ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nonperiodicVSS/nonperiodicVSS.aux
(Generate patch)

Comparing trunk/nonperiodicVSS/nonperiodicVSS.aux (file contents):
Revision 3975 by kstocke1, Thu Nov 21 21:10:22 2013 UTC vs.
Revision 3995 by kstocke1, Tue Jan 14 19:50:22 2014 UTC

# Line 3 | Line 3
3   \providecommand{\mciteSetMaxWidth}[3]{\relax}
4   \providecommand{\mciteSetMaxCount}[3]{\relax}
5   \bibstyle{achemso}
6 + \citation{ASHURST:1975tg}
7 + \citation{Evans:1982zk}
8 + \citation{ERPENBECK:1984sp}
9 + \citation{MAGINN:1993hc}
10 + \citation{Berthier:2002ij}
11 + \citation{Evans:2002ai}
12 + \citation{Schelling:2002dp}
13 + \citation{PhysRevA.34.1449}
14 + \citation{JiangHao_jp802942v}
15 + \citation{ASHURST:1975tg,Evans:1982zk,ERPENBECK:1984sp,MAGINN:1993hc,Berthier:2002ij,Evans:2002ai,Schelling:2002dp,PhysRevA.34.1449,JiangHao_jp802942v}
16 + \citation{MullerPlathe:1997xw}
17 + \citation{ISI:000080382700030}
18 + \citation{Kuang:2010uq}
19 + \citation{MullerPlathe:1997xw,ISI:000080382700030,Kuang:2010uq}
20 + \citation{Maginn:2010}
21 + \citation{MullerPlathe:1997xw,ISI:000080382700030,Maginn:2010}
22 + \citation{garde:nl2005}
23 + \citation{garde:PhysRevLett2009}
24 + \citation{kuang:AuThl}
25 + \citation{garde:nl2005,garde:PhysRevLett2009,kuang:AuThl}
26 + \citation{2012MolPh.110..691K}
27 + \citation{2012MolPh.110..691K}
28 + \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}}
29 + \@writefile{toc}{\contentsline {section}{\numberline {2}Velocity Shearing and Scaling (VSS) for non-periodic systems}{2}}
30 + \newlabel{eq:bc}{{1}{3}}
31 + \newlabel{eq:bh}{{2}{3}}
32   \citation{Vardeman2011}
33   \citation{Vardeman2011}
34 < \citation{Kuang2012}
35 < \citation{Kuang2012}
36 < \citation{openmd}
11 < \citation{openmd}
12 < \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}}
13 < \@writefile{toc}{\contentsline {section}{\numberline {2}Methodology}{2}}
14 < \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Dynamics for non-periodic systems}{2}}
15 < \@writefile{toc}{\contentsline {subsection}{\numberline {2.2}VSS-RNEMD for non-periodic systems}{2}}
34 > \newlabel{eq:Kc}{{3}{4}}
35 > \newlabel{eq:Kh}{{4}{4}}
36 > \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Dynamics for non-periodic systems}{4}}
37   \citation{Bedrov:2000}
38   \citation{Kuang2010}
39   \citation{Bedrov:2000,Kuang2010}
19 \newlabel{eq:bc}{{1}{3}}
20 \newlabel{eq:bh}{{2}{3}}
21 \newlabel{eq:Kc}{{3}{3}}
22 \newlabel{eq:Kh}{{4}{3}}
40   \citation{PhysRevB.59.3527}
41   \citation{PhysRevB.59.3527}
42   \citation{TraPPE-UA.alkanes}
43   \citation{TraPPE-UA.alkanes}
44 < \citation{kuang:AuThl}
44 > \citation{Kuang2012}
45   \citation{kuang:AuThl,Kuang2012}
46   \citation{vlugt:cpc2007154}
47   \citation{vlugt:cpc2007154}
48   \citation{hautman:4994}
49   \citation{hautman:4994}
50 < \@writefile{toc}{\contentsline {section}{\numberline {3}Computational Details}{4}}
51 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Simulation protocol}{4}}
52 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Force field parameters}{4}}
53 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Thermal conductivities}{4}}
54 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Interfacial thermal conductance}{5}}
55 < \newlabel{eq:G}{{6}{5}}
56 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Interfacial friction}{5}}
57 < \newlabel{eq:Xi}{{8}{5}}
50 > \@writefile{toc}{\contentsline {section}{\numberline {3}Computational Details}{5}}
51 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Simulation protocol}{5}}
52 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Force field parameters}{5}}
53 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Thermal conductivities}{6}}
54 > \newlabel{eq:fourier}{{6}{6}}
55 > \newlabel{eq:Q}{{7}{6}}
56 > \newlabel{eq:lambda}{{8}{6}}
57 > \newlabel{eq:heat}{{9}{6}}
58 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Interfacial thermal conductance}{7}}
59 > \newlabel{eq:G}{{10}{7}}
60 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Interfacial friction}{7}}
61 > \newlabel{eq:Xistick}{{11}{7}}
62 > \newlabel{eq:S}{{12}{7}}
63   \citation{Kuang2010}
64 < \newlabel{eq:S}{{9}{6}}
65 < \newlabel{eq:Xia}{{10}{6}}
66 < \newlabel{eq:Xibc}{{11}{6}}
67 < \@writefile{toc}{\contentsline {section}{\numberline {4}Tests and Applications}{6}}
68 < \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Thermal conductivities}{6}}
64 > \newlabel{eq:Xia}{{13}{8}}
65 > \newlabel{eq:Xibc}{{14}{8}}
66 > \newlabel{eq:Xieff}{{15}{8}}
67 > \newlabel{eq:tau}{{16}{8}}
68 > \@writefile{toc}{\contentsline {section}{\numberline {4}Tests and Applications}{8}}
69 > \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Thermal conductivities}{8}}
70   \gdef \LT@i {\LT@entry
71      {1}{80.25342pt}\LT@entry
72      {1}{53.69913pt}\LT@entry
73      {1}{72.96097pt}}
74 + \citation{Romer2012}
75 + \citation{Zhang2005}
76 + \citation{Romer2012,Zhang2005}
77 + \citation{WagnerKruse}
78 + \citation{WagnerKruse}
79 + \citation{Zhang2005}
80 + \citation{Romer2012}
81 + \citation{WagnerKruse}
82   \gdef \LT@ii {\LT@entry
83      {1}{80.25342pt}\LT@entry
84      {1}{53.69913pt}\LT@entry
85      {1}{72.96097pt}}
86 < \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \r A. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}}{7}}
87 < \newlabel{table:goldconductivity}{{1}{7}}
88 < \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and ambient density.}}{7}}
86 > \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \r A. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}}{9}}
87 > \newlabel{table:goldTC}{{1}{9}}
88 > \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and 5 atm.}}{9}}
89   \gdef \LT@iii {\LT@entry
90      {1}{110.31483pt}\LT@entry
91 <    {1}{72.96097pt}\LT@entry
91 >    {1}{82.6954pt}\LT@entry
92      {1}{0.0pt}}
93 < \newlabel{table:waterconductivity}{{2}{8}}
94 < \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Interfacial thermal conductance}{8}}
95 < \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Caption.}}{8}}
96 < \newlabel{table:waterconductivity}{{3}{8}}
66 < \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Interfacial friction}{8}}
93 > \newlabel{table:waterTC}{{2}{10}}
94 > \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Interfacial thermal conductance}{10}}
95 > \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Calculated interfacial thermal conductance (G) values for gold nanoparticles of varying radii solvated in explicit TraPPE-UA hexane. The nanoparticle G values are compared to previous results for a gold slab in TraPPE-UA hexane, revealing increased interfacial thermal conductance for non-planar interfaces.}}{10}}
96 > \newlabel{table:interfacialconductance}{{3}{10}}
97   \gdef \LT@iv {\LT@entry
98      {1}{96.74344pt}\LT@entry
99      {1}{92.00313pt}\LT@entry
100 <    {1}{81.23506pt}\LT@entry
101 <    {1}{81.23506pt}\LT@entry
102 <    {1}{33.27168pt}\LT@entry
103 <    {1}{57.0pt}}
104 < \@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Calculated ``stick'' interfacial friction coefficients ($\kappa $) and friction factors ($f$) of gold nanostructures solvated in TraPPE-UA hexane at 230 K. The ellipsoid is oriented with the long axis along the $z$ direction.}}{9}}
105 < \newlabel{table:interfacialfrictionstick}{{4}{9}}
106 < \@writefile{toc}{\contentsline {section}{\numberline {5}Discussion}{9}}
100 >    {1}{74.65077pt}\LT@entry
101 >    {1}{74.65077pt}\LT@entry
102 >    {1}{64.43709pt}}
103 > \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Interfacial friction}{11}}
104 > \@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Comparison of rotational friction coefficients under ideal ``stick'' conditions ($\Xi ^{rr}_{\mathit  {stick}}$) calculated via Stokes' and Perrin's laws and effective rotational friction coefficients ($\Xi ^{rr}_{\mathit  {eff}}$) of gold nanostructures solvated in TraPPE-UA hexane at 230 K. The ellipsoid is oriented with the long axis along the $z$ direction.}}{11}}
105 > \newlabel{table:couple}{{4}{11}}
106 > \@writefile{toc}{\contentsline {section}{\numberline {5}Discussion}{11}}
107   \bibdata{acs-nonperiodicVSS,nonperiodicVSS}
108   \bibcite{Vardeman2011}{{1}{2011}{{Vardeman et~al.}}{{Vardeman, Stocker, and Gezelter}}}
109   \bibcite{Barber96}{{2}{1996}{{Barber et~al.}}{{Barber, Dobkin, and Huhdanpaa}}}
# Line 91 | Line 121
121   \mciteSetMaxCount{main}{subitem}{1}
122   \mciteSetMaxWidth{main}{bibitem}{786432}
123   \mciteSetMaxWidth{main}{subitem}{0}
124 < \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Schematics of periodic (left) and nonperiodic (right) Velocity Shearing and Scaling RNEMD. A kinetic energy or momentum flux is applied from region B to region A. Thermal gradients are depicted by a color gradient. Linear or angular velocity gradients are shown as arrows.\relax }}{12}}
124 > \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Schematics of periodic (left) and non-periodic (right) Velocity Shearing and Scaling RNEMD. A kinetic energy or momentum flux is applied from region B to region A. Thermal gradients are depicted by a color gradient. Linear or angular velocity gradients are shown as arrows.\relax }}{15}}
125   \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
126 < \newlabel{fig:VSS}{{1}{12}}
126 > \newlabel{fig:VSS}{{1}{15}}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines