--- trunk/nonperiodicVSS/nonperiodicVSS.aux 2013/09/04 20:54:02 3946 +++ trunk/nonperiodicVSS/nonperiodicVSS.aux 2013/09/06 13:09:47 3947 @@ -3,36 +3,58 @@ \providecommand{\mciteSetMaxWidth}[3]{\relax} \providecommand{\mciteSetMaxCount}[3]{\relax} \bibstyle{achemso} +\citation{Vardeman2011} +\citation{Vardeman2011} +\citation{Kuang2012} +\citation{Kuang2012} +\citation{openmd} +\citation{openmd} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}} \@writefile{toc}{\contentsline {section}{\numberline {2}Methodology}{2}} -\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Force field parameters}{2}} -\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Dynamics for non-periodic systems}{2}} -\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}VSS-RNEMD for non-periodic systems}{3}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Dynamics for non-periodic systems}{2}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}VSS-RNEMD for non-periodic systems}{2}} +\citation{Bedrov:2000} +\citation{Kuang2010} +\citation{Bedrov:2000,Kuang2010} \newlabel{eq:bc}{{1}{3}} \newlabel{eq:bh}{{2}{3}} \newlabel{eq:Kc}{{3}{3}} \newlabel{eq:Kh}{{4}{3}} +\citation{PhysRevB.59.3527} +\citation{PhysRevB.59.3527} +\citation{TraPPE-UA.alkanes} +\citation{TraPPE-UA.alkanes} +\citation{kuang:AuThl} +\citation{kuang:AuThl,Kuang2012} +\citation{vlugt:cpc2007154} +\citation{vlugt:cpc2007154} +\citation{hautman:4994} +\citation{hautman:4994} +\@writefile{toc}{\contentsline {section}{\numberline {3}Computational Details}{4}} +\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Simulation protocol}{4}} +\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Force field parameters}{4}} +\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Thermal conductivities}{4}} +\@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Interfacial thermal conductance}{5}} +\newlabel{eq:G}{{6}{5}} +\@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Interfacial friction}{5}} +\newlabel{eq:Xi}{{8}{5}} +\citation{Kuang2010} +\newlabel{eq:S}{{9}{6}} +\newlabel{eq:Xia}{{10}{6}} +\newlabel{eq:Xibc}{{11}{6}} +\@writefile{toc}{\contentsline {section}{\numberline {4}Tests and Applications}{6}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Thermal conductivities}{6}} \gdef \LT@i {\LT@entry {1}{80.25342pt}\LT@entry {1}{53.69913pt}\LT@entry {1}{72.96097pt}} -\@writefile{toc}{\contentsline {section}{\numberline {3}Tests and Applications}{4}} -\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Thermal conductivities}{4}} -\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \r A. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}}{4}} \gdef \LT@ii {\LT@entry {1}{80.25342pt}\LT@entry {1}{53.69913pt}\LT@entry {1}{72.96097pt}} -\newlabel{table:goldconductivity}{{1}{5}} -\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and ambient density.}}{5}} -\newlabel{table:waterconductivity}{{2}{5}} -\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Shear viscosity}{5}} -\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Interfacial thermal conductance}{5}} -\@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Interfacial friction}{5}} -\newlabel{eq:Xi}{{5}{6}} -\newlabel{eq:S}{{6}{6}} -\newlabel{eq:Xia}{{7}{6}} -\newlabel{eq:Xibc}{{8}{6}} +\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \r A. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}}{7}} +\newlabel{table:goldconductivity}{{1}{7}} +\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and ambient density.}}{7}} \gdef \LT@iii {\LT@entry {1}{92.33887pt}\LT@entry {1}{87.99518pt}\LT@entry @@ -40,17 +62,29 @@ {1}{81.23506pt}\LT@entry {1}{33.27168pt}\LT@entry {1}{57.0pt}} -\gdef \LT@iv {\LT@entry - {1}{92.33887pt}\LT@entry - {1}{87.99518pt}\LT@entry - {1}{81.23506pt}\LT@entry - {1}{81.23506pt}} -\@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Calculated ``stick'' interfacial friction coefficients ($\kappa $) and friction factors ($f$) of gold nanostructures solvated in TraPPE-UA hexane. The ellipsoid is oriented with the long axis along the $z$ direction.}}{7}} -\newlabel{table:interfacialfriction}{{3}{7}} -\@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Calculated ``slip'' interfacial friction coefficients ($\kappa $) and friction factors ($f$) of gold nanostructures solvated in TraPPE-UA hexane. The ellipsoid is oriented with the long axis along the $z$ direction.}}{7}} -\newlabel{table:interfacialfriction}{{4}{8}} -\@writefile{toc}{\contentsline {section}{\numberline {4}Discussion}{8}} +\newlabel{table:waterconductivity}{{2}{8}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Interfacial thermal conductance}{8}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Interfacial friction}{8}} +\@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Calculated ``stick'' interfacial friction coefficients ($\kappa $) and friction factors ($f$) of gold nanostructures solvated in TraPPE-UA hexane. The ellipsoid is oriented with the long axis along the $z$ direction.}}{8}} +\newlabel{table:interfacialfrictionstick}{{3}{8}} +\@writefile{toc}{\contentsline {section}{\numberline {5}Discussion}{9}} \bibdata{acs-nonperiodicVSS,nonperiodicVSS} -\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Schematics of periodic (left) and nonperiodic (right) Velocity Shearing and Scaling RNEMD. A kinetic energy or momentum flux is applied from region B to region A. Thermal gradients are depicted by a color gradient. Linear or angular velocity gradients are shown as arrows.\relax }}{10}} +\bibcite{Vardeman2011}{{1}{2011}{{Vardeman et~al.}}{{Vardeman, Stocker, and Gezelter}}} +\bibcite{Barber96}{{2}{1996}{{Barber et~al.}}{{Barber, Dobkin, and Huhdanpaa}}} +\bibcite{EDELSBRUNNER:1994oq}{{3}{1994}{{Edelsbrunner and Mucke}}{{Edelsbrunner, and Mucke}}} +\bibcite{openmd}{{4}{}{{Gezelter et~al.}}{{Gezelter, Kuang, Marr, Stocker, Li, Vardeman, Lin, Fennell, Sun, Daily, Zheng, and Meineke}}} +\bibcite{Kuang2012}{{5}{2012}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}} +\bibcite{Bedrov:2000}{{6}{2000}{{Bedrov and Smith}}{{Bedrov, and Smith}}} +\bibcite{Kuang2010}{{7}{2010}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}} +\bibcite{PhysRevB.59.3527}{{8}{1999}{{Qi et~al.}}{{Qi, \c {C}a\v {g}in, Kimura, and {Goddard III}}}} +\bibcite{TraPPE-UA.alkanes}{{9}{1998}{{Martin and Siepmann}}{{Martin, and Siepmann}}} +\bibcite{kuang:AuThl}{{10}{2011}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}} +\bibcite{vlugt:cpc2007154}{{11}{2007}{{Schapotschnikow et~al.}}{{Schapotschnikow, Pool, and Vlugt}}} +\bibcite{hautman:4994}{{12}{1989}{{Hautman and Klein}}{{Hautman, and Klein}}} +\mciteSetMaxCount{main}{bibitem}{12} +\mciteSetMaxCount{main}{subitem}{1} +\mciteSetMaxWidth{main}{bibitem}{786432} +\mciteSetMaxWidth{main}{subitem}{0} +\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Schematics of periodic (left) and nonperiodic (right) Velocity Shearing and Scaling RNEMD. A kinetic energy or momentum flux is applied from region B to region A. Thermal gradients are depicted by a color gradient. Linear or angular velocity gradients are shown as arrows.\relax }}{12}} \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}} -\newlabel{fig:VSS}{{1}{10}} +\newlabel{fig:VSS}{{1}{12}}