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
165     \subsection{Thermal conductivities}
166    
167     Gold Nanoparticle:\\
168     Measured linear slope $\left( \langle dT / dr \rangle \right)$ is linearly dependent on applied kinetic energy flux. Calculated thermal conductivity compares well with previous bulk QSC values. Still $\sim$100 times lower than experiment (limitations of potential -- neglects electronic contributions to heat conduction). Increase relative to bulk may be due to slight increase in gold density. Curvature of nanoparticle introduces higher surface tension and increases density of gold.\\
169    
170     \begin{longtable}{p{2.7cm} p{2.5cm} p{2.5cm}}
171     \caption{Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \AA. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}
172     \\ \hline \hline
173     \centering {$J_r$} & \centering\arraybackslash {$\langle dT / dr \rangle$} & \centering\arraybackslash {$\boldsymbol \lambda$}\\
174     \centering {\small(kcal fs$^{-1}$ \AA$^{-2}$)} & \centering\arraybackslash {\small(K \AA$^{-1}$)} & \centering\arraybackslash {\small(W m$^{-1}$ K$^{-1}$)}\\ \hline
175     \endhead
176     \hline
177     % \endfoot
178     \centering3.25$\times 10^{-6}$ & \centering\arraybackslash 0.11435 & \centering\arraybackslash 1.9753 \\
179     \centering6.50$\times 10^{-6}$ & \centering\arraybackslash 0.2324 & \centering\arraybackslash 1.9438 \\
180     \centering1.30$\times 10^{-5}$ & \centering\arraybackslash 0.44922 & \centering\arraybackslash 2.0113 \\
181     \centering3.25$\times 10^{-5}$ & \centering\arraybackslash 1.1802 & \centering\arraybackslash 1.9139 \\
182     \centering6.50$\times 10^{-5}$ & \centering\arraybackslash 2.339 & \centering\arraybackslash 1.9314
183     \\ \hline \hline
184     \label{table:goldconductivity}
185     \end{longtable}
186    
187     SPC/E Water Cluster:
188    
189     \begin{longtable}{p{2.7cm} p{2.5cm} p{2.5cm}}
190     \caption{Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and ambient density.}
191     \\ \hline \hline
192     \centering {$J_r$} & \centering\arraybackslash {$\langle dT / dr \rangle$} & \centering\arraybackslash {$\boldsymbol \lambda$}\\
193     \centering {\small(kcal fs$^{-1}$ \AA$^{-2}$)} & \centering\arraybackslash {\small(K \AA$^{-1}$)} & \centering\arraybackslash {\small(W m$^{-1}$ K$^{-1}$)}\\ \hline
194     \endhead
195     \hline
196     % \endfoot
197    
198     \\ \hline \hline
199     \label{table:waterconductivity}
200     \end{longtable}
201    
202     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
203     % SHEAR VISCOSITY
204     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
205     \subsection{Shear viscosity}
206    
207     SPC/E Water Cluster:
208    
209     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
210     % INTERFACIAL THERMAL CONDUCTANCE
211     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
212     \subsection{Interfacial thermal conductance}
213    
214     Gold Nanoparticle in Hexane:
215    
216     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
217     % INTERFACIAL FRICTION
218     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
219     \subsection{Interfacial friction}
220    
221     Gold Nanoparticle and Ellipsoid in Hexane:
222    
223     \begin{longtable}{p{2.5cm} p{3cm} p{2.5cm} p{2.5cm}}
224     \caption{Calculated interfacial friction coefficients ($\kappa$) and slip length ($\delta$) of gold nanostructures solvated in TraPPE-UA hexane. The ellipsoid is aligned with the long axis along the $z$ direction.}
225     \\ \hline \hline
226     {Structure} & \centering{Axis of rotation} & \centering\arraybackslash {$\kappa$} & \centering\arraybackslash {$\delta$}\\
227     \centering {} & {} & \centering\arraybackslash {\small($10^4$ Pa s m$^{-1}$)} & \centering\arraybackslash {\small(nm)}\\ \hline
228     \endhead
229     \hline
230     % \endfoot
231     Nanoparticle & \centering$x = y = z$ & & \\
232     Ellipsoid & \centering$x = y$ & & \\
233     Ellipsoid & \centering$z$ & &
234     \\ \hline \hline
235     \label{table:interfacialfriction}
236     \end{longtable}
237    
238    
239     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
240     % **DISCUSSION**
241     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
242     \section{Discussion}
243    
244    
245     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
246     % **ACKNOWLEDGMENTS**
247     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
248     \section*{Acknowledgments}
249    
250     We gratefully acknowledge conversations with Dr. Shenyu Kuang. Support for
251     this project was provided by the National Science Foundation under grant
252     CHE-0848243. Computational time was provided by the Center for Research
253     Computing (CRC) at the University of Notre Dame.
254    
255     \newpage
256    
257     \bibliography{nonperiodicVSS}
258    
259     \end{doublespace}
260     \end{document}

Properties

Name Value
svn:executable