ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nonperiodicVSS/nonperiodicVSS.aux
(Generate patch)

Comparing trunk/nonperiodicVSS/nonperiodicVSS.aux (file contents):
Revision 3977 by gezelter, Fri Nov 22 22:27:38 2013 UTC vs.
Revision 3995 by kstocke1, Tue Jan 14 19:50:22 2014 UTC

# Line 34 | Line 34
34   \newlabel{eq:Kc}{{3}{4}}
35   \newlabel{eq:Kh}{{4}{4}}
36   \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Dynamics for non-periodic systems}{4}}
37 \citation{Kuang2012}
38 \citation{Kuang2012}
39 \citation{openmd}
40 \citation{openmd}
41 \@writefile{toc}{\contentsline {subsection}{\numberline {2.2}VSS-RNEMD for non-periodic systems}{5}}
37   \citation{Bedrov:2000}
38   \citation{Kuang2010}
39   \citation{Bedrov:2000,Kuang2010}
40   \citation{PhysRevB.59.3527}
41   \citation{PhysRevB.59.3527}
47 \newlabel{eq:bc}{{6}{6}}
48 \newlabel{eq:bh}{{7}{6}}
49 \newlabel{eq:Kc}{{8}{6}}
50 \newlabel{eq:Kh}{{9}{6}}
51 \@writefile{toc}{\contentsline {section}{\numberline {3}Computational Details}{6}}
52 \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Simulation protocol}{6}}
53 \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Force field parameters}{6}}
42   \citation{TraPPE-UA.alkanes}
43   \citation{TraPPE-UA.alkanes}
44 + \citation{Kuang2012}
45   \citation{kuang:AuThl,Kuang2012}
46   \citation{vlugt:cpc2007154}
47   \citation{vlugt:cpc2007154}
48   \citation{hautman:4994}
49   \citation{hautman:4994}
50 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Thermal conductivities}{7}}
50 > \@writefile{toc}{\contentsline {section}{\numberline {3}Computational Details}{5}}
51 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Simulation protocol}{5}}
52 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Force field parameters}{5}}
53 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Thermal conductivities}{6}}
54 > \newlabel{eq:fourier}{{6}{6}}
55 > \newlabel{eq:Q}{{7}{6}}
56 > \newlabel{eq:lambda}{{8}{6}}
57 > \newlabel{eq:heat}{{9}{6}}
58   \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Interfacial thermal conductance}{7}}
59 < \newlabel{eq:G}{{11}{8}}
60 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Interfacial friction}{8}}
61 < \newlabel{eq:Xi}{{13}{8}}
62 < \newlabel{eq:S}{{14}{8}}
59 > \newlabel{eq:G}{{10}{7}}
60 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Interfacial friction}{7}}
61 > \newlabel{eq:Xistick}{{11}{7}}
62 > \newlabel{eq:S}{{12}{7}}
63   \citation{Kuang2010}
64 < \newlabel{eq:Xia}{{15}{9}}
65 < \newlabel{eq:Xibc}{{16}{9}}
66 < \@writefile{toc}{\contentsline {section}{\numberline {4}Tests and Applications}{9}}
67 < \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Thermal conductivities}{9}}
64 > \newlabel{eq:Xia}{{13}{8}}
65 > \newlabel{eq:Xibc}{{14}{8}}
66 > \newlabel{eq:Xieff}{{15}{8}}
67 > \newlabel{eq:tau}{{16}{8}}
68 > \@writefile{toc}{\contentsline {section}{\numberline {4}Tests and Applications}{8}}
69 > \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Thermal conductivities}{8}}
70   \gdef \LT@i {\LT@entry
71      {1}{80.25342pt}\LT@entry
72      {1}{53.69913pt}\LT@entry
73      {1}{72.96097pt}}
74 + \citation{Romer2012}
75 + \citation{Zhang2005}
76 + \citation{Romer2012,Zhang2005}
77 + \citation{WagnerKruse}
78 + \citation{WagnerKruse}
79 + \citation{Zhang2005}
80 + \citation{Romer2012}
81 + \citation{WagnerKruse}
82   \gdef \LT@ii {\LT@entry
83      {1}{80.25342pt}\LT@entry
84      {1}{53.69913pt}\LT@entry
85      {1}{72.96097pt}}
86 < \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \r A. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}}{10}}
87 < \newlabel{table:goldconductivity}{{1}{10}}
88 < \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and ambient density.}}{10}}
83 < \newlabel{table:waterconductivity}{{2}{10}}
86 > \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \r A. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}}{9}}
87 > \newlabel{table:goldTC}{{1}{9}}
88 > \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and 5 atm.}}{9}}
89   \gdef \LT@iii {\LT@entry
90      {1}{110.31483pt}\LT@entry
91 <    {1}{72.96097pt}\LT@entry
91 >    {1}{82.6954pt}\LT@entry
92      {1}{0.0pt}}
93 + \newlabel{table:waterTC}{{2}{10}}
94 + \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Interfacial thermal conductance}{10}}
95 + \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Calculated interfacial thermal conductance (G) values for gold nanoparticles of varying radii solvated in explicit TraPPE-UA hexane. The nanoparticle G values are compared to previous results for a gold slab in TraPPE-UA hexane, revealing increased interfacial thermal conductance for non-planar interfaces.}}{10}}
96 + \newlabel{table:interfacialconductance}{{3}{10}}
97   \gdef \LT@iv {\LT@entry
98      {1}{96.74344pt}\LT@entry
99      {1}{92.00313pt}\LT@entry
100 <    {1}{81.23506pt}\LT@entry
101 <    {1}{81.23506pt}\LT@entry
102 <    {1}{33.27168pt}\LT@entry
94 <    {1}{57.0pt}}
95 < \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Interfacial thermal conductance}{11}}
96 < \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Caption.}}{11}}
97 < \newlabel{table:waterconductivity}{{3}{11}}
100 >    {1}{74.65077pt}\LT@entry
101 >    {1}{74.65077pt}\LT@entry
102 >    {1}{64.43709pt}}
103   \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Interfacial friction}{11}}
104 < \@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Calculated ``stick'' interfacial friction coefficients ($\kappa $) and friction factors ($f$) of gold nanostructures solvated in TraPPE-UA hexane at 230 K. The ellipsoid is oriented with the long axis along the $z$ direction.}}{11}}
105 < \newlabel{table:interfacialfrictionstick}{{4}{12}}
106 < \@writefile{toc}{\contentsline {section}{\numberline {5}Discussion}{12}}
104 > \@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Comparison of rotational friction coefficients under ideal ``stick'' conditions ($\Xi ^{rr}_{\mathit  {stick}}$) calculated via Stokes' and Perrin's laws and effective rotational friction coefficients ($\Xi ^{rr}_{\mathit  {eff}}$) of gold nanostructures solvated in TraPPE-UA hexane at 230 K. The ellipsoid is oriented with the long axis along the $z$ direction.}}{11}}
105 > \newlabel{table:couple}{{4}{11}}
106 > \@writefile{toc}{\contentsline {section}{\numberline {5}Discussion}{11}}
107   \bibdata{acs-nonperiodicVSS,nonperiodicVSS}
108 < \mciteSetMaxCount{main}{bibitem}{0}
108 > \bibcite{Vardeman2011}{{1}{2011}{{Vardeman et~al.}}{{Vardeman, Stocker, and Gezelter}}}
109 > \bibcite{Barber96}{{2}{1996}{{Barber et~al.}}{{Barber, Dobkin, and Huhdanpaa}}}
110 > \bibcite{EDELSBRUNNER:1994oq}{{3}{1994}{{Edelsbrunner and Mucke}}{{Edelsbrunner, and Mucke}}}
111 > \bibcite{openmd}{{4}{}{{Gezelter et~al.}}{{Gezelter, Kuang, Marr, Stocker, Li, Vardeman, Lin, Fennell, Sun, Daily, Zheng, and Meineke}}}
112 > \bibcite{Kuang2012}{{5}{2012}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
113 > \bibcite{Bedrov:2000}{{6}{2000}{{Bedrov and Smith}}{{Bedrov, and Smith}}}
114 > \bibcite{Kuang2010}{{7}{2010}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
115 > \bibcite{PhysRevB.59.3527}{{8}{1999}{{Qi et~al.}}{{Qi, \c {C}a\v {g}in, Kimura, and {Goddard III}}}}
116 > \bibcite{TraPPE-UA.alkanes}{{9}{1998}{{Martin and Siepmann}}{{Martin, and Siepmann}}}
117 > \bibcite{kuang:AuThl}{{10}{2011}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
118 > \bibcite{vlugt:cpc2007154}{{11}{2007}{{Schapotschnikow et~al.}}{{Schapotschnikow, Pool, and Vlugt}}}
119 > \bibcite{hautman:4994}{{12}{1989}{{Hautman and Klein}}{{Hautman, and Klein}}}
120 > \mciteSetMaxCount{main}{bibitem}{12}
121   \mciteSetMaxCount{main}{subitem}{1}
122 < \mciteSetMaxWidth{main}{bibitem}{0}
123 < \mciteSetMaxWidth{main}{subitem}{}
122 > \mciteSetMaxWidth{main}{bibitem}{786432}
123 > \mciteSetMaxWidth{main}{subitem}{0}
124   \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Schematics of periodic (left) and non-periodic (right) Velocity Shearing and Scaling RNEMD. A kinetic energy or momentum flux is applied from region B to region A. Thermal gradients are depicted by a color gradient. Linear or angular velocity gradients are shown as arrows.\relax }}{15}}
125   \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
126   \newlabel{fig:VSS}{{1}{15}}
110 \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Schematics of periodic (left) and nonperiodic (right) Velocity Shearing and Scaling RNEMD. A kinetic energy or momentum flux is applied from region B to region A. Thermal gradients are depicted by a color gradient. Linear or angular velocity gradients are shown as arrows.\relax }}{16}}
111 \newlabel{fig:VSS}{{2}{16}}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines