ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nonperiodicVSS/nonperiodicVSS.aux
(Generate patch)

Comparing trunk/nonperiodicVSS/nonperiodicVSS.aux (file contents):
Revision 3995 by kstocke1, Tue Jan 14 19:50:22 2014 UTC vs.
Revision 4009 by kstocke1, Thu Jan 23 23:26:39 2014 UTC

# Line 9 | Line 9
9   \citation{MAGINN:1993hc}
10   \citation{Berthier:2002ij}
11   \citation{Evans:2002ai}
12 < \citation{Schelling:2002dp}
12 > \citation{Schelling:2 002dp}
13   \citation{PhysRevA.34.1449}
14   \citation{JiangHao_jp802942v}
15 < \citation{ASHURST:1975tg,Evans:1982zk,ERPENBECK:1984sp,MAGINN:1993hc,Berthier:2002ij,Evans:2002ai,Schelling:2002dp,PhysRevA.34.1449,JiangHao_jp802942v}
15 > \citation{ASHURST:1975tg,Evans:1982zk,ERPENBECK:1984sp,MAGINN:1993hc,Berthier:2002ij,Evans:2002ai,Schelling:2 002dp,PhysRevA.34.1449,JiangHao_jp802942v}
16   \citation{MullerPlathe:1997xw}
17   \citation{ISI:000080382700030}
18 < \citation{Kuang:2010uq}
19 < \citation{MullerPlathe:1997xw,ISI:000080382700030,Kuang:2010uq}
18 > \citation{Kuang2010}
19 > \citation{MullerPlathe:1997xw,ISI:000080382700030,Kuang2010}
20   \citation{Maginn:2010}
21   \citation{MullerPlathe:1997xw,ISI:000080382700030,Maginn:2010}
22   \citation{garde:nl2005}
23   \citation{garde:PhysRevLett2009}
24   \citation{kuang:AuThl}
25   \citation{garde:nl2005,garde:PhysRevLett2009,kuang:AuThl}
26 < \citation{2012MolPh.110..691K}
27 < \citation{2012MolPh.110..691K}
26 > \citation{Kuang2012}
27 > \citation{Kuang2012}
28   \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}}
29   \@writefile{toc}{\contentsline {section}{\numberline {2}Velocity Shearing and Scaling (VSS) for non-periodic systems}{2}}
30 < \newlabel{eq:bc}{{1}{3}}
31 < \newlabel{eq:bh}{{2}{3}}
32 < \citation{Vardeman2011}
33 < \citation{Vardeman2011}
30 > \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Schematics of periodic (left) and non-periodic (right) Velocity Shearing and Scaling RNEMD. A kinetic energy or momentum flux is applied from region B to region A. Thermal gradients are depicted by a color gradient. Linear or angular velocity gradients are shown as arrows.\relax }}{3}}
31 > \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
32 > \newlabel{fig:VSS}{{1}{3}}
33 > \newlabel{eq:bc}{{1}{4}}
34 > \newlabel{eq:bh}{{2}{4}}
35   \newlabel{eq:Kc}{{3}{4}}
36   \newlabel{eq:Kh}{{4}{4}}
37 < \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Dynamics for non-periodic systems}{4}}
38 < \citation{Bedrov:2000}
38 < \citation{Kuang2010}
39 < \citation{Bedrov:2000,Kuang2010}
37 > \citation{openmd}
38 > \citation{openmd}
39   \citation{PhysRevB.59.3527}
40   \citation{PhysRevB.59.3527}
41 + \citation{Bedrov:2000}
42 + \citation{Bedrov:2000,Kuang2010}
43   \citation{TraPPE-UA.alkanes}
44   \citation{TraPPE-UA.alkanes}
44 \citation{Kuang2012}
45   \citation{kuang:AuThl,Kuang2012}
46 + \@writefile{toc}{\contentsline {section}{\numberline {3}Computational Details}{5}}
47 + \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Force field parameters}{5}}
48   \citation{vlugt:cpc2007154}
49   \citation{vlugt:cpc2007154}
50   \citation{hautman:4994}
51   \citation{hautman:4994}
52 < \@writefile{toc}{\contentsline {section}{\numberline {3}Computational Details}{5}}
53 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Simulation protocol}{5}}
54 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Force field parameters}{5}}
55 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Thermal conductivities}{6}}
56 < \newlabel{eq:fourier}{{6}{6}}
57 < \newlabel{eq:Q}{{7}{6}}
58 < \newlabel{eq:lambda}{{8}{6}}
59 < \newlabel{eq:heat}{{9}{6}}
52 > \citation{Vardeman2011}
53 > \citation{Vardeman2011}
54 > \citation{packmol}
55 > \citation{packmol}
56 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Simulation protocol}{6}}
57 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Thermal conductivities}{7}}
58 > \newlabel{eq:Q}{{5}{7}}
59 > \newlabel{eq:lambda}{{6}{7}}
60 > \newlabel{eq:heat}{{7}{7}}
61   \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Interfacial thermal conductance}{7}}
62 < \newlabel{eq:G}{{10}{7}}
63 < \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Interfacial friction}{7}}
64 < \newlabel{eq:Xistick}{{11}{7}}
65 < \newlabel{eq:S}{{12}{7}}
66 < \citation{Kuang2010}
67 < \newlabel{eq:Xia}{{13}{8}}
68 < \newlabel{eq:Xibc}{{14}{8}}
69 < \newlabel{eq:Xieff}{{15}{8}}
70 < \newlabel{eq:tau}{{16}{8}}
71 < \@writefile{toc}{\contentsline {section}{\numberline {4}Tests and Applications}{8}}
72 < \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Thermal conductivities}{8}}
62 > \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces A gold nanoparticle with a radius of 20 \r A$\tmspace  +\thinmuskip {.1667em}$ solvated in TraPPE-UA hexane. A thermal flux is applied between the nanoparticle and an outer shell of solvent.\relax }}{8}}
63 > \newlabel{fig:NP20}{{2}{8}}
64 > \newlabel{eq:RK}{{8}{9}}
65 > \newlabel{eq:Rtotal}{{9}{9}}
66 > \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Interfacial rotational friction}{9}}
67 > \newlabel{eq:Xisphere}{{10}{9}}
68 > \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces A gold prolate ellipsoid of length 65 \r A$\tmspace  +\thinmuskip {.1667em}$ and width 25 \r A$\tmspace  +\thinmuskip {.1667em}$ solvated by TraPPE-UA hexane. An angular momentum flux is applied between the ellipsoid and an outer shell of solvent.\relax }}{10}}
69 > \newlabel{fig:E25-75}{{3}{10}}
70 > \citation{Kuang2012}
71 > \citation{Zwanzig}
72 > \citation{Zwanzig}
73 > \newlabel{eq:S}{{11}{11}}
74 > \newlabel{eq:Xia}{{12}{11}}
75 > \newlabel{eq:Xibc}{{13}{11}}
76 > \newlabel{eq:Xieff}{{14}{11}}
77 > \newlabel{eq:tau}{{15}{11}}
78   \gdef \LT@i {\LT@entry
79 <    {1}{80.25342pt}\LT@entry
80 <    {1}{53.69913pt}\LT@entry
81 <    {1}{72.96097pt}}
82 < \citation{Romer2012}
79 >    {1}{69.5093pt}\LT@entry
80 >    {1}{51.0pt}\LT@entry
81 >    {1}{58.6495pt}}
82 > \citation{Kuang2010}
83 > \@writefile{toc}{\contentsline {section}{\numberline {4}Tests and Applications}{12}}
84 > \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Thermal conductivities}{12}}
85 > \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \r A. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}}{12}}
86 > \newlabel{table:goldTC}{{1}{12}}
87   \citation{Zhang2005}
76 \citation{Romer2012,Zhang2005}
77 \citation{WagnerKruse}
78 \citation{WagnerKruse}
88   \citation{Zhang2005}
89   \citation{Romer2012}
90 + \citation{Romer2012}
91   \citation{WagnerKruse}
92 + \citation{WagnerKruse}
93   \gdef \LT@ii {\LT@entry
94 <    {1}{80.25342pt}\LT@entry
95 <    {1}{53.69913pt}\LT@entry
96 <    {1}{72.96097pt}}
97 < \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \r A. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}}{9}}
98 < \newlabel{table:goldTC}{{1}{9}}
99 < \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and 5 atm.}}{9}}
94 >    {1}{81.01138pt}\LT@entry
95 >    {1}{51.0pt}\LT@entry
96 >    {1}{58.6495pt}}
97 > \citation{Romer2012,Zhang2005}
98 > \citation{WagnerKruse}
99 > \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and 5 atm.}}{13}}
100 > \newlabel{table:waterTC}{{2}{13}}
101   \gdef \LT@iii {\LT@entry
102      {1}{110.31483pt}\LT@entry
103 <    {1}{82.6954pt}\LT@entry
103 >    {1}{71.7394pt}\LT@entry
104      {1}{0.0pt}}
105 < \newlabel{table:waterTC}{{2}{10}}
106 < \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Interfacial thermal conductance}{10}}
107 < \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Calculated interfacial thermal conductance (G) values for gold nanoparticles of varying radii solvated in explicit TraPPE-UA hexane. The nanoparticle G values are compared to previous results for a gold slab in TraPPE-UA hexane, revealing increased interfacial thermal conductance for non-planar interfaces.}}{10}}
108 < \newlabel{table:interfacialconductance}{{3}{10}}
105 > \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Interfacial thermal conductance}{14}}
106 > \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Calculated interfacial thermal conductance ($G$) values for gold nanoparticles of varying radii solvated in explicit TraPPE-UA hexane. The nanoparticle $G$ values are compared to previous results for a Au(111) interface in TraPPE-UA hexane.}}{14}}
107 > \newlabel{table:G}{{3}{14}}
108 > \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Interfacial friction}{14}}
109   \gdef \LT@iv {\LT@entry
110      {1}{96.74344pt}\LT@entry
111      {1}{92.00313pt}\LT@entry
112 <    {1}{74.65077pt}\LT@entry
113 <    {1}{74.65077pt}\LT@entry
112 >    {1}{64.79945pt}\LT@entry
113 >    {1}{64.79945pt}\LT@entry
114 >    {1}{64.79945pt}\LT@entry
115      {1}{64.43709pt}}
116 < \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Interfacial friction}{11}}
117 < \@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Comparison of rotational friction coefficients under ideal ``stick'' conditions ($\Xi ^{rr}_{\mathit  {stick}}$) calculated via Stokes' and Perrin's laws and effective rotational friction coefficients ($\Xi ^{rr}_{\mathit  {eff}}$) of gold nanostructures solvated in TraPPE-UA hexane at 230 K. The ellipsoid is oriented with the long axis along the $z$ direction.}}{11}}
118 < \newlabel{table:couple}{{4}{11}}
106 < \@writefile{toc}{\contentsline {section}{\numberline {5}Discussion}{11}}
116 > \@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Comparison of rotational friction coefficients under ideal ``slip'' ($\Xi ^{rr}_{\mathit  {slip}}$) and ``stick'' ($\Xi ^{rr}_{\mathit  {stick}}$) conditions and effective ($\Xi ^{rr}_{\mathit  {eff}}$) rotational friction coefficients of gold nanostructures solvated in TraPPE-UA hexane at 230 K. The ellipsoid is oriented with the long axis along the $z$ direction.}}{15}}
117 > \newlabel{table:couple}{{4}{15}}
118 > \@writefile{toc}{\contentsline {section}{\numberline {5}Discussion}{16}}
119   \bibdata{acs-nonperiodicVSS,nonperiodicVSS}
120 < \bibcite{Vardeman2011}{{1}{2011}{{Vardeman et~al.}}{{Vardeman, Stocker, and Gezelter}}}
121 < \bibcite{Barber96}{{2}{1996}{{Barber et~al.}}{{Barber, Dobkin, and Huhdanpaa}}}
122 < \bibcite{EDELSBRUNNER:1994oq}{{3}{1994}{{Edelsbrunner and Mucke}}{{Edelsbrunner, and Mucke}}}
123 < \bibcite{openmd}{{4}{}{{Gezelter et~al.}}{{Gezelter, Kuang, Marr, Stocker, Li, Vardeman, Lin, Fennell, Sun, Daily, Zheng, and Meineke}}}
124 < \bibcite{Kuang2012}{{5}{2012}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
125 < \bibcite{Bedrov:2000}{{6}{2000}{{Bedrov and Smith}}{{Bedrov, and Smith}}}
126 < \bibcite{Kuang2010}{{7}{2010}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
127 < \bibcite{PhysRevB.59.3527}{{8}{1999}{{Qi et~al.}}{{Qi, \c {C}a\v {g}in, Kimura, and {Goddard III}}}}
128 < \bibcite{TraPPE-UA.alkanes}{{9}{1998}{{Martin and Siepmann}}{{Martin, and Siepmann}}}
129 < \bibcite{kuang:AuThl}{{10}{2011}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
130 < \bibcite{vlugt:cpc2007154}{{11}{2007}{{Schapotschnikow et~al.}}{{Schapotschnikow, Pool, and Vlugt}}}
131 < \bibcite{hautman:4994}{{12}{1989}{{Hautman and Klein}}{{Hautman, and Klein}}}
132 < \mciteSetMaxCount{main}{bibitem}{12}
120 > \bibcite{ASHURST:1975tg}{{1}{1975}{{Ashurst and Hoover}}{{Ashurst, and Hoover}}}
121 > \bibcite{Evans:1982zk}{{2}{1982}{{Evans}}{{}}}
122 > \bibcite{ERPENBECK:1984sp}{{3}{1984}{{Erpenbeck}}{{}}}
123 > \bibcite{MAGINN:1993hc}{{4}{1993}{{Maginn et~al.}}{{Maginn, Bell, and Theodorou}}}
124 > \bibcite{Berthier:2002ij}{{5}{2002}{{Berthier and Barrat}}{{Berthier, and Barrat}}}
125 > \bibcite{Evans:2002ai}{{6}{2002}{{Evans and Searles}}{{Evans, and Searles}}}
126 > \bibcite{PhysRevA.34.1449}{{7}{1986}{{Evans}}{{}}}
127 > \bibcite{JiangHao_jp802942v}{{8}{2008}{{Jiang et~al.}}{{Jiang, Myshakin, Jordan, and Warzinski}}}
128 > \bibcite{MullerPlathe:1997xw}{{9}{1997}{{M\"{u}ller-Plathe}}{{}}}
129 > \bibcite{ISI:000080382700030}{{10}{1999}{{M\"{u}ller-Plathe}}{{}}}
130 > \bibcite{Kuang2010}{{11}{2010}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
131 > \bibcite{Maginn:2010}{{12}{2010}{{Tenney and Maginn}}{{Tenney, and Maginn}}}
132 > \bibcite{garde:nl2005}{{13}{2005}{{Patel et~al.}}{{Patel, Garde, and Keblinski}}}
133 > \bibcite{garde:PhysRevLett2009}{{14}{2009}{{Shenogina et~al.}}{{Shenogina, Godawat, Keblinski, and Garde}}}
134 > \bibcite{kuang:AuThl}{{15}{2011}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
135 > \bibcite{Kuang2012}{{16}{2012}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
136 > \bibcite{openmd}{{17}{}{{Gezelter et~al.}}{{Gezelter, Kuang, Marr, Stocker, Li, Vardeman, Lin, Fennell, Sun, Daily, Zheng, and Meineke}}}
137 > \bibcite{PhysRevB.59.3527}{{18}{1999}{{Qi et~al.}}{{Qi, \c {C}a\v {g}in, Kimura, and {Goddard III}}}}
138 > \bibcite{Bedrov:2000}{{19}{2000}{{Bedrov and Smith}}{{Bedrov, and Smith}}}
139 > \bibcite{TraPPE-UA.alkanes}{{20}{1998}{{Martin and Siepmann}}{{Martin, and Siepmann}}}
140 > \bibcite{vlugt:cpc2007154}{{21}{2007}{{Schapotschnikow et~al.}}{{Schapotschnikow, Pool, and Vlugt}}}
141 > \bibcite{hautman:4994}{{22}{1989}{{Hautman and Klein}}{{Hautman, and Klein}}}
142 > \bibcite{Zwanzig}{{23}{1974}{{Hu and Zwanzig}}{{Hu, and Zwanzig}}}
143 > \bibcite{Zhang2005}{{24}{2005}{{Zhang et~al.}}{{Zhang, Lussetti, de~Souza, and M\"{u}ller-Plathe}}}
144 > \bibcite{Romer2012}{{25}{2012}{{R{\"o}mer et~al.}}{{R{\"o}mer, Lervik, and Bresme}}}
145 > \bibcite{WagnerKruse}{{26}{1998}{{Wagner and Kruse}}{{Wagner, and Kruse}}}
146 > \mciteSetMaxCount{main}{bibitem}{26}
147   \mciteSetMaxCount{main}{subitem}{1}
148   \mciteSetMaxWidth{main}{bibitem}{786432}
149   \mciteSetMaxWidth{main}{subitem}{0}
124 \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Schematics of periodic (left) and non-periodic (right) Velocity Shearing and Scaling RNEMD. A kinetic energy or momentum flux is applied from region B to region A. Thermal gradients are depicted by a color gradient. Linear or angular velocity gradients are shown as arrows.\relax }}{15}}
125 \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
126 \newlabel{fig:VSS}{{1}{15}}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines