ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nonperiodicVSS/nonperiodicVSS.aux
(Generate patch)

Comparing trunk/nonperiodicVSS/nonperiodicVSS.aux (file contents):
Revision 3943 by kstocke1, Mon Sep 2 20:34:55 2013 UTC vs.
Revision 4058 by kstocke1, Thu Mar 6 15:28:21 2014 UTC

# Line 3 | Line 3
3   \providecommand{\mciteSetMaxWidth}[3]{\relax}
4   \providecommand{\mciteSetMaxCount}[3]{\relax}
5   \bibstyle{achemso}
6 + \citation{ASHURST:1975tg}
7 + \citation{Evans:1982zk}
8 + \citation{ERPENBECK:1984sp}
9 + \citation{MAGINN:1993hc}
10 + \citation{Berthier:2002ij}
11 + \citation{Evans:2002ai}
12 + \citation{Schelling:2 002dp}
13 + \citation{PhysRevA.34.1449}
14 + \citation{JiangHao_jp802942v}
15 + \citation{ASHURST:1975tg,Evans:1982zk,ERPENBECK:1984sp,MAGINN:1993hc,Berthier:2002ij,Evans:2002ai,Schelling:2 002dp,PhysRevA.34.1449,JiangHao_jp802942v}
16 + \citation{MullerPlathe:1997xw}
17 + \citation{ISI:000080382700030}
18 + \citation{Kuang2010}
19 + \citation{MullerPlathe:1997xw,ISI:000080382700030,Kuang2010}
20 + \citation{Maginn:2010}
21 + \citation{MullerPlathe:1997xw,ISI:000080382700030,Maginn:2010}
22 + \citation{garde:nl2005}
23 + \citation{garde:PhysRevLett2009}
24 + \citation{kuang:AuThl}
25 + \citation{garde:nl2005,garde:PhysRevLett2009,kuang:AuThl}
26 + \citation{Kuang2012}
27 + \citation{Kuang2012}
28   \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}}
29 < \@writefile{toc}{\contentsline {section}{\numberline {2}Methodology}{2}}
30 < \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Force field parameters}{2}}
31 < \@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Dynamics for non-periodic systems}{2}}
32 < \@writefile{toc}{\contentsline {subsection}{\numberline {2.3}VSS-RNEMD for non-periodic systems}{3}}
33 < \newlabel{eq:bc}{{1}{3}}
34 < \newlabel{eq:bh}{{2}{3}}
35 < \newlabel{eq:Kc}{{3}{3}}
36 < \newlabel{eq:Kh}{{4}{3}}
29 > \@writefile{toc}{\contentsline {section}{\numberline {2}Velocity Shearing and Scaling (VSS) for non-periodic systems}{2}}
30 > \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Schematics of periodic (left) and non-periodic (right) Velocity Shearing and Scaling RNEMD. A kinetic energy or momentum flux is applied from region B to region A. Thermal gradients are depicted by a color gradient. Linear or angular velocity gradients are shown as arrows.\relax }}{3}}
31 > \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
32 > \newlabel{fig:VSS}{{1}{3}}
33 > \newlabel{eq:bc}{{1}{4}}
34 > \newlabel{eq:bh}{{2}{4}}
35 > \newlabel{eq:Kc}{{3}{4}}
36 > \newlabel{eq:Kh}{{4}{4}}
37 > \citation{openmd}
38 > \citation{openmd}
39 > \citation{PhysRevB.59.3527}
40 > \citation{PhysRevB.59.3527}
41 > \citation{Bedrov:2000}
42 > \citation{Bedrov:2000,Kuang2010}
43 > \citation{TraPPE-UA.alkanes}
44 > \citation{TraPPE-UA.alkanes}
45 > \citation{kuang:AuThl,Kuang2012}
46 > \@writefile{toc}{\contentsline {section}{\numberline {3}Computational Details}{5}}
47 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Force field parameters}{5}}
48 > \citation{vlugt:cpc2007154}
49 > \citation{vlugt:cpc2007154}
50 > \citation{hautman:4994}
51 > \citation{hautman:4994}
52 > \citation{Vardeman2011}
53 > \citation{Vardeman2011}
54 > \citation{packmol}
55 > \citation{packmol}
56 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Simulation protocol}{6}}
57 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Thermal conductivities}{7}}
58 > \newlabel{eq:Q}{{5}{7}}
59 > \newlabel{eq:lambda}{{6}{7}}
60 > \newlabel{eq:heat}{{7}{7}}
61 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Interfacial thermal conductance}{7}}
62 > \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces A gold nanoparticle with a radius of 20 \r A$\tmspace  +\thinmuskip {.1667em}$ solvated in TraPPE-UA hexane. A thermal flux is applied between the nanoparticle and an outer shell of solvent.\relax }}{8}}
63 > \newlabel{fig:NP20}{{2}{8}}
64 > \newlabel{eq:RK}{{8}{9}}
65 > \newlabel{eq:Rtotal}{{9}{9}}
66 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Interfacial rotational friction}{9}}
67 > \newlabel{eq:Xisphere}{{10}{9}}
68 > \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces A gold prolate ellipsoid of length 65 \r A$\tmspace  +\thinmuskip {.1667em}$ and width 25 \r A$\tmspace  +\thinmuskip {.1667em}$ solvated by TraPPE-UA hexane. An angular momentum flux is applied between the ellipsoid and an outer shell of solvent.\relax }}{10}}
69 > \newlabel{fig:E25-75}{{3}{10}}
70 > \citation{Kuang2012}
71 > \citation{Zwanzig}
72 > \citation{Zwanzig}
73 > \newlabel{eq:S}{{11}{11}}
74 > \newlabel{eq:Xia}{{12}{11}}
75 > \newlabel{eq:Xibc}{{13}{11}}
76 > \newlabel{eq:Xieff}{{14}{11}}
77   \gdef \LT@i {\LT@entry
78 <    {1}{80.25342pt}\LT@entry
79 <    {1}{53.69913pt}\LT@entry
80 <    {1}{72.96097pt}}
81 < \@writefile{toc}{\contentsline {section}{\numberline {3}Tests and Applications}{4}}
82 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Thermal conductivities}{4}}
83 < \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \r A. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}}{4}}
84 < \newlabel{table:goldconductivity}{{1}{4}}
78 >    {1}{69.5093pt}\LT@entry
79 >    {1}{51.0pt}\LT@entry
80 >    {1}{58.6495pt}}
81 > \newlabel{eq:tau}{{15}{12}}
82 > \@writefile{toc}{\contentsline {section}{\numberline {4}Tests and Applications}{12}}
83 > \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Thermal conductivities}{12}}
84 > \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \r A. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}}{12}}
85 > \newlabel{table:goldTC}{{1}{12}}
86 > \citation{Kuang2010}
87 > \citation{Zhang2005}
88 > \citation{Zhang2005}
89 > \citation{Romer2012}
90 > \citation{Romer2012}
91 > \citation{WagnerKruse}
92 > \citation{WagnerKruse}
93   \gdef \LT@ii {\LT@entry
94 <    {1}{80.25342pt}\LT@entry
95 <    {1}{53.69913pt}\LT@entry
96 <    {1}{72.96097pt}}
97 < \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and ambient density.}}{5}}
98 < \newlabel{table:waterconductivity}{{2}{5}}
99 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Shear viscosity}{5}}
100 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Interfacial thermal conductance}{5}}
31 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Interfacial friction}{5}}
32 < \newlabel{eq:Xi}{{5}{6}}
33 < \newlabel{eq:S}{{6}{6}}
34 < \newlabel{eq:Xia}{{7}{6}}
35 < \newlabel{eq:Xibc}{{8}{6}}
94 >    {1}{81.01138pt}\LT@entry
95 >    {1}{51.0pt}\LT@entry
96 >    {1}{58.6495pt}}
97 > \citation{Romer2012,Zhang2005}
98 > \citation{WagnerKruse}
99 > \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and 5 atm.}}{13}}
100 > \newlabel{table:waterTC}{{2}{13}}
101   \gdef \LT@iii {\LT@entry
102 <    {1}{92.33887pt}\LT@entry
103 <    {1}{87.99518pt}\LT@entry
104 <    {1}{81.23506pt}\LT@entry
105 <    {1}{81.23506pt}\LT@entry
106 <    {1}{33.27168pt}\LT@entry
107 <    {1}{57.0pt}}
102 >    {1}{110.31483pt}\LT@entry
103 >    {1}{71.7394pt}\LT@entry
104 >    {1}{0.0pt}}
105 > \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Interfacial thermal conductance}{14}}
106 > \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Calculated interfacial thermal conductance ($G$) values for gold nanoparticles of varying radii solvated in TraPPE-UA hexane. The nanoparticle $G$ values are compared to previous simulation results for a Au(111) interface in TraPPE-UA hexane.}}{14}}
107 > \newlabel{table:G}{{3}{14}}
108 > \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Interfacial friction}{14}}
109   \gdef \LT@iv {\LT@entry
110 <    {1}{92.33887pt}\LT@entry
111 <    {1}{87.99518pt}\LT@entry
112 <    {1}{81.23506pt}\LT@entry
113 <    {1}{81.23506pt}}
114 < \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Calculated ``stick'' interfacial friction coefficients ($\kappa $) and friction factors ($f$) of gold nanostructures solvated in TraPPE-UA hexane. The ellipsoid is oriented with the long axis along the $z$ direction.}}{7}}
115 < \newlabel{table:interfacialfriction}{{3}{7}}
116 < \@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Calculated ``slip'' interfacial friction coefficients ($\kappa $) and friction factors ($f$) of gold nanostructures solvated in TraPPE-UA hexane. The ellipsoid is oriented with the long axis along the $z$ direction.}}{7}}
117 < \newlabel{table:interfacialfriction}{{4}{7}}
118 < \@writefile{toc}{\contentsline {section}{\numberline {4}Discussion}{8}}
110 >    {1}{96.74344pt}\LT@entry
111 >    {1}{92.00313pt}\LT@entry
112 >    {1}{64.79945pt}\LT@entry
113 >    {1}{64.79945pt}\LT@entry
114 >    {1}{64.79945pt}\LT@entry
115 >    {1}{64.43709pt}}
116 > \@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Comparison of rotational friction coefficients under ideal ``slip'' ($\Xi ^{rr}_{\mathit  {slip}}$) and ``stick'' ($\Xi ^{rr}_{\mathit  {stick}}$) conditions and effective ($\Xi ^{rr}_{\mathit  {eff}}$) rotational friction coefficients of gold nanostructures solvated in TraPPE-UA hexane at 230 K. The ellipsoid is oriented with the long axis along the $z$ direction.}}{15}}
117 > \newlabel{table:couple}{{4}{15}}
118 > \@writefile{toc}{\contentsline {section}{\numberline {5}Discussion}{16}}
119   \bibdata{acs-nonperiodicVSS,nonperiodicVSS}
120 + \bibcite{ASHURST:1975tg}{{1}{1975}{{Ashurst and Hoover}}{{Ashurst, and Hoover}}}
121 + \bibcite{Evans:1982zk}{{2}{1982}{{Evans}}{{}}}
122 + \bibcite{ERPENBECK:1984sp}{{3}{1984}{{Erpenbeck}}{{}}}
123 + \bibcite{MAGINN:1993hc}{{4}{1993}{{Maginn et~al.}}{{Maginn, Bell, and Theodorou}}}
124 + \bibcite{Berthier:2002ij}{{5}{2002}{{Berthier and Barrat}}{{Berthier, and Barrat}}}
125 + \bibcite{Evans:2002ai}{{6}{2002}{{Evans and Searles}}{{Evans, and Searles}}}
126 + \bibcite{PhysRevA.34.1449}{{7}{1986}{{Evans}}{{}}}
127 + \bibcite{JiangHao_jp802942v}{{8}{2008}{{Jiang et~al.}}{{Jiang, Myshakin, Jordan, and Warzinski}}}
128 + \bibcite{MullerPlathe:1997xw}{{9}{1997}{{M\"{u}ller-Plathe}}{{}}}
129 + \bibcite{ISI:000080382700030}{{10}{1999}{{M\"{u}ller-Plathe}}{{}}}
130 + \bibcite{Kuang2010}{{11}{2010}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
131 + \bibcite{Maginn:2010}{{12}{2010}{{Tenney and Maginn}}{{Tenney, and Maginn}}}
132 + \bibcite{garde:nl2005}{{13}{2005}{{Patel et~al.}}{{Patel, Garde, and Keblinski}}}
133 + \bibcite{garde:PhysRevLett2009}{{14}{2009}{{Shenogina et~al.}}{{Shenogina, Godawat, Keblinski, and Garde}}}
134 + \bibcite{kuang:AuThl}{{15}{2011}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
135 + \bibcite{Kuang2012}{{16}{2012}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
136 + \bibcite{openmd}{{17}{}{{Gezelter et~al.}}{{Gezelter, Kuang, Marr, Stocker, Li, Vardeman, Lin, Fennell, Sun, Daily, Zheng, and Meineke}}}
137 + \bibcite{PhysRevB.59.3527}{{18}{1999}{{Qi et~al.}}{{Qi, \c {C}a\v {g}in, Kimura, and {Goddard III}}}}
138 + \bibcite{Bedrov:2000}{{19}{2000}{{Bedrov and Smith}}{{Bedrov, and Smith}}}
139 + \bibcite{TraPPE-UA.alkanes}{{20}{1998}{{Martin and Siepmann}}{{Martin, and Siepmann}}}
140 + \bibcite{vlugt:cpc2007154}{{21}{2007}{{Schapotschnikow et~al.}}{{Schapotschnikow, Pool, and Vlugt}}}
141 + \bibcite{hautman:4994}{{22}{1989}{{Hautman and Klein}}{{Hautman, and Klein}}}
142 + \bibcite{Zwanzig}{{23}{1974}{{Hu and Zwanzig}}{{Hu, and Zwanzig}}}
143 + \bibcite{Zhang2005}{{24}{2005}{{Zhang et~al.}}{{Zhang, Lussetti, de~Souza, and M\"{u}ller-Plathe}}}
144 + \bibcite{Romer2012}{{25}{2012}{{R{\"o}mer et~al.}}{{R{\"o}mer, Lervik, and Bresme}}}
145 + \bibcite{WagnerKruse}{{26}{1998}{{Wagner and Kruse}}{{Wagner, and Kruse}}}
146 + \mciteSetMaxCount{main}{bibitem}{26}
147 + \mciteSetMaxCount{main}{subitem}{1}
148 + \mciteSetMaxWidth{main}{bibitem}{786432}
149 + \mciteSetMaxWidth{main}{subitem}{0}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines