ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nonperiodicVSS/nonperiodicVSS.aux
(Generate patch)

Comparing trunk/nonperiodicVSS/nonperiodicVSS.aux (file contents):
Revision 3974 by kstocke1, Wed Nov 20 19:08:08 2013 UTC vs.
Revision 4003 by kstocke1, Fri Jan 17 19:45:57 2014 UTC

# Line 3 | Line 3
3   \providecommand{\mciteSetMaxWidth}[3]{\relax}
4   \providecommand{\mciteSetMaxCount}[3]{\relax}
5   \bibstyle{achemso}
6 < \citation{Vardeman2011}
7 < \citation{Vardeman2011}
6 > \citation{ASHURST:1975tg}
7 > \citation{Evans:1982zk}
8 > \citation{ERPENBECK:1984sp}
9 > \citation{MAGINN:1993hc}
10 > \citation{Berthier:2002ij}
11 > \citation{Evans:2002ai}
12 > \citation{Schelling:2002dp}
13 > \citation{PhysRevA.34.1449}
14 > \citation{JiangHao_jp802942v}
15 > \citation{ASHURST:1975tg,Evans:1982zk,ERPENBECK:1984sp,MAGINN:1993hc,Berthier:2002ij,Evans:2002ai,Schelling:2002dp,PhysRevA.34.1449,JiangHao_jp802942v}
16 > \citation{MullerPlathe:1997xw}
17 > \citation{ISI:000080382700030}
18 > \citation{Kuang2010}
19 > \citation{MullerPlathe:1997xw,ISI:000080382700030,Kuang2010}
20 > \citation{Maginn:2010}
21 > \citation{MullerPlathe:1997xw,ISI:000080382700030,Maginn:2010}
22 > \citation{garde:nl2005}
23 > \citation{garde:PhysRevLett2009}
24 > \citation{kuang:AuThl}
25 > \citation{garde:nl2005,garde:PhysRevLett2009,kuang:AuThl}
26   \citation{Kuang2012}
27   \citation{Kuang2012}
10 \citation{openmd}
11 \citation{openmd}
28   \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}}
29 < \@writefile{toc}{\contentsline {section}{\numberline {2}Methodology}{2}}
14 < \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Dynamics for non-periodic systems}{2}}
15 < \@writefile{toc}{\contentsline {subsection}{\numberline {2.2}VSS-RNEMD for non-periodic systems}{2}}
16 < \citation{Bedrov:2000}
17 < \citation{Kuang2010}
18 < \citation{Bedrov:2000,Kuang2010}
29 > \@writefile{toc}{\contentsline {section}{\numberline {2}Velocity Shearing and Scaling (VSS) for non-periodic systems}{2}}
30   \newlabel{eq:bc}{{1}{3}}
31   \newlabel{eq:bh}{{2}{3}}
32 < \newlabel{eq:Kc}{{3}{3}}
33 < \newlabel{eq:Kh}{{4}{3}}
32 > \citation{Vardeman2011}
33 > \citation{Vardeman2011}
34 > \newlabel{eq:Kc}{{3}{4}}
35 > \newlabel{eq:Kh}{{4}{4}}
36 > \@writefile{toc}{\contentsline {section}{\numberline {3}Computational Details}{4}}
37 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Dynamics for non-periodic systems}{4}}
38 > \citation{Bedrov:2000}
39 > \citation{Bedrov:2000,Kuang2010}
40   \citation{PhysRevB.59.3527}
41   \citation{PhysRevB.59.3527}
42   \citation{TraPPE-UA.alkanes}
43   \citation{TraPPE-UA.alkanes}
27 \citation{kuang:AuThl}
44   \citation{kuang:AuThl,Kuang2012}
45   \citation{vlugt:cpc2007154}
46   \citation{vlugt:cpc2007154}
47   \citation{hautman:4994}
48   \citation{hautman:4994}
49 < \@writefile{toc}{\contentsline {section}{\numberline {3}Computational Details}{4}}
50 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Simulation protocol}{4}}
51 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Force field parameters}{4}}
52 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Thermal conductivities}{4}}
53 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Interfacial thermal conductance}{5}}
54 < \newlabel{eq:G}{{6}{5}}
55 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Interfacial friction}{5}}
56 < \newlabel{eq:Xi}{{8}{5}}
49 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Simulation protocol}{5}}
50 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Force field parameters}{5}}
51 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Thermal conductivities}{6}}
52 > \newlabel{eq:Q}{{5}{6}}
53 > \newlabel{eq:lambda}{{6}{6}}
54 > \newlabel{eq:heat}{{7}{6}}
55 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Interfacial thermal conductance}{6}}
56 > \newlabel{eq:RK}{{8}{7}}
57 > \newlabel{eq:Rtotal}{{9}{7}}
58 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.6}Interfacial friction}{7}}
59 > \newlabel{eq:Xistick}{{10}{7}}
60 > \newlabel{eq:S}{{11}{7}}
61 > \newlabel{eq:Xia}{{12}{7}}
62 > \newlabel{eq:Xibc}{{13}{7}}
63 > \citation{Kuang2012}
64 > \citation{Zwanzig}
65 > \citation{Zwanzig}
66   \citation{Kuang2010}
67 < \newlabel{eq:S}{{9}{6}}
68 < \newlabel{eq:Xia}{{10}{6}}
69 < \newlabel{eq:Xibc}{{11}{6}}
70 < \@writefile{toc}{\contentsline {section}{\numberline {4}Tests and Applications}{6}}
46 < \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Thermal conductivities}{6}}
67 > \newlabel{eq:Xieff}{{14}{8}}
68 > \newlabel{eq:tau}{{15}{8}}
69 > \@writefile{toc}{\contentsline {section}{\numberline {4}Tests and Applications}{8}}
70 > \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Thermal conductivities}{8}}
71   \gdef \LT@i {\LT@entry
72 <    {1}{80.25342pt}\LT@entry
73 <    {1}{53.69913pt}\LT@entry
74 <    {1}{72.96097pt}}
72 >    {1}{69.5093pt}\LT@entry
73 >    {1}{51.0pt}\LT@entry
74 >    {1}{58.6495pt}}
75 > \citation{Romer2012}
76 > \citation{Zhang2005}
77 > \citation{Romer2012,Zhang2005}
78 > \citation{WagnerKruse}
79 > \citation{WagnerKruse}
80 > \citation{Zhang2005}
81 > \citation{Romer2012}
82 > \citation{WagnerKruse}
83 > \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \r A. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}}{9}}
84 > \newlabel{table:goldTC}{{1}{9}}
85   \gdef \LT@ii {\LT@entry
86 <    {1}{80.25342pt}\LT@entry
87 <    {1}{53.69913pt}\LT@entry
88 <    {1}{72.96097pt}}
55 < \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \r A. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}}{7}}
56 < \newlabel{table:goldconductivity}{{1}{7}}
57 < \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and ambient density.}}{7}}
86 >    {1}{81.01138pt}\LT@entry
87 >    {1}{51.0pt}\LT@entry
88 >    {1}{58.6495pt}}
89   \gdef \LT@iii {\LT@entry
90      {1}{110.31483pt}\LT@entry
91 <    {1}{72.96097pt}\LT@entry
91 >    {1}{71.7394pt}\LT@entry
92      {1}{0.0pt}}
93 < \newlabel{table:waterconductivity}{{2}{8}}
94 < \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Interfacial thermal conductance}{8}}
95 < \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Caption.}}{8}}
96 < \newlabel{table:waterconductivity}{{3}{8}}
66 < \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Interfacial friction}{8}}
93 > \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and 5 atm.}}{10}}
94 > \newlabel{table:waterTC}{{2}{10}}
95 > \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Interfacial thermal conductance}{10}}
96 > \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Calculated interfacial thermal conductance ($G$) values for gold nanoparticles of varying radii solvated in explicit TraPPE-UA hexane. The nanoparticle $G$ values are compared to previous results for a gold slab in TraPPE-UA hexane, revealing increased interfacial thermal conductance for non-planar interfaces.}}{10}}
97   \gdef \LT@iv {\LT@entry
98      {1}{96.74344pt}\LT@entry
99      {1}{92.00313pt}\LT@entry
100 <    {1}{81.23506pt}\LT@entry
101 <    {1}{81.23506pt}\LT@entry
102 <    {1}{33.27168pt}\LT@entry
103 <    {1}{57.0pt}}
104 < \@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Calculated ``stick'' interfacial friction coefficients ($\kappa $) and friction factors ($f$) of gold nanostructures solvated in TraPPE-UA hexane at 230 K. The ellipsoid is oriented with the long axis along the $z$ direction.}}{9}}
105 < \newlabel{table:interfacialfrictionstick}{{4}{9}}
106 < \@writefile{toc}{\contentsline {section}{\numberline {5}Discussion}{9}}
100 >    {1}{64.79945pt}\LT@entry
101 >    {1}{64.79945pt}\LT@entry
102 >    {1}{64.79945pt}\LT@entry
103 >    {1}{64.43709pt}}
104 > \newlabel{table:interfacialconductance}{{3}{11}}
105 > \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Interfacial friction}{11}}
106 > \@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Comparison of rotational friction coefficients under ideal ``slip'' ($\Xi ^{rr}_{\mathit  {slip}}$) and ``stick'' conditions ($\Xi ^{rr}_{\mathit  {stick}}$) and effective rotational friction coefficients ($\Xi ^{rr}_{\mathit  {eff}}$) of gold nanostructures solvated in TraPPE-UA hexane at 230 K. The ellipsoid is oriented with the long axis along the $z$ direction.}}{11}}
107 > \newlabel{table:couple}{{4}{11}}
108 > \@writefile{toc}{\contentsline {section}{\numberline {5}Discussion}{12}}
109   \bibdata{acs-nonperiodicVSS,nonperiodicVSS}
110 < \bibcite{Vardeman2011}{{1}{2011}{{Vardeman et~al.}}{{Vardeman, Stocker, and Gezelter}}}
111 < \bibcite{Barber96}{{2}{1996}{{Barber et~al.}}{{Barber, Dobkin, and Huhdanpaa}}}
112 < \bibcite{EDELSBRUNNER:1994oq}{{3}{1994}{{Edelsbrunner and Mucke}}{{Edelsbrunner, and Mucke}}}
113 < \bibcite{openmd}{{4}{}{{Gezelter et~al.}}{{Gezelter, Kuang, Marr, Stocker, Li, Vardeman, Lin, Fennell, Sun, Daily, Zheng, and Meineke}}}
114 < \bibcite{Kuang2012}{{5}{2012}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
115 < \bibcite{Bedrov:2000}{{6}{2000}{{Bedrov and Smith}}{{Bedrov, and Smith}}}
116 < \bibcite{Kuang2010}{{7}{2010}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
117 < \bibcite{PhysRevB.59.3527}{{8}{1999}{{Qi et~al.}}{{Qi, \c {C}a\v {g}in, Kimura, and {Goddard III}}}}
118 < \bibcite{TraPPE-UA.alkanes}{{9}{1998}{{Martin and Siepmann}}{{Martin, and Siepmann}}}
119 < \bibcite{kuang:AuThl}{{10}{2011}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
120 < \bibcite{vlugt:cpc2007154}{{11}{2007}{{Schapotschnikow et~al.}}{{Schapotschnikow, Pool, and Vlugt}}}
121 < \bibcite{hautman:4994}{{12}{1989}{{Hautman and Klein}}{{Hautman, and Klein}}}
122 < \mciteSetMaxCount{main}{bibitem}{12}
110 > \bibcite{ASHURST:1975tg}{{1}{1975}{{Ashurst and Hoover}}{{Ashurst, and Hoover}}}
111 > \bibcite{Evans:1982zk}{{2}{1982}{{Evans}}{{}}}
112 > \bibcite{ERPENBECK:1984sp}{{3}{1984}{{Erpenbeck}}{{}}}
113 > \bibcite{MAGINN:1993hc}{{4}{1993}{{Maginn et~al.}}{{Maginn, Bell, and Theodorou}}}
114 > \bibcite{Berthier:2002ij}{{5}{2002}{{Berthier and Barrat}}{{Berthier, and Barrat}}}
115 > \bibcite{Evans:2002ai}{{6}{2002}{{Evans and Searles}}{{Evans, and Searles}}}
116 > \bibcite{Schelling:2002dp}{{7}{2002}{{Schelling et~al.}}{{Schelling, Phillpot, and Keblinski}}}
117 > \bibcite{PhysRevA.34.1449}{{8}{1986}{{Evans}}{{}}}
118 > \bibcite{JiangHao_jp802942v}{{9}{2008}{{Jiang et~al.}}{{Jiang, Myshakin, Jordan, and Warzinski}}}
119 > \bibcite{MullerPlathe:1997xw}{{10}{1997}{{M\"{u}ller-Plathe}}{{}}}
120 > \bibcite{ISI:000080382700030}{{11}{1999}{{M\"{u}ller-Plathe}}{{}}}
121 > \bibcite{Kuang2010}{{12}{2010}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
122 > \bibcite{Maginn:2010}{{13}{2010}{{Tenney and Maginn}}{{Tenney, and Maginn}}}
123 > \bibcite{garde:nl2005}{{14}{2005}{{Patel et~al.}}{{Patel, Garde, and Keblinski}}}
124 > \bibcite{garde:PhysRevLett2009}{{15}{2009}{{Shenogina et~al.}}{{Shenogina, Godawat, Keblinski, and Garde}}}
125 > \bibcite{kuang:AuThl}{{16}{2011}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
126 > \bibcite{Kuang2012}{{17}{2012}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
127 > \bibcite{Vardeman2011}{{18}{2011}{{Vardeman et~al.}}{{Vardeman, Stocker, and Gezelter}}}
128 > \bibcite{Bedrov:2000}{{19}{2000}{{Bedrov and Smith}}{{Bedrov, and Smith}}}
129 > \bibcite{PhysRevB.59.3527}{{20}{1999}{{Qi et~al.}}{{Qi, \c {C}a\v {g}in, Kimura, and {Goddard III}}}}
130 > \bibcite{TraPPE-UA.alkanes}{{21}{1998}{{Martin and Siepmann}}{{Martin, and Siepmann}}}
131 > \bibcite{vlugt:cpc2007154}{{22}{2007}{{Schapotschnikow et~al.}}{{Schapotschnikow, Pool, and Vlugt}}}
132 > \bibcite{hautman:4994}{{23}{1989}{{Hautman and Klein}}{{Hautman, and Klein}}}
133 > \bibcite{Romer2012}{{24}{2012}{{R{\"o}mer et~al.}}{{R{\"o}mer, Lervik, and Bresme}}}
134 > \bibcite{Zhang2005}{{25}{2005}{{Zhang et~al.}}{{Zhang, Lussetti, de~Souza, and M\"{u}ller-Plathe}}}
135 > \bibcite{WagnerKruse}{{26}{1998}{{Wagner and Kruse}}{{Wagner, and Kruse}}}
136 > \mciteSetMaxCount{main}{bibitem}{26}
137   \mciteSetMaxCount{main}{subitem}{1}
138   \mciteSetMaxWidth{main}{bibitem}{786432}
139   \mciteSetMaxWidth{main}{subitem}{0}
140 + \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Schematics of periodic (left) and non-periodic (right) Velocity Shearing and Scaling RNEMD. A kinetic energy or momentum flux is applied from region B to region A. Thermal gradients are depicted by a color gradient. Linear or angular velocity gradients are shown as arrows.\relax }}{16}}
141 + \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
142 + \newlabel{fig:VSS}{{1}{16}}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines