ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nonperiodicVSS/nonperiodicVSS.aux
Revision: 4004
Committed: Fri Jan 17 22:44:07 2014 UTC (10 years, 6 months ago) by kstocke1
File size: 7951 byte(s)
Log Message:

File Contents

# Content
1 \relax
2 \citation{achemso-control}
3 \providecommand{\mciteSetMaxWidth}[3]{\relax}
4 \providecommand{\mciteSetMaxCount}[3]{\relax}
5 \bibstyle{achemso}
6 \citation{ASHURST:1975tg}
7 \citation{Evans:1982zk}
8 \citation{ERPENBECK:1984sp}
9 \citation{MAGINN:1993hc}
10 \citation{Berthier:2002ij}
11 \citation{Evans:2002ai}
12 \citation{Schelling:2002dp}
13 \citation{PhysRevA.34.1449}
14 \citation{JiangHao_jp802942v}
15 \citation{ASHURST:1975tg,Evans:1982zk,ERPENBECK:1984sp,MAGINN:1993hc,Berthier:2002ij,Evans:2002ai,Schelling:2002dp,PhysRevA.34.1449,JiangHao_jp802942v}
16 \citation{MullerPlathe:1997xw}
17 \citation{ISI:000080382700030}
18 \citation{Kuang2010}
19 \citation{MullerPlathe:1997xw,ISI:000080382700030,Kuang2010}
20 \citation{Maginn:2010}
21 \citation{MullerPlathe:1997xw,ISI:000080382700030,Maginn:2010}
22 \citation{garde:nl2005}
23 \citation{garde:PhysRevLett2009}
24 \citation{kuang:AuThl}
25 \citation{garde:nl2005,garde:PhysRevLett2009,kuang:AuThl}
26 \citation{Kuang2012}
27 \citation{Kuang2012}
28 \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}}
29 \@writefile{toc}{\contentsline {section}{\numberline {2}Velocity Shearing and Scaling (VSS) for non-periodic systems}{2}}
30 \newlabel{eq:bc}{{1}{3}}
31 \newlabel{eq:bh}{{2}{3}}
32 \citation{Vardeman2011}
33 \citation{Vardeman2011}
34 \newlabel{eq:Kc}{{3}{4}}
35 \newlabel{eq:Kh}{{4}{4}}
36 \@writefile{toc}{\contentsline {section}{\numberline {3}Computational Details}{4}}
37 \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Dynamics for non-periodic systems}{4}}
38 \citation{Bedrov:2000}
39 \citation{Bedrov:2000,Kuang2010}
40 \citation{PhysRevB.59.3527}
41 \citation{PhysRevB.59.3527}
42 \citation{TraPPE-UA.alkanes}
43 \citation{TraPPE-UA.alkanes}
44 \citation{kuang:AuThl,Kuang2012}
45 \citation{vlugt:cpc2007154}
46 \citation{vlugt:cpc2007154}
47 \citation{hautman:4994}
48 \citation{hautman:4994}
49 \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Simulation protocol}{5}}
50 \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Force field parameters}{5}}
51 \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Thermal conductivities}{6}}
52 \newlabel{eq:Q}{{5}{6}}
53 \newlabel{eq:lambda}{{6}{6}}
54 \newlabel{eq:heat}{{7}{6}}
55 \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Interfacial thermal conductance}{6}}
56 \newlabel{eq:RK}{{8}{7}}
57 \newlabel{eq:Rtotal}{{9}{7}}
58 \@writefile{toc}{\contentsline {subsection}{\numberline {3.6}Interfacial friction}{7}}
59 \newlabel{eq:Xistick}{{10}{7}}
60 \newlabel{eq:S}{{11}{7}}
61 \newlabel{eq:Xia}{{12}{7}}
62 \citation{Kuang2012}
63 \citation{Zwanzig}
64 \citation{Zwanzig}
65 \citation{Kuang2010}
66 \newlabel{eq:Xibc}{{13}{8}}
67 \newlabel{eq:Xieff}{{14}{8}}
68 \newlabel{eq:tau}{{15}{8}}
69 \gdef \LT@i {\LT@entry
70 {1}{69.5093pt}\LT@entry
71 {1}{51.0pt}\LT@entry
72 {1}{58.6495pt}}
73 \citation{Romer2012}
74 \citation{Zhang2005}
75 \citation{Romer2012,Zhang2005}
76 \citation{WagnerKruse}
77 \citation{WagnerKruse}
78 \@writefile{toc}{\contentsline {section}{\numberline {4}Tests and Applications}{9}}
79 \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Thermal conductivities}{9}}
80 \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \r A. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}}{9}}
81 \newlabel{table:goldTC}{{1}{9}}
82 \citation{Zhang2005}
83 \citation{Romer2012}
84 \citation{WagnerKruse}
85 \gdef \LT@ii {\LT@entry
86 {1}{81.01138pt}\LT@entry
87 {1}{51.0pt}\LT@entry
88 {1}{58.6495pt}}
89 \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and 5 atm.}}{10}}
90 \newlabel{table:waterTC}{{2}{10}}
91 \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Interfacial thermal conductance}{10}}
92 \gdef \LT@iii {\LT@entry
93 {1}{110.31483pt}\LT@entry
94 {1}{71.7394pt}\LT@entry
95 {1}{0.0pt}}
96 \gdef \LT@iv {\LT@entry
97 {1}{96.74344pt}\LT@entry
98 {1}{92.00313pt}\LT@entry
99 {1}{64.79945pt}\LT@entry
100 {1}{64.79945pt}\LT@entry
101 {1}{64.79945pt}\LT@entry
102 {1}{64.43709pt}}
103 \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Calculated interfacial thermal conductance ($G$) values for gold nanoparticles of varying radii solvated in explicit TraPPE-UA hexane. The nanoparticle $G$ values are compared to previous results for a Au(111) interface in TraPPE-UA hexane, revealing increased interfacial thermal conductance for non-planar interfaces.}}{11}}
104 \newlabel{table:interfacialconductance}{{3}{11}}
105 \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Interfacial friction}{11}}
106 \@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Comparison of rotational friction coefficients under ideal ``slip'' ($\Xi ^{rr}_{\mathit {slip}}$) and ``stick'' conditions ($\Xi ^{rr}_{\mathit {stick}}$) and effective rotational friction coefficients ($\Xi ^{rr}_{\mathit {eff}}$) of gold nanostructures solvated in TraPPE-UA hexane at 230 K. The ellipsoid is oriented with the long axis along the $z$ direction.}}{11}}
107 \newlabel{table:couple}{{4}{12}}
108 \@writefile{toc}{\contentsline {section}{\numberline {5}Discussion}{12}}
109 \bibdata{acs-nonperiodicVSS,nonperiodicVSS}
110 \bibcite{ASHURST:1975tg}{{1}{1975}{{Ashurst and Hoover}}{{Ashurst, and Hoover}}}
111 \bibcite{Evans:1982zk}{{2}{1982}{{Evans}}{{}}}
112 \bibcite{ERPENBECK:1984sp}{{3}{1984}{{Erpenbeck}}{{}}}
113 \bibcite{MAGINN:1993hc}{{4}{1993}{{Maginn et~al.}}{{Maginn, Bell, and Theodorou}}}
114 \bibcite{Berthier:2002ij}{{5}{2002}{{Berthier and Barrat}}{{Berthier, and Barrat}}}
115 \bibcite{Evans:2002ai}{{6}{2002}{{Evans and Searles}}{{Evans, and Searles}}}
116 \bibcite{Schelling:2002dp}{{7}{2002}{{Schelling et~al.}}{{Schelling, Phillpot, and Keblinski}}}
117 \bibcite{PhysRevA.34.1449}{{8}{1986}{{Evans}}{{}}}
118 \bibcite{JiangHao_jp802942v}{{9}{2008}{{Jiang et~al.}}{{Jiang, Myshakin, Jordan, and Warzinski}}}
119 \bibcite{MullerPlathe:1997xw}{{10}{1997}{{M\"{u}ller-Plathe}}{{}}}
120 \bibcite{ISI:000080382700030}{{11}{1999}{{M\"{u}ller-Plathe}}{{}}}
121 \bibcite{Kuang2010}{{12}{2010}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
122 \bibcite{Maginn:2010}{{13}{2010}{{Tenney and Maginn}}{{Tenney, and Maginn}}}
123 \bibcite{garde:nl2005}{{14}{2005}{{Patel et~al.}}{{Patel, Garde, and Keblinski}}}
124 \bibcite{garde:PhysRevLett2009}{{15}{2009}{{Shenogina et~al.}}{{Shenogina, Godawat, Keblinski, and Garde}}}
125 \bibcite{kuang:AuThl}{{16}{2011}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
126 \bibcite{Kuang2012}{{17}{2012}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
127 \bibcite{Vardeman2011}{{18}{2011}{{Vardeman et~al.}}{{Vardeman, Stocker, and Gezelter}}}
128 \bibcite{Bedrov:2000}{{19}{2000}{{Bedrov and Smith}}{{Bedrov, and Smith}}}
129 \bibcite{PhysRevB.59.3527}{{20}{1999}{{Qi et~al.}}{{Qi, \c {C}a\v {g}in, Kimura, and {Goddard III}}}}
130 \bibcite{TraPPE-UA.alkanes}{{21}{1998}{{Martin and Siepmann}}{{Martin, and Siepmann}}}
131 \bibcite{vlugt:cpc2007154}{{22}{2007}{{Schapotschnikow et~al.}}{{Schapotschnikow, Pool, and Vlugt}}}
132 \bibcite{hautman:4994}{{23}{1989}{{Hautman and Klein}}{{Hautman, and Klein}}}
133 \bibcite{Romer2012}{{24}{2012}{{R{\"o}mer et~al.}}{{R{\"o}mer, Lervik, and Bresme}}}
134 \bibcite{Zhang2005}{{25}{2005}{{Zhang et~al.}}{{Zhang, Lussetti, de~Souza, and M\"{u}ller-Plathe}}}
135 \bibcite{WagnerKruse}{{26}{1998}{{Wagner and Kruse}}{{Wagner, and Kruse}}}
136 \mciteSetMaxCount{main}{bibitem}{26}
137 \mciteSetMaxCount{main}{subitem}{1}
138 \mciteSetMaxWidth{main}{bibitem}{786432}
139 \mciteSetMaxWidth{main}{subitem}{0}
140 \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Schematics of periodic (left) and non-periodic (right) Velocity Shearing and Scaling RNEMD. A kinetic energy or momentum flux is applied from region B to region A. Thermal gradients are depicted by a color gradient. Linear or angular velocity gradients are shown as arrows.\relax }}{16}}
141 \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
142 \newlabel{fig:VSS}{{1}{16}}

Properties

Name Value
svn:executable