ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nonperiodicVSS/nonperiodicVSS.bib
Revision: 4059
Committed: Thu Mar 6 21:30:48 2014 UTC (10 years, 6 months ago) by kstocke1
File size: 92494 byte(s)
Log Message:

File Contents

# User Rev Content
1 kstocke1 4059 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5     %% Created for Kelsey Stocker at 2014-01-08 15:53:32 -0500
6    
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11     @string{acp = {Adv. Chem. Phys.}}
12    
13     @string{bj = {Biophys. J.}}
14    
15     @string{ccp5 = {CCP5 Information Quarterly}}
16    
17     @string{cp = {Chem. Phys.}}
18    
19     @string{cpl = {Chem. Phys. Lett.}}
20    
21     @string{ea = {Electrochim. Acta}}
22    
23     @string{jacs = {J. Am. Chem. Soc.}}
24    
25     @string{jbc = {J. Biol. Chem.}}
26    
27     @string{jcat = {J. Catalysis}}
28    
29     @string{jcc = {J. Comp. Chem.}}
30    
31     @string{jcop = {J. Comp. Phys.}}
32    
33     @string{jcp = {J. Chem. Phys.}}
34    
35     @string{jctc = {J. Chem. Theory Comp.}}
36    
37     @string{jmc = {J. Med. Chem.}}
38    
39     @string{jml = {J. Mol. Liq.}}
40    
41     @string{jmm = {J. Mol. Model.}}
42    
43     @string{jpc = {J. Phys. Chem.}}
44    
45     @string{jpca = {J. Phys. Chem. A}}
46    
47     @string{jpcb = {J. Phys. Chem. B}}
48    
49     @string{jpcc = {J. Phys. Chem. C}}
50    
51     @string{jpcl = {J. Phys. Chem. Lett.}}
52    
53     @string{mp = {Mol. Phys.}}
54    
55     @string{pams = {Proc. Am. Math Soc.}}
56    
57     @string{pccp = {Phys. Chem. Chem. Phys.}}
58    
59     @string{pnas = {Proc. Natl. Acad. Sci. USA}}
60    
61     @string{pr = {Phys. Rev.}}
62    
63     @string{pra = {Phys. Rev. A}}
64    
65     @string{prb = {Phys. Rev. B}}
66    
67     @string{pre = {Phys. Rev. E}}
68    
69     @string{prl = {Phys. Rev. Lett.}}
70    
71     @string{rmp = {Rev. Mod. Phys.}}
72    
73     @string{ss = {Surf. Sci.}}
74    
75    
76     @article{Romer2012,
77     Author = {R{\"o}mer, Frank and Lervik, Anders and Bresme, Fernando},
78     Date-Added = {2014-01-08 20:51:36 +0000},
79     Date-Modified = {2014-01-08 20:53:28 +0000},
80     Journal = {J. Chem. Phys.},
81     Pages = {074503-1 - 8},
82     Title = {Nonequilibrium Molecular Dynamics Simulations of the Thermal Conductivity of Water: A Systematic Investigation of the SPC/E and TIP4P/2005 Models},
83     Volume = {137},
84     Year = {2012}}
85    
86     @article{Zhang2005,
87     Author = {Zhang, Meimei and Lussetti, Enrico and de Souza, Lu{\'\i}s and M\"{u}ller-Plathe, Florian},
88     Date-Added = {2014-01-08 20:49:09 +0000},
89     Date-Modified = {2014-01-08 20:51:28 +0000},
90     Journal = {J. Phys. Chem. B},
91     Pages = {15060-15067},
92     Title = {Thermal Conductivities of Molecular Liquids by Reverse Nonequilibrium Molecular Dynamics},
93     Volume = {109},
94     Year = {2005}}
95    
96     @article{Vardeman2011,
97     Author = {Charles F. Vardeman and Kelsey M. Stocker and J. Daniel Gezelter},
98     Date-Added = {2013-09-05 23:48:02 +0000},
99     Date-Modified = {2013-09-05 23:48:02 +0000},
100     Journal = {J. Chem. Theory Comput.},
101     Keywords = {Langevin Hull},
102     Pages = {834-842},
103     Title = {The Langevin Hull: Constant Pressure and Temperature Dynamics for Nonperiodic Systems},
104     Volume = {7},
105     Year = {2011},
106     Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUIJidUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2ZXLRBgdUcm9vdIABqAkKFRYXGyIjVSRudWxs0wsMDQ4RElpOUy5vYmplY3RzViRjbGFzc1dOUy5rZXlzog8QgASABoAHohMUgAKAA1lhbGlhc0RhdGFccmVsYXRpdmVQYXRo0hgMGRpXTlMuZGF0YU8RAYQAAAAAAYQAAgAAFFRpbWUgTWFjaGluZSBCYWNrdXBzAAAAAAAAAMyJMxdIKwAAAAAAAhBWYXJkZW1hbjIwMTEucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG81Yycn+vgAAAAAAAAAA/////wAACQAAAAAAAAAAAAAAAAAAAAAUVGltZSBNYWNoaW5lIEJhY2t1cHMAEAAIAADMiWtXAAAAEQAIAADJyjb+AAAAAQAAAAIAJVRpbWUgTWFjaGluZSBCYWNrdXBzOlZhcmRlbWFuMjAxMS5wZGYAAA4AIgAQAFYAYQByAGQAZQBtAGEAbgAyADAAMQAxAC4AcABkAGYADwAqABQAVABpAG0AZQAgAE0AYQBjAGgAaQBuAGUAIABCAGEAYwBrAHUAcABzABIAES9WYXJkZW1hbjIwMTEucGRmAAATAB0vVm9sdW1lcy9UaW1lIE1hY2hpbmUgQmFja3VwcwD//wAAgAXSHB0eH1gkY2xhc3Nlc1okY2xhc3NuYW1lox8gIV1OU011dGFibGVEYXRhVk5TRGF0YVhOU09iamVjdF8QOS4uLy4uLy4uLy4uL1ZvbHVtZXMvVGltZSBNYWNoaW5lIEJhY2t1cHMvVmFyZGVtYW4yMDExLnBkZtIcHSQloiUhXE5TRGljdGlvbmFyeRIAAYagXxAPTlNLZXllZEFyY2hpdmVyAAgAEQAWAB8AKAAyADUAOgA8AEUASwBSAF0AZABsAG8AcQBzAHUAeAB6AHwAhgCTAJgAoAIoAioCLwI4AkMCRwJVAlwCZQKhAqYCqQK2ArsAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAACzQ==}}
107    
108     @article{EDELSBRUNNER:1994oq,
109     Abstract = {Frequently, data in scientific computing is in its abstract form a finite point set in space, and it is sometimes useful or required to compute what one might call the ''shape'' of the set. For that purpose, this article introduces the formal notion of the family of alpha-shapes of a finite point set in R3. Each shape is a well-defined polytope, derived from the Delaunay triangulation of the point set, with a parameter alpha is-an-element-of R controlling the desired level of detail. An algorithm is presented that constructs the entire family of shapes for a given set of size n in time O(n2), worst case. A robust implementation of the algorithm is discussed, and several applications in the area of scientific computing are mentioned.},
110     Address = {1515 BROADWAY, NEW YORK, NY 10036},
111     Author = {Edelsbrunner, H and Mucke, E.~P.},
112     Date = {JAN 1994},
113     Date-Added = {2013-09-05 23:47:03 +0000},
114     Date-Modified = {2013-09-05 23:47:03 +0000},
115     Journal = {ACM Trans. Graphics},
116     Keywords = {COMPUTATIONAL GRAPHICS; DELAUNAY TRIANGULATIONS; GEOMETRIC ALGORITHMS; POINT SETS; POLYTOPES; ROBUST IMPLEMENTATION; SCIENTIFIC COMPUTING; SCIENTIFIC VISUALIZATION; SIMPLICIAL COMPLEXES; SIMULATED PERTURBATION; 3-DIMENSIONAL SPACE},
117     Pages = {43-72},
118     Publisher = {ASSOC COMPUTING MACHINERY},
119     Timescited = {270},
120     Title = {3-DIMENSIONAL ALPHA-SHAPES},
121     Volume = {13},
122     Year = {1994}}
123    
124     @article{Barber96,
125     Author = {C.~B. Barber and D.~P. Dobkin and H.~T. Huhdanpaa},
126     Date-Added = {2013-09-05 23:46:55 +0000},
127     Date-Modified = {2013-09-05 23:46:55 +0000},
128     Journal = {ACM Trans. Math. Software},
129     Pages = {469-483},
130     Title = {The Quickhull Algorithm for Convex Hulls},
131     Volume = 22,
132     Year = 1996}
133    
134     @article{Sun2008,
135     Author = {Xiuquan Sun and Teng Lin and J. Daniel Gezelter},
136     Date-Added = {2013-09-05 20:13:18 +0000},
137     Date-Modified = {2013-09-05 20:14:17 +0000},
138     Journal = {J. Chem. Phys.},
139     Pages = {234107},
140     Title = {Langevin Dynamics for Rigid Bodies of Arbitrary Shape},
141     Volume = {128},
142     Year = {2008}}
143    
144     @article{Zwanzig,
145     Author = {ChihMing Hu and Robert Zwanzig},
146     Date-Added = {2013-09-05 20:11:32 +0000},
147     Date-Modified = {2013-09-05 20:12:42 +0000},
148     Journal = {J. Chem. Phys.},
149     Number = {11},
150     Pages = {4353-4357},
151     Title = {Rotational Friction Coefficients for Spheroids with the Slipping Boundary Condition},
152     Volume = {60},
153     Year = {1974}}
154    
155     @article{hartland2011,
156     Author = {Hartland, Gregory V.},
157     Date-Added = {2013-02-11 22:54:29 +0000},
158     Date-Modified = {2013-02-18 17:56:29 +0000},
159     Journal = {Chem. Rev.},
160     Pages = {3858-3887},
161     Title = {Optical Studies of Dynamics in Noble Metal Nanostructures},
162     Volume = {11},
163     Year = {2011}}
164    
165     @article{hase:2010,
166     Abstract = {Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang{,} J. A. Carter{,} A. Lagutchev{,} Y. K. Koh{,} N.-H. Seong{,} D. G. Cahill{,} and D. D. Dlott{,} Science{,} 2007{,} 317{,} 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface{,} and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly{,} much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM{,} perpendicular to the interface{,} results in nearly identical temperatures for the CH2 and CH3 groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate{,} the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM{,} there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.},
167     Author = {Zhang, Yue and Barnes, George L. and Yan, Tianying and Hase, William L.},
168     Date-Added = {2012-12-25 17:47:40 +0000},
169     Date-Modified = {2012-12-25 17:47:40 +0000},
170     Doi = {10.1039/B923858C},
171     Issue = {17},
172     Journal = {Phys. Chem. Chem. Phys.},
173     Pages = {4435-4445},
174     Publisher = {The Royal Society of Chemistry},
175     Title = {Model Non-Equilibrium Molecular Dynamics Simulations of Heat Transfer from a Hot Gold Surface to an Alkylthiolate Self-Assembled Monolayer},
176     Url = {http://dx.doi.org/10.1039/B923858C},
177     Volume = {12},
178     Year = {2010},
179     Bdsk-Url-1 = {http://dx.doi.org/10.1039/B923858C}}
180    
181     @article{hase:2011,
182     Abstract = { In a previous article (Phys. Chem. Chem. Phys.2010, 12, 4435), nonequilibrium molecular dynamics (MD) simulations of heat transfer from a hot Au{111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) were presented. The simulations were performed for an H-SAM chain length of eight carbon atoms, and a qualitative agreement with the experiments of Wang et al. (Science2007, 317, 787) was found. Here, simulation results are presented for heat transfer to H-SAM surfaces with carbon chain lengths of 10--20 carbon atoms. Relaxation times for heat transfer are extracted, compared with experiment, and a qualitative agreement is obtained. The same relaxation time is found from either the temperature of the H-SAM or the orientational disorder of the H-SAM versus time. For a simulation model with the Au substrate thermally equilibrated, the relaxation times determined from the simulations are approximately a factor of 4 larger than the experimental values. },
183     Author = {Manikandan, Paranjothy and Carter, Jeffrey A. and Dlott, Dana D. and Hase, William L.},
184     Date-Added = {2012-12-25 17:47:40 +0000},
185     Date-Modified = {2013-02-18 17:57:24 +0000},
186     Doi = {10.1021/jp200672e},
187     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp200672e},
188     Journal = {J. Phys. Chem. C},
189     Number = {19},
190     Pages = {9622-9628},
191     Title = {Effect of Carbon Chain Length on the Dynamics of Heat Transfer at a Gold/Hydrocarbon Interface: Comparison of Simulation with Experiment},
192     Url = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
193     Volume = {115},
194     Year = {2011},
195     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
196     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp200672e}}
197    
198     @article{RevModPhys.61.605,
199     Author = {Swartz, E. T. and Pohl, R. O.},
200     Date-Added = {2012-12-21 20:34:12 +0000},
201     Date-Modified = {2012-12-21 20:34:12 +0000},
202     Doi = {10.1103/RevModPhys.61.605},
203     Issue = {3},
204     Journal = {Rev. Mod. Phys.},
205     Month = {Jul},
206     Pages = {605--668},
207     Publisher = {American Physical Society},
208     Title = {Thermal Boundary Resistance},
209     Url = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
210     Volume = {61},
211     Year = {1989},
212     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
213     Bdsk-Url-2 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
214    
215     @article{packmol,
216     Author = {L. Mart\'{\i}nez and R. Andrade and Ernesto G. Birgin and Jos{\'e} Mario Mart\'{\i}nez},
217     Bibsource = {DBLP, http://dblp.uni-trier.de},
218     Date-Added = {2011-02-01 15:13:02 -0500},
219     Date-Modified = {2013-02-18 18:01:34 +0000},
220     Ee = {http://dx.doi.org/10.1002/jcc.21224},
221     Journal = {J. Comput. Chem.},
222     Number = {13},
223     Pages = {2157-2164},
224     Title = {PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations},
225     Volume = {30},
226     Year = {2009}}
227    
228     @article{doi:10.1021/jp034405s,
229     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
230     Author = {Leng, Y. and Keffer, David J. and Cummings, Peter T.},
231     Date-Added = {2012-12-17 18:38:38 +0000},
232     Date-Modified = {2012-12-17 18:38:38 +0000},
233     Doi = {10.1021/jp034405s},
234     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
235     Journal = {J. Phys. Chem. B},
236     Number = {43},
237     Pages = {11940-11950},
238     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
239     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
240     Volume = {107},
241     Year = {2003},
242     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
243     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
244    
245     @article{hautman:4994,
246     Author = {Joseph Hautman and Michael L. Klein},
247     Date-Added = {2012-12-17 18:38:26 +0000},
248     Date-Modified = {2012-12-17 18:38:26 +0000},
249     Doi = {10.1063/1.457621},
250     Journal = {J. Chem. Phys.},
251     Keywords = {MOLECULAR DYNAMICS CALCULATIONS; SIMULATION; MONOLAYERS; THIOLS; ALKYL COMPOUNDS; CHAINS; SURFACE STRUCTURE; GOLD; SUBSTRATES; CHEMISORPTION; SURFACE PROPERTIES},
252     Number = {8},
253     Pages = {4994-5001},
254     Publisher = {AIP},
255     Title = {Simulation of a Monolayer of Alkyl Thiol Chains},
256     Url = {http://link.aip.org/link/?JCP/91/4994/1},
257     Volume = {91},
258     Year = {1989},
259     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/91/4994/1},
260     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.457621}}
261    
262     @article{vlugt:cpc2007154,
263     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
264     Date-Added = {2012-12-17 18:38:20 +0000},
265     Date-Modified = {2013-02-18 18:04:43 +0000},
266     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
267     Issn = {0010-4655},
268     Journal = {Comput. Phys. Commun.},
269     Keywords = {Gold nanocrystals},
270     Note = {Proceedings of the Conference on Computational Physics 2006: CCP 2006 - Conference on Computational Physics 2006},
271     Number = {1-2},
272     Pages = {154 - 157},
273     Title = {Selective Adsorption of Alkyl Thiols on Gold in Different Geometries},
274     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
275     Volume = {177},
276     Year = {2007},
277     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
278     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
279    
280     @article{landman:1998,
281     Abstract = { Equilibrium structures and thermodynamic properties of dodecanethiol self-assembled monolayers on small (Au140) and larger (Au1289) gold nanocrystallites were investigated with the use of molecular dynamics simulations. Compact passivating monolayers are formed on the (111) and (100) facets of the nanocrystallites, with adsorption site geometries differing from those found on extended flat Au(111) and Au(100) surfaces, as well as with higher packing densities. At lower temperatures the passivating molecules organize into preferentially oriented molecular bundles with the molecules in the bundles aligned approximately parallel to each other. Thermal disordering starts at T ≳200 K, initiating at the boundaries of the bundles and involving generation of intramolecular conformational (gauche) defects which occur first at bonds near the chains' outer terminus and propagate inward toward the underlying gold nanocrystalline surface as the temperature is increased. The disordering process culminates in melting of the molecular bundles, resulting in a uniform orientational distribution of the molecules around the gold nanocrystallites. From the inflection points in the calculated caloric curves, melting temperatures were determined as 280 and 294 K for the monolayers adsorbed on the smaller and larger gold nanocrystallites, respectively. These temperatures are significantly lower than the melting temperature estimated for a self-assembled monolayer of dodecanethiol adsorbed on an extended Au(111) surface. The theoretically predicted disordering mechanisms and melting scenario, resulting in a temperature-broadened transition, support recent experimental investigations. },
282     Author = {Luedtke, W. D. and Landman, Uzi},
283     Date-Added = {2012-12-17 18:38:13 +0000},
284     Date-Modified = {2012-12-17 18:38:13 +0000},
285     Doi = {10.1021/jp981745i},
286     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp981745i},
287     Journal = {J. Phys. Chem. B},
288     Number = {34},
289     Pages = {6566-6572},
290     Title = {Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites},
291     Url = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
292     Volume = {102},
293     Year = {1998},
294     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
295     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp981745i}}
296    
297     @article{PhysRevLett.96.186101,
298     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
299     Date-Added = {2012-12-17 17:44:53 +0000},
300     Date-Modified = {2012-12-17 17:44:53 +0000},
301     Doi = {10.1103/PhysRevLett.96.186101},
302     Journal = prl,
303     Month = {May},
304     Number = {18},
305     Numpages = {4},
306     Pages = {186101},
307     Publisher = {American Physical Society},
308     Title = {Thermal Conductance of Hydrophilic and Hydrophobic Interfaces},
309     Volume = {96},
310     Year = {2006},
311     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.96.186101}}
312    
313     @article{Larson:2007hw,
314     Abstract = {Nanoparticles which consist of a plasmonic layer and an iron oxide moiety could provide a promising platform for development of multimodal imaging and therapy approaches in future medicine. However, the feasibility of this platform has yet to be fully explored. In this study we demonstrated the use of gold-coated iron oxide hybrid nanoparticles for combined molecular specific MRI/optical imaging and photothermal therapy of cancer cells. The gold layer exhibits a surface plasmon resonance that provides optical contrast due to light scattering in the visible region and also presents a convenient surface for conjugating targeting moieties, while the iron oxide cores give strong T-2 (spin-spin relaxation time) contrast. The strong optical absorption of the plasmonic gold layer also makes these nanoparticles a promising agent for photothermal therapy. We synthesized hybrid nanoparticles which specifically target epidermal growth factor receptor (EGFR), a common biomarker for many epithelial cancers. We demonstrated molecular specific MRI and optical imaging in MDA-MB-468 breast cancer cells. Furthermore, we showed that receptor-mediated aggregation of anti-EGFR hybrid nanoparticles allows selective destruction of highly proliferative cancer cells using a nanosecond pulsed laser at 700 nm wavelength, a significant shift from the peak absorbance of isolated hybrid nanoparticles at 532 nm.},
315     Address = {DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND},
316     Author = {Larson, Timothy A. and Bankson, James and Aaron, Jesse and Sokolov, Konstantin},
317     Date = {AUG 15 2007},
318     Date-Added = {2012-12-17 17:44:44 +0000},
319     Date-Modified = {2013-02-18 17:34:30 +0000},
320     Doi = {ARTN 325101},
321     Journal = {Nanotechnology},
322     Pages = {325101},
323     Publisher = {IOP PUBLISHING LTD},
324     Timescited = {5},
325     Title = {Hybrid Plasmonic Magnetic Nanoparticles as Molecular Specific Agents for MRI/Optical Imaging and Photothermal Therapy of Cancer Cells},
326     Volume = {18},
327     Year = {2007},
328     Bdsk-Url-1 = {http://dx.doi.org/325101}}
329    
330     @article{Huff:2007ye,
331     Abstract = {Plasmon-resonant gold nanorods, which have large absorption cross sections at near-infrared frequencies, are excellent candidates as multifunctional agents for image-guided therapies based on localized hyperthermia. The controlled modification of the surface chemistry of the nanorods is of critical importance, as issues of cell-specific targeting and nonspecific uptake must be addressed prior to clinical evaluation. Nanorods coated with cetyltrimethylammonium bromide (a cationic surfactant used in nanorod synthesis) are internalized within hours into KB cells by a nonspecific uptake pathway, whereas the careful removal of cetyltrimethylammonium bromide from nanorods functionalized with folate results in their accumulation on the cell surface over the same time interval. In either case, the nanorods render the tumor cells highly susceptible to photothermal damage when irradiated at the nanorods' longitudinal plasmon resonance, generating extensive blebbing of the cell membrane at laser fluences as low as 30 J/cm(2).},
332     Address = {UNITEC HOUSE, 3RD FLOOR, 2 ALBERT PLACE, FINCHLEY CENTRAL, LONDON, N3 1QB, ENGLAND},
333     Author = {Huff, Terry B. and Tong, Ling and Zhao, Yan and Hansen, Matthew N. and Cheng, Ji-Xin and Wei, Alexander},
334     Date = {FEB 2007},
335     Date-Added = {2012-12-17 17:44:36 +0000},
336     Date-Modified = {2012-12-17 17:44:36 +0000},
337     Doi = {DOI 10.2217/17435889.2.1.125},
338     Journal = {Nanomedicine},
339     Keywords = {folate receptor; hyperthermia; imaging; nanorods; nonlinear optical microscopy; plasmon resonance; targeted therapy},
340     Pages = {125-132},
341     Publisher = {FUTURE MEDICINE LTD},
342     Timescited = {13},
343     Title = {Hyperthermic Effects of Gold Nanorods on Tumor Cells},
344     Volume = {2},
345     Year = {2007},
346     Bdsk-Url-1 = {http://dx.doi.org/10.2217/17435889.2.1.125}}
347    
348     @article{JiangHao_jp802942v,
349     Abstract = {Abstract: Nonequilibrium molecular dynamics simulations with the nonpolarizable SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121, 9549) force fields have been employed to calculate the thermal conductivity and other associated properties of methane hydrate over a temperature range from 30 to 260 K. The calculated results are compared to experimental data over this same range. The values of the thermal conductivity calculated with the COS/G2 model are closer to the experimental values than are those calculated with the nonpolarizable SPC/E model. The calculations match the temperature trend in the experimental data at temperatures below 50 K; however, they exhibit a slight decrease in thermal conductivity at higher temperatures in comparison to an opposite trend in the experimental data. The calculated thermal conductivity values are found to be relatively insensitive to the occupancy of the cages except at low (T d 50 K) temperatures, which indicates that the differences between the two lattice structures may have a more dominant role than generally thought in explaining the low thermal conductivity of methane hydrate compared to ice Ih. The introduction of defects into the water lattice is found to cause a reduction in the thermal conductivity but to have a negligible impact on its temperature dependence.},
350     Affiliation = {National Energy Technology Laboratory, U.S. Department of Energy, Post Office Box 10940, Pittsburgh, Pennsylvania 15236, Department of Chemistry and Center for Molecular and Materials Simulations, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and Parsons Project Services, Inc., South Park, Pennsylvania 15129},
351     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
352     Date-Added = {2012-12-17 16:57:19 +0000},
353     Date-Modified = {2013-02-18 18:00:08 +0000},
354     Doi = {10.1021/jp802942v},
355     Issn = {1520-6106},
356     Journal = jpcb,
357     Pages = {10207-10216},
358     Title = {Molecular Dynamics Simulations of the Thermal Conductivity of Methane Hydrate},
359     Volume = {112},
360     Year = {2008},
361     Bdsk-Url-1 = {http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp802942v}}
362    
363     @article{Schelling:2002dp,
364     Author = {Schelling, P. K. and Phillpot, S. R. and Keblinski, P.},
365     Date = {APR 1 2002},
366     Date-Added = {2012-12-17 16:57:10 +0000},
367     Date-Modified = {2012-12-17 16:57:10 +0000},
368     Doi = {10.1103/PhysRevB.65.144306},
369     Isi = {WOS:000174980300055},
370     Issn = {1098-0121},
371     Journal = prb,
372     Month = {Apr},
373     Number = {14},
374     Pages = {144306},
375     Publication-Type = {J},
376     Times-Cited = {288},
377     Title = {Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity},
378     Volume = {65},
379     Year = {2002},
380     Z8 = {12},
381     Z9 = {296},
382     Zb = {0},
383     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.65.144306}}
384    
385     @article{Evans:2002ai,
386     Author = {Evans, D. J. and Searles, D. J.},
387     Date = {NOV 2002},
388     Date-Added = {2012-12-17 16:56:59 +0000},
389     Date-Modified = {2012-12-17 16:56:59 +0000},
390     Doi = {10.1080/00018730210155133},
391     Isi = {WOS:000179448200001},
392     Issn = {0001-8732},
393     Journal = {Adv. Phys.},
394     Month = {Nov},
395     Number = {7},
396     Pages = {1529--1585},
397     Publication-Type = {J},
398     Times-Cited = {309},
399     Title = {The Fluctuation Theorem},
400     Volume = {51},
401     Year = {2002},
402     Z8 = {3},
403     Z9 = {311},
404     Zb = {9},
405     Bdsk-Url-1 = {http://dx.doi.org/10.1080/00018730210155133}}
406    
407     @article{Berthier:2002ij,
408     Author = {Berthier, L. and Barrat, J. L.},
409     Date = {APR 8 2002},
410     Date-Added = {2012-12-17 16:56:47 +0000},
411     Date-Modified = {2012-12-17 16:56:47 +0000},
412     Doi = {10.1063/1.1460862},
413     Isi = {WOS:000174634200036},
414     Issn = {0021-9606},
415     Journal = jcp,
416     Month = {Apr},
417     Number = {14},
418     Pages = {6228--6242},
419     Publication-Type = {J},
420     Times-Cited = {172},
421     Title = {Nonequilibrium Dynamics and Fluctuation-Dissipation Relation in a Sheared Fluid},
422     Volume = {116},
423     Year = {2002},
424     Z8 = {0},
425     Z9 = {172},
426     Zb = {1},
427     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1460862}}
428    
429     @article{MAGINN:1993hc,
430     Author = {Maginn, E. J. and Bell, A. T. and Theodorou, D. N.},
431     Date = {APR 22 1993},
432     Date-Added = {2012-12-17 16:56:40 +0000},
433     Date-Modified = {2012-12-21 22:43:10 +0000},
434     Doi = {10.1021/j100118a038},
435     Isi = {WOS:A1993KY46600039},
436     Issn = {0022-3654},
437     Journal = jpc,
438     Month = {Apr},
439     Number = {16},
440     Pages = {4173--4181},
441     Publication-Type = {J},
442     Times-Cited = {198},
443     Title = {Transport Diffusivity of Methane in Silicalite from Equilibrium and Nonequilibrium Simulations},
444     Volume = {97},
445     Year = {1993},
446     Z8 = {4},
447     Z9 = {201},
448     Zb = {0},
449     Bdsk-Url-1 = {http://dx.doi.org/10.1021/j100118a038}}
450    
451     @article{ERPENBECK:1984sp,
452     Author = {Erpenbeck, J. J.},
453     Date = {1984},
454     Date-Added = {2012-12-17 16:56:32 +0000},
455     Date-Modified = {2012-12-21 22:42:45 +0000},
456     Doi = {10.1103/PhysRevLett.52.1333},
457     Isi = {WOS:A1984SK96700021},
458     Issn = {0031-9007},
459     Journal = prl,
460     Number = {15},
461     Pages = {1333--1335},
462     Publication-Type = {J},
463     Times-Cited = {189},
464     Title = {Shear Viscosity of the Hard-Sphere Fluid via Nonequilibrium Molecular Dynamics},
465     Volume = {52},
466     Year = {1984},
467     Z8 = {0},
468     Z9 = {189},
469     Zb = {1},
470     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.52.1333}}
471    
472     @article{Evans:1982zk,
473     Author = {Evans, Denis J.},
474     Date-Added = {2012-12-17 16:56:24 +0000},
475     Date-Modified = {2013-02-18 17:59:06 +0000},
476     Journal = {Phys. Lett. A},
477     Number = {9},
478     Pages = {457--460},
479     Title = {Homogeneous NEMD Algorithm for Thermal Conductivity -- Application of Non-Canonical Linear Response Theory},
480     Ty = {JOUR},
481     Url = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50},
482     Volume = {91},
483     Year = {1982},
484     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50}}
485    
486     @article{ASHURST:1975tg,
487     Author = {Ashurst, W. T. and Hoover, W. G.},
488     Date = {1975},
489     Date-Added = {2012-12-17 16:56:05 +0000},
490     Date-Modified = {2012-12-21 22:42:31 +0000},
491     Doi = {10.1103/PhysRevA.11.658},
492     Isi = {WOS:A1975V548400036},
493     Issn = {1050-2947},
494     Journal = pra,
495     Number = {2},
496     Pages = {658--678},
497     Publication-Type = {J},
498     Times-Cited = {295},
499     Title = {Dense-Fluid Shear Viscosity via Nonequilibrium Molecular Dynamics},
500     Volume = {11},
501     Year = {1975},
502     Z8 = {3},
503     Z9 = {298},
504     Zb = {1},
505     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.11.658}}
506    
507     @article{kinaci:014106,
508     Author = {A. Kinaci and J. B. Haskins and T. \c{C}a\u{g}in},
509     Date-Added = {2012-12-17 16:55:56 +0000},
510     Date-Modified = {2012-12-17 16:55:56 +0000},
511     Doi = {10.1063/1.4731450},
512     Eid = {014106},
513     Journal = jcp,
514     Keywords = {argon; elemental semiconductors; Ge-Si alloys; molecular dynamics method; nanostructured materials; porous semiconductors; silicon; thermal conductivity},
515     Number = {1},
516     Numpages = {8},
517     Pages = {014106},
518     Publisher = {AIP},
519     Title = {On Calculation of Thermal Conductivity from Einstein Relation in Equilibrium Molecular Dynamics},
520     Url = {http://link.aip.org/link/?JCP/137/014106/1},
521     Volume = {137},
522     Year = {2012},
523     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/137/014106/1},
524     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.4731450}}
525    
526     @article{che:6888,
527     Author = {Jianwei Che and Tahir Cagin and Weiqiao Deng and William A. Goddard III},
528     Date-Added = {2012-12-17 16:55:48 +0000},
529     Date-Modified = {2012-12-17 16:55:48 +0000},
530     Doi = {10.1063/1.1310223},
531     Journal = jcp,
532     Keywords = {diamond; thermal conductivity; digital simulation; vacancies (crystal); Green's function methods; isotope effects},
533     Number = {16},
534     Pages = {6888-6900},
535     Publisher = {AIP},
536     Title = {Thermal Conductivity of Diamond and Related Materials from Molecular Dynamics Simulations},
537     Url = {http://link.aip.org/link/?JCP/113/6888/1},
538     Volume = {113},
539     Year = {2000},
540     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/113/6888/1},
541     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1310223}}
542    
543     @article{Viscardy:2007rp,
544     Abstract = {The thermal conductivity is calculated with the Helfand-moment method in the Lennard-Jones fluid near the triple point. The Helfand moment of thermal conductivity is here derived for molecular dynamics with periodic boundary conditions. Thermal conductivity is given by a generalized Einstein relation with this Helfand moment. The authors compute thermal conductivity by this new method and compare it with their own values obtained by the standard Green-Kubo method. The agreement is excellent. (C) 2007 American Institute of Physics.},
545     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
546     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
547     Date = {MAY 14 2007},
548     Date-Added = {2012-12-17 16:55:32 +0000},
549     Date-Modified = {2013-02-18 17:58:40 +0000},
550     Doi = {ARTN 184513},
551     Journal = jcp,
552     Pages = {184513},
553     Publisher = {AMER INST PHYSICS},
554     Timescited = {1},
555     Title = {Transport and Helfand Moments in the Lennard-Jones Fluid. II. Thermal Conductivity},
556     Volume = {126},
557     Year = {2007},
558     Bdsk-Url-1 = {http://dx.doi.org/184513}}
559    
560     @article{PhysRev.119.1,
561     Author = {Helfand, Eugene},
562     Date-Added = {2012-12-17 16:55:19 +0000},
563     Date-Modified = {2012-12-17 16:55:19 +0000},
564     Doi = {10.1103/PhysRev.119.1},
565     Journal = {Phys. Rev.},
566     Month = {Jul},
567     Number = {1},
568     Numpages = {8},
569     Pages = {1--9},
570     Publisher = {American Physical Society},
571     Title = {Transport Coefficients from Dissipation in a Canonical Ensemble},
572     Volume = {119},
573     Year = {1960},
574     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRev.119.1}}
575    
576     @article{PhysRevA.34.1449,
577     Author = {Evans, Denis J.},
578     Date-Added = {2012-12-17 16:55:19 +0000},
579     Date-Modified = {2012-12-17 16:55:19 +0000},
580     Doi = {10.1103/PhysRevA.34.1449},
581     Journal = {Phys. Rev. A},
582     Month = {Aug},
583     Number = {2},
584     Numpages = {4},
585     Pages = {1449--1453},
586     Publisher = {American Physical Society},
587     Title = {Thermal Conductivity of the Lennard-Jones Fluid},
588     Volume = {34},
589     Year = {1986},
590     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.34.1449}}
591    
592     @article{MASSOBRIO:1984bl,
593     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
594     Author = {Massobrio, C and Ciccotti, G},
595     Date = {1984},
596     Date-Added = {2012-12-17 16:55:03 +0000},
597     Date-Modified = {2012-12-21 22:42:02 +0000},
598     Journal = pra,
599     Pages = {3191-3197},
600     Publisher = {AMERICAN PHYSICAL SOC},
601     Timescited = {29},
602     Title = {Lennard-Jones Triple-Point Conductivity via Weak External Fields},
603     Volume = {30},
604     Year = {1984}}
605    
606     @article{PhysRevB.37.5677,
607     Author = {Heyes, David M.},
608     Date-Added = {2012-12-17 16:54:55 +0000},
609     Date-Modified = {2012-12-17 16:54:55 +0000},
610     Doi = {10.1103/PhysRevB.37.5677},
611     Journal = prb,
612     Month = {Apr},
613     Number = {10},
614     Numpages = {19},
615     Pages = {5677--5696},
616     Publisher = {American Physical Society},
617     Title = {Transport Coefficients of Lennard-Jones Fluids: A Molecular-Dynamics and Effective-Hard-Sphere Treatment},
618     Volume = {37},
619     Year = {1988},
620     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.37.5677}}
621    
622     @article{PhysRevB.80.195406,
623     Author = {Juv\'e, Vincent and Scardamaglia, Mattia and Maioli, Paolo and Crut, Aur\'elien and Merabia, Samy and Joly, Laurent and Del Fatti, Natalia and Vall\'ee, Fabrice},
624     Date-Added = {2012-12-17 16:54:55 +0000},
625     Date-Modified = {2012-12-17 16:54:55 +0000},
626     Doi = {10.1103/PhysRevB.80.195406},
627     Journal = prb,
628     Month = {Nov},
629     Number = {19},
630     Numpages = {6},
631     Pages = {195406},
632     Publisher = {American Physical Society},
633     Title = {Cooling Dynamics and Thermal Interface Resistance of Glass-Embedded Metal Nanoparticles},
634     Volume = {80},
635     Year = {2009},
636     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.80.195406}}
637    
638     @article{Wang10082007,
639     Abstract = {At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.},
640     Author = {Wang, Zhaohui and Carter, Jeffrey A. and Lagutchev, Alexei and Koh, Yee Kan and Seong, Nak-Hyun and Cahill, David G. and Dlott, Dana D.},
641     Date-Added = {2012-12-17 16:54:31 +0000},
642     Date-Modified = {2012-12-17 16:54:31 +0000},
643     Doi = {10.1126/science.1145220},
644     Eprint = {http://www.sciencemag.org/content/317/5839/787.full.pdf},
645     Journal = {Science},
646     Number = {5839},
647     Pages = {787-790},
648     Title = {Ultrafast Flash Thermal Conductance of Molecular Chains},
649     Url = {http://www.sciencemag.org/content/317/5839/787.abstract},
650     Volume = {317},
651     Year = {2007},
652     Bdsk-Url-1 = {http://www.sciencemag.org/content/317/5839/787.abstract},
653     Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.1145220}}
654    
655     @article{doi:10.1021/la904855s,
656     Annote = {PMID: 20166728},
657     Author = {Alper, Joshua and Hamad-Schifferli, Kimberly},
658     Date-Added = {2012-12-17 16:54:12 +0000},
659     Date-Modified = {2013-02-18 17:57:03 +0000},
660     Doi = {10.1021/la904855s},
661     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la904855s},
662     Journal = {Langmuir},
663     Number = {6},
664     Pages = {3786-3789},
665     Title = {Effect of Ligands on Thermal Dissipation from Gold Nanorods},
666     Url = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
667     Volume = {26},
668     Year = {2010},
669     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
670     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la904855s}}
671    
672     @article{doi:10.1021/jp048375k,
673     Abstract = { Water- and alcohol-soluble AuPd nanoparticles have been investigated to determine the effect of the organic stabilizing group on the thermal conductance G of the particle/fluid interface. The thermal decays of tiopronin-stabilized 3−5-nm diameter AuPd alloy nanoparticles, thioalkylated ethylene glycol-stabilized 3−5-nm diameter AuPd nanoparticles, and cetyltrimethylammonium bromide-stabilized 22-nm diameter Au-core/AuPd-shell nanoparticles give thermal conductances G ≈ 100−300 MW m-2 K-1 for the particle/water interfaces, approximately an order of magnitude larger than the conductance of the interfaces between alkanethiol-terminated AuPd nanoparticles and toluene. The similar values of G for particles ranging in size from 3 to 24 nm with widely varying surface chemistry indicate that the thermal coupling between AuPd nanoparticles and water is strong regardless of the self-assembled stabilizing group. },
674     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
675     Date-Added = {2012-12-17 16:54:03 +0000},
676     Date-Modified = {2012-12-17 16:54:03 +0000},
677     Doi = {10.1021/jp048375k},
678     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048375k},
679     Journal = jpcb,
680     Number = {49},
681     Pages = {18870-18875},
682     Title = {AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution},
683     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
684     Volume = {108},
685     Year = {2004},
686     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
687     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048375k}}
688    
689     @article{doi:10.1021/jp8051888,
690     Abstract = { Thermal transport between CTAB passivated gold nanorods and solvent is studied by an optical pump−probe technique. Increasing the free CTAB concentration from 1 mM to 10 mM causes a ∼3× increase in the CTAB layer's effective thermal interface conductance and a corresponding shift in the longitudinal surface plasmon resonance. The transition occurs near the CTAB critical micelle concentration, revealing the importance of the role of free ligand on thermal transport. },
691     Author = {Schmidt, Aaron J. and Alper, Joshua D. and Chiesa, Matteo and Chen, Gang and Das, Sarit K. and Hamad-Schifferli, Kimberly},
692     Date-Added = {2012-12-17 16:54:03 +0000},
693     Date-Modified = {2013-02-18 17:54:59 +0000},
694     Doi = {10.1021/jp8051888},
695     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp8051888},
696     Journal = jpcc,
697     Number = {35},
698     Pages = {13320-13323},
699     Title = {Probing the Gold Nanorod-Ligand-Solvent Interface by Plasmonic Absorption and Thermal Decay},
700     Url = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
701     Volume = {112},
702     Year = {2008},
703     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
704     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp8051888}}
705    
706     @article{PhysRevB.67.054302,
707     Author = {Costescu, Ruxandra M. and Wall, Marcel A. and Cahill, David G.},
708     Date-Added = {2012-12-17 16:53:48 +0000},
709     Date-Modified = {2012-12-17 16:53:48 +0000},
710     Doi = {10.1103/PhysRevB.67.054302},
711     Journal = prb,
712     Month = {Feb},
713     Number = {5},
714     Numpages = {5},
715     Pages = {054302},
716     Publisher = {American Physical Society},
717     Title = {Thermal Conductance of Epitaxial Interfaces},
718     Volume = {67},
719     Year = {2003},
720     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.67.054302}}
721    
722     @article{cahill:793,
723     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
724     Date-Added = {2012-12-17 16:53:36 +0000},
725     Date-Modified = {2012-12-17 16:53:36 +0000},
726     Doi = {10.1063/1.1524305},
727     Journal = {J. Appl. Phys.},
728     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
729     Number = {2},
730     Pages = {793-818},
731     Publisher = {AIP},
732     Title = {Nanoscale Thermal Transport},
733     Url = {http://link.aip.org/link/?JAP/93/793/1},
734     Volume = {93},
735     Year = {2003},
736     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
737     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
738    
739     @article{Eapen:2007mw,
740     Abstract = {In a well-dispersed nanofluid with strong cluster-fluid attraction, thermal conduction paths can arise through percolating amorphouslike interfacial structures. This results in a thermal conductivity enhancement beyond the Maxwell limit of 3 phi, with phi being the nanoparticle volume fraction. Our findings from nonequilibrium molecular dynamics simulations, which are amenable to experimental verification, can provide a theoretical basis for the development of future nanofluids.},
741     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
742     Author = {Eapen, Jacob and Li, Ju and Yip, Sidney},
743     Date = {DEC 2007},
744     Date-Added = {2012-12-17 16:53:30 +0000},
745     Date-Modified = {2013-02-18 17:48:08 +0000},
746     Doi = {ARTN 062501},
747     Journal = pre,
748     Pages = {062501},
749     Publisher = {AMER PHYSICAL SOC},
750     Timescited = {0},
751     Title = {Beyond the Maxwell Limit: Thermal Conduction in Nanofluids with Percolating Fluid Structures},
752     Volume = {76},
753     Year = {2007},
754     Bdsk-Url-1 = {http://dx.doi.org/062501}}
755    
756     @article{Xue:2003ya,
757     Abstract = {Using nonequilibrium molecular dynamics simulations in which a temperature gradient is imposed, we determine the thermal resistance of a model liquid-solid interface. Our simulations reveal that the strength of the bonding between liquid and solid atoms plays a key role in determining interfacial thermal resistance. Moreover, we find that the functional dependence of the thermal resistance on the strength of the liquid-solid interactions exhibits two distinct regimes: (i) exponential dependence for weak bonding (nonwetting liquid) and (ii) power law dependence for strong bonding (wetting liquid). The identification of the two regimes of the Kapitza resistance has profound implications for understanding and designing the thermal properties of nanocomposite materials. (C) 2003 American Institute of Physics.},
758     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
759     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
760     Date = {JAN 1 2003},
761     Date-Added = {2012-12-17 16:53:22 +0000},
762     Date-Modified = {2012-12-17 16:53:22 +0000},
763     Doi = {DOI 10.1063/1.1525806},
764     Journal = jcp,
765     Pages = {337-339},
766     Publisher = {AMER INST PHYSICS},
767     Timescited = {19},
768     Title = {Two Regimes of Thermal Resistance at a Liquid-Solid Interface},
769     Volume = {118},
770     Year = {2003},
771     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1525806}}
772    
773     @article{Xue:2004oa,
774     Abstract = {Using non-equilibrium molecular dynamics simulations in which a temperature gradient is imposed, we study how the ordering of the liquid at the liquid-solid interface affects the interfacial thermal resistance. Our simulations of a simple monoatomic liquid show no effect on the thermal transport either normal to the surface or parallel to the surface. Even for of a liquid that is highly confined between two solids, we find no effect on thermal conductivity. This contrasts with well-known significant effect of confinement on the viscoelastic response. Our findings suggest that the experimentally observed large enhancement of thermal conductivity in suspensions of solid nanosized particles (nanofluids) can not be explained by altered thermal transport properties of the layered liquid. (C) 2004 Elsevier Ltd. All rights reserved.},
775     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
776     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
777     Date = {SEP 2004},
778     Date-Added = {2012-12-17 16:53:22 +0000},
779     Date-Modified = {2013-02-18 17:47:37 +0000},
780     Doi = {DOI 10.1016/ijheatmasstransfer.2004.05.016},
781     Journal = {Int. J. Heat Mass Tran.},
782     Keywords = {interfacial Thermal Resistance; liquid-solid interface; molecular dynamics simulations; nanofluids},
783     Pages = {4277-4284},
784     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
785     Timescited = {29},
786     Title = {Effect of Liquid Layering at the Liquid-Solid Interface on Thermal Transport},
787     Volume = {47},
788     Year = {2004},
789     Bdsk-Url-1 = {http://dx.doi.org/10.1016/ijheatmasstransfer.2004.05.016}}
790    
791     @article{Lee:1999ct,
792     Abstract = {Oxide nanofluids were produced and their thermal conductivities were measured by a transient hot-wire method. The experimental results show that these nanofluids, containing a small amount of nanoparticles, have substantially higher thermal conductivities than the same liquids without nanoparticles. Comparisons between experiments and the Hamilton and Crosser model show that the model can predict the thermal conductivity of nanofluids containing large agglomerated Al2O3 particles. However, the model appears to be inadequate for nanofluids containing CuO particles. This suggests that not only particle shape but size is considered to be dominant in enhancing the thermal conductivity of nanofluids.},
793     Address = {345 E 47TH ST, NEW YORK, NY 10017 USA},
794     Author = {Lee, S and Choi, SUS and Li, S and Eastman, JA},
795     Date = {MAY 1999},
796     Date-Added = {2012-12-17 16:53:15 +0000},
797     Date-Modified = {2013-02-18 17:46:57 +0000},
798     Journal = {J. Heat Transf.},
799     Keywords = {conduction; enhancement; heat transfer; nanoscale; two-phase},
800     Pages = {280-289},
801     Publisher = {ASME-AMER SOC MECHANICAL ENG},
802     Timescited = {183},
803     Title = {Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles},
804     Volume = {121},
805     Year = {1999}}
806    
807     @article{Keblinski:2002bx,
808     Abstract = {Recent measurements on nanofluids have demonstrated that the thermal conductivity increases with decreasing grain size. However, Such increases cannot be explained by existing theories. We explore four possible explanations for this anomalous increase: Brownian motion of the particles, molecular-level layering of the liquid at the liquid/particle interface, the nature of heat transport in the nanoparticles. and the effects of nanoparticle clustering. We show that the key factors in understanding thermal properties of nanofluids are the ballistic, rather than diffusive, nature of heat transport in the nanoparticles, combined with direct or fluid-mediated clustering effects that provide paths for rapid heat transport. (C) 2001 Elsevier Science Ltd. All rights reserved.},
809     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
810     Author = {Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
811     Date = {FEB 2002},
812     Date-Added = {2012-12-17 16:53:06 +0000},
813     Date-Modified = {2013-02-18 17:41:04 +0000},
814     Journal = {Int. J. Heat Mass Tran.},
815     Keywords = {thermal conductivity; nanofluids; molecular dynamics simulations; ballistic heat transport},
816     Pages = {855-863},
817     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
818     Timescited = {161},
819     Title = {Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)},
820     Volume = {45},
821     Year = {2002}}
822    
823     @article{Eastman:2001wb,
824     Abstract = {It is shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure ethylene glycol or ethylene glycol containing the same volume fraction of dispersed oxide nanoparticles. The effective thermal conductivity of ethylene glycol is shown to be increased by up to 40\% for a nanofluid consisting of ethylene glycol containing approximately 0.3 vol \% Cu nanoparticles of mean diameter < 10 nm. The results are anomalous based on previous theoretical calculations that had predicted a strong effect of particle shape on effective nanofluid thermal conductivity, but no effect of either particle size or particle thermal conductivity. (C) 2001 American Institute of Physics.},
825     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
826     Author = {Eastman, JA and Choi, SUS and Li, S and Yu, W and Thompson, LJ},
827     Date = {FEB 5 2001},
828     Date-Added = {2012-12-17 16:52:55 +0000},
829     Date-Modified = {2013-02-18 17:40:41 +0000},
830     Journal = {Appl. Phys. Lett.},
831     Pages = {718-720},
832     Publisher = {AMER INST PHYSICS},
833     Timescited = {246},
834     Title = {Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles},
835     Volume = {78},
836     Year = {2001}}
837    
838     @article{Eapen:2007th,
839     Abstract = {Transient hot-wire data on thermal conductivity of suspensions of silica and perfluorinated particles show agreement with the mean-field theory of Maxwell but not with the recently postulated microconvection mechanism. The influence of interfacial thermal resistance, convective effects at microscales, and the possibility of thermal conductivity enhancements beyond the Maxwell limit are discussed.},
840     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
841     Author = {Eapen, Jacob and Williams, Wesley C. and Buongiorno, Jacopo and Hu, Lin-Wen and Yip, Sidney and Rusconi, Roberto and Piazza, Roberto},
842     Date = {AUG 31 2007},
843     Date-Added = {2012-12-17 16:52:46 +0000},
844     Date-Modified = {2013-02-18 17:40:15 +0000},
845     Doi = {ARTN 095901},
846     Journal = prl,
847     Pages = {095901},
848     Publisher = {AMER PHYSICAL SOC},
849     Timescited = {8},
850     Title = {Mean-Field Versus Microconvection Effects in Nanofluid Thermal Conduction},
851     Volume = {99},
852     Year = {2007},
853     Bdsk-Url-1 = {http://dx.doi.org/095901}}
854    
855     @article{Plech:2005kx,
856     Abstract = {The transient structural response of laser excited gold nanoparticle sols has been recorded by pulsed X-ray scattering. Time resolved wide angle and small angle scattering (SAXS) record the changes in structure both of the nanoparticles and the water environment subsequent to femtosecond laser excitation. Within the first nanosecond after the excitation of the nanoparticles, the water phase shows a signature of compression, induced by a heat-induced evaporation of the water shell close to the heated nanoparticles. The particles themselves undergo a melting transition and are fragmented to Form new clusters in the nanometer range. (C) 2004 Elsevier B.V. All rights reserved.},
857     Author = {Plech, A and Kotaidis, V and Lorenc, M and Wulff, M},
858     Date-Added = {2012-12-17 16:52:34 +0000},
859     Date-Modified = {2012-12-17 16:52:34 +0000},
860     Doi = {DOI 10.1016/j.cplett.2004.11.072},
861     Journal = cpl,
862     Local-Url = {file://localhost/Users/charles/Documents/Papers/sdarticle3.pdf},
863     Pages = {565-569},
864     Title = {Thermal Dynamics in Laser Excited Metal Nanoparticles},
865     Volume = {401},
866     Year = {2005},
867     Bdsk-Url-1 = {http://dx.doi.org/10.1016/j.cplett.2004.11.072}}
868    
869     @article{Wilson:2002uq,
870     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
871     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
872     Date-Added = {2012-12-17 16:52:22 +0000},
873     Date-Modified = {2013-02-18 17:34:52 +0000},
874     Doi = {ARTN 224301},
875     Journal = {Phys. Rev. B},
876     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
877     Pages = {224301},
878     Title = {Colloidal Metal Particles as Probes of Nanoscale Thermal Transport in Fluids},
879     Volume = {66},
880     Year = {2002},
881     Bdsk-Url-1 = {http://dx.doi.org/224301}}
882    
883     @article{Mazzaglia:2008to,
884     Abstract = {Amphiphilic cyclodextrins (CDs) modified in the upper rim with thiohexyl groups and in the lower rim with oligoethylene amino (SC6NH2) or oligoethylene hydroxyl groups (SC6OH) can bind gold colloids, yielding Au/CD particles with an average hydrodynamic radius (RH) of 2 and 25 rim in water solution. The systems were investigated by UV-vis, quasi-elastic light scattering, and FTIR-ATR techniques. The concentration of amphiphiles was kept above the concentration of gold colloids to afford complete covering. In the case of SC6NH2, basic conditions (Et3N, pH 11) yield promptly the decoration of Au, which can be stabilized by linkage of CD amino and/or thioether groups. The critical aggregation concentration of SC6NH2 was measured (similar to 4 mu M) by surface tension measurements, pointing out that about 50\% of CDs are present in nonaggregated form. Whereas Au/SC6NH2 colloids were stable in size and morphology for at least one month, the size of the Au/SC6OH system increases remarkably, forming nanoaggregates of 20 and 80 rim in two hours. Under physiological conditions, the gold/amino amphiphiles system can internalize in HeLa cells, as shown by extinction spectra registered on the immobilized cells. The gold delivered by cyclodextrins can induce photothermal damage upon irradiation, doubling the cell mortality with respect to uncovered gold colloids. These findings can open useful perspectives to the application of these self-assembled systems in cancer photothermal therapy.},
885     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
886     Author = {Mazzaglia, Antonino and Trapani, Mariachiara and Villari, Valentina and Micali, Norberto and Merlo, Francesca Marino and Zaccaria, Daniela and Sciortino, Maria Teresa and Previti, Francesco and Patane, Salvatore and Scolaro, Luigi Monsu},
887     Date = {MAY 1 2008},
888     Date-Added = {2012-12-17 16:52:15 +0000},
889     Date-Modified = {2012-12-17 16:52:15 +0000},
890     Doi = {DOI 10.1021/jp7120033},
891     Journal = jpcc,
892     Pages = {6764-6769},
893     Publisher = {AMER CHEMICAL SOC},
894     Timescited = {0},
895     Title = {Amphiphilic Cyclodextrins as Capping Agents for Gold Colloids: A Spectroscopic Investigation with Perspectives in Photothermal Therapy},
896     Volume = {112},
897     Year = {2008},
898     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp7120033}}
899    
900     @article{Gnyawali:2008lp,
901     Abstract = {Tissue surface temperature distribution on the treatment site can serve as an indicator for the effectiveness of a photothermal therapy. In this study, both infrared thermography and theoretical simulation were used to determine the surface temperature distribution during laser irradiation of both gel phantom and animal tumors. Selective photothermal interaction was attempted by using intratumoral indocyanine green enhancement and irradiation via a near-infrared laser. An immunoadjuvant was also used to enhance immunological responses during tumor treatment. Monte Carlo method for tissue absorption of light and finite difference method for heat diffusion in tissue were used to simulate the temperature distribution during the selective laser photothermal interaction. An infrared camera was used to capture the thermal images during the laser treatment and the surface temperature was determined. Our findings show that the theoretical and experimental results are in good agreement and that the surface temperature of irradiated tissue can be controlled with appropriate dye and adjuvant enhancement. These results can be used to control the laser tumor treatment parameters and to optimize the treatment outcome. More importantly, when used with immunotherapy as a precursor of immunological responses, the selective photothermal treatment can be guided by the tissue temperature profiles both in the tumor and on the surface.},
902     Address = {TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY},
903     Author = {Gnyawali, Surya C. and Chen, Yicho and Wu, Feng and Bartels, Kenneth E. and Wicksted, James P. and Liu, Hong and Sen, Chandan K. and Chen, Wei R.},
904     Date = {FEB 2008},
905     Date-Added = {2012-12-17 16:52:08 +0000},
906     Date-Modified = {2013-02-18 17:32:43 +0000},
907     Doi = {DOI 10.1007/s11517-007-0251-5},
908     Journal = {Med. Biol. Eng. Comput.},
909     Keywords = {infrared thermography; indocyanine green; glycated chitosan; surface temperature; Monte Carlo simulation},
910     Pages = {159-168},
911     Publisher = {SPRINGER HEIDELBERG},
912     Timescited = {0},
913     Title = {Temperature Measurement on Tissue Surface During Laser Irradiation},
914     Volume = {46},
915     Year = {2008},
916     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11517-007-0251-5}}
917    
918     @article{Petrova:2007ad,
919     Abstract = {This paper describes our recent time-resolved spectroscopy studies of the properties of gold particles at high laser excitation levels. In these experiments, an intense pump laser pulse rapidly heats the particle, creating very high lattice temperatures - up to the melting point of bulk gold. These high temperatures can have dramatic effects on the particle and the surroundings. The lattice temperature created is determined by observing the coherently excited the vibrational modes of the particles. The periods of these modes depend on temperature, thus, they act as an internal thermometer. We have used these experiments to provide values for the threshold temperatures for explosive boiling of the solvent surrounding the particles, and laser induced structural transformations in non-spherical particles. The results of these experiments are relevant to the use of metal nanoparticles in photothermal therapy, where laser induced heating is used to selectively kill cells.},
920     Address = {LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY},
921     Author = {Petrova, Hristina and Hu, Min and Hartland, Gregory V.},
922     Date = {2007},
923     Date-Added = {2012-12-17 16:52:01 +0000},
924     Date-Modified = {2013-02-18 17:32:23 +0000},
925     Doi = {DOI 10.1524/zpch.2007.221.3.361},
926     Journal = {Z Phys. Chem.},
927     Keywords = {metal nanoparticles; phonon modes; photothermal properties; laser-induced heating},
928     Pages = {361-376},
929     Publisher = {OLDENBOURG VERLAG},
930     Timescited = {2},
931     Title = {Photothermal Properties of Gold Nanoparticles},
932     Volume = {221},
933     Year = {2007},
934     Bdsk-Url-1 = {http://dx.doi.org/10.1524/zpch.2007.221.3.361}}
935    
936     @article{Jain:2007ux,
937     Abstract = {Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this review, we discuss the SPR-enhanced optical properties of noble metal nanoparticles, with an emphasis on the recent advances in the utility of these plasmonic properties in molecular-specific imaging and sensing, photo-diagnostics, and selective photothermal therapy. The strongly enhanced SPR scattering from Au nanoparticles makes them useful as bright optical tags for molecular-specific biological imaging and detection using simple dark-field optical microscopy. On the other hand, the SPR absorption of the nanoparticles has allowed their use in the selective laser photothermal therapy of cancer. We also discuss the sensitivity of the nanoparticle SPR frequency to the local medium dielectric constant, which has been successfully exploited for the optical sensing of chemical and biological analytes. Plasmon coupling between metal nanoparticle pairs is also discussed, which forms the basis for nanoparticle assembly-based biodiagnostics and the plasmon ruler for dynamic measurement of nanoscale distances in biological systems.},
938     Address = {233 SPRING STREET, NEW YORK, NY 10013 USA},
939     Author = {Jain, Prashant K. and Huang, Xiaohua and El-Sayed, Ivan H. and El-Sayad, Mostafa A.},
940     Date = {SEP 2007},
941     Date-Added = {2012-12-17 16:51:52 +0000},
942     Date-Modified = {2013-02-18 17:25:37 +0000},
943     Doi = {DOI 10.1007/s11468-007-9031-1},
944     Journal = {Plasmonics},
945     Keywords = {surface plasmon resonance (SPR); SPR sensing; Mie scattering; metal nanocrystals for biodiagnostics; photothermal therapy; plasmon coupling},
946     Number = {3},
947     Pages = {107-118},
948     Publisher = {SPRINGER},
949     Timescited = {2},
950     Title = {Review of Some Interesting Surface Plasmon Resonance-Enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems},
951     Volume = {2},
952     Year = {2007},
953     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11468-007-9031-1}}
954    
955     @techreport{Goddard1998,
956     Author = {Kimura, Y. and Cagin, T. and Goddard III, W.A.},
957     Date-Added = {2012-12-05 22:18:01 +0000},
958     Date-Modified = {2012-12-05 22:18:01 +0000},
959     Institution = {California Institute of Technology},
960     Lastchecked = {January 19, 2011},
961     Number = {003},
962     Title = {The Quantum Sutton-Chen Many Body Potential for Properties of fcc Metals},
963     Url = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf},
964     Year = {1998},
965     Bdsk-Url-1 = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf}}
966    
967     @article{Kuang2010,
968     Author = {Shenyu Kuang and J. Daniel Gezelter},
969     Date-Added = {2012-12-05 22:18:01 +0000},
970     Date-Modified = {2012-12-05 22:18:01 +0000},
971     Journal = {J. Chem. Phys.},
972     Keywords = {NIVS, RNEMD, NIVS-RNEMD},
973     Month = {October},
974     Pages = {164101-1 - 164101-9},
975     Title = {A Gentler Approach to RNEMD: Nonisotropic Velocity Scaling for Computing Thermal Conductivity and Shear Viscosity},
976     Volume = {133},
977     Year = {2010}}
978    
979     @article{Kuang2012,
980     Author = {Shenyu Kuang and J. Daniel Gezelter},
981     Date-Added = {2012-12-05 22:18:01 +0000},
982     Date-Modified = {2012-12-05 22:18:01 +0000},
983     Journal = {Mol. Phys.},
984     Keywords = {VSS, RNEMD, VSS-RNEMD},
985     Month = {May},
986     Number = {9-10},
987     Pages = {691-701},
988     Title = {Velocity Shearing and Scaling RNEMD: A Minimally Perturbing Method for Simulating Temperature and Momentum Gradients},
989     Volume = {110},
990     Year = {2012}}
991    
992     @article{doi:10.1080/0026897031000068578,
993     Abstract = { Using equilibrium and non-equilibrium molecular dynamics simulations, we determine the Kapitza resistance (or thermal contact resistance) at a model liquid-solid interface. The Kapitza resistance (or the associated Kapitza length) can reach appreciable values when the liquid does not wet the solid. The analogy with the hydrodynamic slip length is discussed. },
994     Author = {Barrat, Jean-Louis and Chiaruttini, Fran{\c c}ois},
995     Date-Added = {2011-12-13 17:17:05 -0500},
996     Date-Modified = {2011-12-13 17:17:05 -0500},
997     Doi = {10.1080/0026897031000068578},
998     Eprint = {http://tandfprod.literatumonline.com/doi/pdf/10.1080/0026897031000068578},
999     Journal = {Mol. Phys.},
1000     Number = {11},
1001     Pages = {1605-1610},
1002     Title = {Kapitza Resistance at the Liquid--Solid Interface},
1003     Url = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
1004     Volume = {101},
1005     Year = {2003},
1006     Bdsk-Url-1 = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
1007     Bdsk-Url-2 = {http://dx.doi.org/10.1080/0026897031000068578}}
1008    
1009     @article{Medina2011,
1010     Abstract = {Molecular dynamics (MD) simulations are carried out on a system of rigid or flexible water molecules at a series of temperatures between 273 and 368&#xa0;K. Collective transport coefficients, such as shear and bulk viscosities are calculated, and their behavior is systematically investigated as a function of flexibility and temperature. It is found that by including the intramolecular terms in the potential the calculated viscosity values are in overall much better agreement, compared to earlier and recent available experimental data, than those obtained with the rigid SPC/E model. The effect of the intramolecular degrees of freedom on transport properties of liquid water is analyzed and the incorporation of polarizability is discussed for further improvements. To our knowledge the present study constitutes the first compendium of results on viscosities for pure liquid water, including flexible models, that has been assembled.},
1011     Author = {J.S. Medina and R. Prosmiti and P. Villarreal and G. Delgado-Barrio and G. Winter and B. Gonz{\'a}lez and J.V. Alem{\'a}n and C. Collado},
1012     Date-Added = {2011-12-13 17:08:34 -0500},
1013     Date-Modified = {2011-12-13 17:08:49 -0500},
1014     Doi = {10.1016/j.chemphys.2011.07.001},
1015     Issn = {0301-0104},
1016     Journal = {Chemical Physics},
1017     Keywords = {Viscosity calculations},
1018     Number = {1-3},
1019     Pages = {9 - 18},
1020     Title = {Molecular Dynamics Simulations of Rigid and Flexible Water Models: Temperature Dependence of Viscosity},
1021     Url = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
1022     Volume = {388},
1023     Year = {2011},
1024     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
1025     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.chemphys.2011.07.001}}
1026    
1027     @book{WagnerKruse,
1028     Address = {Berlin},
1029     Author = {W. Wagner and A. Kruse},
1030     Date-Added = {2011-12-13 14:57:08 -0500},
1031     Date-Modified = {2011-12-13 14:57:08 -0500},
1032     Publisher = {Springer-Verlag},
1033     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
1034     Year = {1998}}
1035    
1036     @article{garde:PhysRevLett2009,
1037     Author = {Shenogina, Natalia and Godawat, Rahul and Keblinski, Pawel and Garde, Shekhar},
1038     Date-Added = {2011-12-13 12:48:51 -0500},
1039     Date-Modified = {2011-12-13 12:48:51 -0500},
1040     Doi = {10.1103/PhysRevLett.102.156101},
1041     Journal = {Phys. Rev. Lett.},
1042     Month = {Apr},
1043     Number = {15},
1044     Numpages = {4},
1045     Pages = {156101},
1046     Publisher = {American Physical Society},
1047     Title = {How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces},
1048     Volume = {102},
1049     Year = {2009},
1050     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.102.156101}}
1051    
1052     @article{garde:nl2005,
1053     Abstract = { Systems with nanoscopic features contain a high density of interfaces. Thermal transport in such systems can be governed by the resistance to heat transfer, the Kapitza resistance (RK), at the interface. Although soft interfaces, such as those between immiscible liquids or between a biomolecule and solvent, are ubiquitous, few studies of thermal transport at such interfaces have been reported. Here we characterize the interfacial conductance, 1/RK, of soft interfaces as a function of molecular architecture, chemistry, and the strength of cross-interfacial intermolecular interactions through detailed molecular dynamics simulations. The conductance of various interfaces studied here, for example, water−organic liquid, water−surfactant, surfactant−organic liquid, is relatively high (in the range of 65−370 MW/m2 K) compared to that for solid−liquid interfaces (∼10 MW/m2 K). Interestingly, the dependence of interfacial conductance on the chemistry and molecular architecture cannot be explained solely in terms of either bulk property mismatch or the strength of intermolecular attraction between the two phases. The observed trends can be attributed to a combination of strong cross-interface intermolecular interactions and good thermal coupling via soft vibration modes present at liquid−liquid interfaces. },
1054     Annote = {PMID: 16277458},
1055     Author = {Patel, Harshit A. and Garde, Shekhar and Keblinski, Pawel},
1056     Date-Added = {2011-12-13 12:48:51 -0500},
1057     Date-Modified = {2013-02-18 18:00:24 +0000},
1058     Doi = {10.1021/nl051526q},
1059     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/nl051526q},
1060     Journal = {Nano Lett.},
1061     Number = {11},
1062     Pages = {2225-2231},
1063     Title = {Thermal Resistance of Nanoscopic Liquid−Liquid Interfaces:  Dependence on Chemistry and Molecular Architecture},
1064     Url = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
1065     Volume = {5},
1066     Year = {2005},
1067     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
1068     Bdsk-Url-2 = {http://dx.doi.org/10.1021/nl051526q}}
1069    
1070     @article{melchionna93,
1071     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
1072     Date-Added = {2011-12-12 17:52:15 -0500},
1073     Date-Modified = {2011-12-12 17:52:15 -0500},
1074     Journal = {Mol. Phys.},
1075     Pages = {533-544},
1076     Title = {Hoover {\sc NPT} Dynamics for Systems Varying in Shape and Size},
1077     Volume = 78,
1078     Year = 1993}
1079    
1080     @article{TraPPE-UA.thiols,
1081     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
1082     Date-Added = {2011-12-07 15:06:12 -0500},
1083     Date-Modified = {2011-12-07 15:06:12 -0500},
1084     Doi = {10.1021/jp0549125},
1085     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
1086     Journal = {J. Phys. Chem. B},
1087     Number = {50},
1088     Pages = {24100-24107},
1089     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
1090     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
1091     Volume = {109},
1092     Year = {2005},
1093     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
1094     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
1095    
1096     @article{TraPPE-UA.alkylbenzenes,
1097     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
1098     Date-Added = {2011-12-07 15:06:12 -0500},
1099     Date-Modified = {2011-12-07 15:06:12 -0500},
1100     Doi = {10.1021/jp001044x},
1101     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
1102     Journal = {J. Phys. Chem. B},
1103     Number = {33},
1104     Pages = {8008-8016},
1105     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
1106     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
1107     Volume = {104},
1108     Year = {2000},
1109     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
1110     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
1111    
1112     @article{TraPPE-UA.alkanes,
1113     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
1114     Date-Added = {2011-12-07 15:06:12 -0500},
1115     Date-Modified = {2011-12-07 15:06:12 -0500},
1116     Doi = {10.1021/jp972543+},
1117     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
1118     Journal = {J. Phys. Chem. B},
1119     Number = {14},
1120     Pages = {2569-2577},
1121     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
1122     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
1123     Volume = {102},
1124     Year = {1998},
1125     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
1126     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+},
1127     Bdsk-Url-3 = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B}}
1128    
1129     @article{ISI:000167766600035,
1130     Abstract = {Molecular dynamics simulations are used to
1131     investigate the separation of water films adjacent
1132     to a hot metal surface. The simulations clearly show
1133     that the water layers nearest the surface overheat
1134     and undergo explosive boiling. For thick films, the
1135     expansion of the vaporized molecules near the
1136     surface forces the outer water layers to move away
1137     from the surface. These results are of interest for
1138     mass spectrometry of biological molecules, steam
1139     cleaning of surfaces, and medical procedures.},
1140     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1141     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1142     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1143     Date-Added = {2011-12-07 15:02:32 -0500},
1144     Date-Modified = {2011-12-07 15:02:32 -0500},
1145     Doc-Delivery-Number = {416ED},
1146     Issn = {1089-5639},
1147     Journal = {J. Phys. Chem. A},
1148     Journal-Iso = {J. Phys. Chem. A},
1149     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1150     Language = {English},
1151     Month = {MAR 29},
1152     Number = {12},
1153     Number-Of-Cited-References = {65},
1154     Pages = {2748-2755},
1155     Publisher = {AMER CHEMICAL SOC},
1156     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1157     Times-Cited = {66},
1158     Title = {Explosive Boiling of Water Films Adjacent to Heated Surfaces: A Microscopic Description},
1159     Type = {Article},
1160     Unique-Id = {ISI:000167766600035},
1161     Volume = {105},
1162     Year = {2001}}
1163    
1164     @article{Chen90,
1165     Author = {A.~P. Sutton and J. Chen},
1166     Date-Added = {2011-12-07 15:01:59 -0500},
1167     Date-Modified = {2013-02-18 18:01:16 +0000},
1168     Journal = {Phil. Mag. Lett.},
1169     Pages = {139-146},
1170     Title = {Long-Range Finnis Sinclair Potentials},
1171     Volume = 61,
1172     Year = {1990}}
1173    
1174     @article{PhysRevB.59.3527,
1175     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
1176     Date-Added = {2011-12-07 15:01:36 -0500},
1177     Date-Modified = {2013-02-18 18:00:57 +0000},
1178     Doi = {10.1103/PhysRevB.59.3527},
1179     Journal = {Phys. Rev. B},
1180     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
1181     Month = {Feb},
1182     Number = {5},
1183     Numpages = {6},
1184     Pages = {3527-3533},
1185     Publisher = {American Physical Society},
1186     Title = {Molecular-Dynamics Simulations of Glass Formation and Crystallization in Binary Liquid Metals: {C}u-{A}g and {C}u-{N}i},
1187     Volume = {59},
1188     Year = {1999},
1189     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
1190    
1191     @article{Bedrov:2000,
1192     Abstract = {We have applied a new nonequilibrium molecular
1193     dynamics (NEMD) method {[}F. Muller-Plathe,
1194     J. Chem. Phys. 106, 6082 (1997)] previously applied
1195     to monatomic Lennard-Jones fluids in the
1196     determination of the thermal conductivity of
1197     molecular fluids. The method was modified in order
1198     to be applicable to systems with holonomic
1199     constraints. Because the method involves imposing a
1200     known heat flux it is particularly attractive for
1201     systems involving long-range and many-body
1202     interactions where calculation of the microscopic
1203     heat flux is difficult. The predicted thermal
1204     conductivities of liquid n-butane and water using
1205     the imposed-flux NEMD method were found to be in a
1206     good agreement with previous simulations and
1207     experiment. (C) 2000 American Institute of
1208     Physics. {[}S0021-9606(00)50841-1].},
1209     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1210     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1211     Author = {Bedrov, D and Smith, GD},
1212     Date-Added = {2011-12-07 15:00:27 -0500},
1213     Date-Modified = {2011-12-07 15:00:27 -0500},
1214     Doc-Delivery-Number = {369BF},
1215     Issn = {0021-9606},
1216     Journal = {J. Chem. Phys.},
1217     Journal-Iso = {J. Chem. Phys.},
1218     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1219     Language = {English},
1220     Month = {NOV 8},
1221     Number = {18},
1222     Number-Of-Cited-References = {26},
1223     Pages = {8080-8084},
1224     Publisher = {AMER INST PHYSICS},
1225     Read = {1},
1226     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1227     Times-Cited = {23},
1228     Title = {Thermal Conductivity of Molecular Fluids from Molecular Dynamics Simulations: Application of a New Imposed-Flux Method},
1229     Type = {Article},
1230     Unique-Id = {ISI:000090151400044},
1231     Volume = {113},
1232     Year = {2000}}
1233    
1234     @article{10.1063/1.3330544,
1235     Author = {Miguel Angel Gonz{\'a}lez and Jos{\'e} L. F. Abascal},
1236     Coden = {JCPSA6},
1237     Date-Added = {2011-12-07 14:59:20 -0500},
1238     Date-Modified = {2011-12-15 13:10:11 -0500},
1239     Doi = {DOI:10.1063/1.3330544},
1240     Eissn = {10897690},
1241     Issn = {00219606},
1242     Journal = {J. Chem. Phys.},
1243     Keywords = {shear strength; viscosity;},
1244     Number = {9},
1245     Pages = {096101},
1246     Publisher = {AIP},
1247     Title = {The Shear Viscosity of Rigid Water Models},
1248     Url = {http://dx.doi.org/doi/10.1063/1.3330544},
1249     Volume = {132},
1250     Year = {2010},
1251     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3330544},
1252     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3330544}}
1253    
1254     @article{doi:10.1021/jp048434u,
1255     Abstract = { The different possible proton-ordered structures of ice Ih for an orthorombic unit cell with 8 water molecules were derived. The number of unique structures was found to be 16. The crystallographic coordinates of these are reported. The energetics of the different polymorphs were investigated by quantum-mechanical density-functional theory calculations and for comparison by molecular-mechanics analytical potential models. The polymorphs were found to be close in energy, i.e., within approximately 0.25 kcal/mol H2O, on the basis of the quantum-chemical DFT methods. At 277 K, the different energy levels are about evenly populated, but at a lower temperature, a transition to an ordered form is expected. This form was found to agree with the ice phase XI. The difference in lattice energies among the polymorphs was rationalized in terms of structural characteristics. The most important parameters to determine the lattice energies were found to be the distributions of water dimer H-bonded pair conformations, in an intricate manner. },
1256     Author = {Hirsch, Tomas K. and Ojam{\"a}e, Lars},
1257     Date-Added = {2011-12-07 14:38:30 -0500},
1258     Date-Modified = {2011-12-07 14:38:30 -0500},
1259     Doi = {10.1021/jp048434u},
1260     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048434u},
1261     Journal = {J. Phys. Chem. B},
1262     Number = {40},
1263     Pages = {15856-15864},
1264     Title = {Quantum-Chemical and Force-Field Investigations of Ice Ih:  Computation of Proton-Ordered Structures and Prediction of Their Lattice Energies},
1265     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1266     Volume = {108},
1267     Year = {2004},
1268     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1269     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048434u}}
1270    
1271     @article{Meineke:2005gd,
1272     Abstract = {OOPSE is a new molecular dynamics simulation program
1273     that is capable of efficiently integrating equations
1274     of motion for atom types with orientational degrees
1275     of freedom (e.g. #sticky# atoms and point
1276     dipoles). Transition metals can also be simulated
1277     using the embedded atom method (EAM) potential
1278     included in the code. Parallel simulations are
1279     carried out using the force-based decomposition
1280     method. Simulations are specified using a very
1281     simple C-based meta-data language. A number of
1282     advanced integrators are included, and the basic
1283     integrator for orientational dynamics provides
1284     substantial improvements over older quaternion-based
1285     schemes.},
1286     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1287     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1288     Date-Added = {2011-12-07 13:33:04 -0500},
1289     Date-Modified = {2011-12-07 13:33:04 -0500},
1290     Doi = {DOI 10.1002/jcc.20161},
1291     Isi = {000226558200006},
1292     Isi-Recid = {142688207},
1293     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1294     Journal = {J. Comput. Chem.},
1295     Keywords = {OOPSE; molecular dynamics},
1296     Month = feb,
1297     Number = {3},
1298     Pages = {252-271},
1299     Publisher = {JOHN WILEY \& SONS INC},
1300     Times-Cited = {9},
1301     Title = {OOPSE: An Object-Oriented Parallel Simulation Engine for Molecular Dynamics},
1302     Volume = {26},
1303     Year = {2005},
1304     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1305     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1306    
1307     @article{hoover85,
1308     Author = {W.~G. Hoover},
1309     Date-Added = {2011-12-06 14:23:41 -0500},
1310     Date-Modified = {2011-12-06 14:23:41 -0500},
1311     Journal = {Phys. Rev. A},
1312     Pages = 1695,
1313     Title = {Canonical Dynamics: Equilibrium Phase-Space Distributions},
1314     Volume = 31,
1315     Year = 1985}
1316    
1317     @article{Maginn:2010,
1318     Abstract = {The reverse nonequilibrium molecular dynamics
1319     (RNEMD) method calculates the shear viscosity of a
1320     fluid by imposing a nonphysical exchange of momentum
1321     and measuring the resulting shear velocity
1322     gradient. In this study we investigate the range of
1323     momentum flux values over which RNEMD yields usable
1324     (linear) velocity gradients. We find that nonlinear
1325     velocity profiles result primarily from gradients in
1326     fluid temperature and density. The temperature
1327     gradient results from conversion of heat into bulk
1328     kinetic energy, which is transformed back into heat
1329     elsewhere via viscous heating. An expression is
1330     derived to predict the temperature profile resulting
1331     from a specified momentum flux for a given fluid and
1332     simulation cell. Although primarily bounded above,
1333     we also describe milder low-flux limitations. RNEMD
1334     results for a Lennard-Jones fluid agree with
1335     equilibrium molecular dynamics and conventional
1336     nonequilibrium molecular dynamics calculations at
1337     low shear, but RNEMD underpredicts viscosity
1338     relative to conventional NEMD at high shear.},
1339     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1340     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1341     Article-Number = {014103},
1342     Author = {Tenney, Craig M. and Maginn, Edward J.},
1343     Author-Email = {ed@nd.edu},
1344     Date-Added = {2011-12-05 18:29:08 -0500},
1345     Date-Modified = {2011-12-05 18:29:08 -0500},
1346     Doc-Delivery-Number = {542DQ},
1347     Doi = {10.1063/1.3276454},
1348     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1349     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1350     Issn = {0021-9606},
1351     Journal = {J. Chem. Phys.},
1352     Journal-Iso = {J. Chem. Phys.},
1353     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1354     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1355     Language = {English},
1356     Month = {JAN 7},
1357     Number = {1},
1358     Number-Of-Cited-References = {20},
1359     Pages = {014103},
1360     Publisher = {AMER INST PHYSICS},
1361     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1362     Times-Cited = {0},
1363     Title = {Limitations and Recommendations for the Calculation of Shear Viscosity using Reverse Nonequilibrium Molecular Dynamics},
1364     Type = {Article},
1365     Unique-Id = {ISI:000273472300004},
1366     Volume = {132},
1367     Year = {2010},
1368     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1369    
1370     @article{ISI:000080382700030,
1371     Abstract = {A nonequilibrium method for calculating the shear
1372     viscosity is presented. It reverses the
1373     cause-and-effect picture customarily used in
1374     nonequilibrium molecular dynamics: the effect, the
1375     momentum flux or stress, is imposed, whereas the
1376     cause, the velocity gradient or shear rate, is
1377     obtained from the simulation. It differs from other
1378     Norton-ensemble methods by the way in which the
1379     steady-state momentum flux is maintained. This
1380     method involves a simple exchange of particle
1381     momenta, which is easy to implement. Moreover, it
1382     can be made to conserve the total energy as well as
1383     the total linear momentum, so no coupling to an
1384     external temperature bath is needed. The resulting
1385     raw data, the velocity profile, is a robust and
1386     rapidly converging property. The method is tested on
1387     the Lennard-Jones fluid near its triple point. It
1388     yields a viscosity of 3.2-3.3, in Lennard-Jones
1389     reduced units, in agreement with literature
1390     results. {[}S1063-651X(99)03105-0].},
1391     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1392     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1393     Author = {M\"{u}ller-Plathe, F},
1394     Date-Added = {2011-12-05 18:18:37 -0500},
1395     Date-Modified = {2011-12-05 18:18:37 -0500},
1396     Doc-Delivery-Number = {197TX},
1397     Issn = {1063-651X},
1398     Journal = {Phys. Rev. E},
1399     Journal-Iso = {Phys. Rev. E},
1400     Language = {English},
1401     Month = {MAY},
1402     Number = {5, Part A},
1403     Number-Of-Cited-References = {17},
1404     Pages = {4894-4898},
1405     Publisher = {AMERICAN PHYSICAL SOC},
1406     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1407     Times-Cited = {57},
1408     Title = {Reversing the Perturbation in Nonequilibrium Molecular Dynamics: An Easy Way to Calculate the Shear Viscosity of Fluids},
1409     Type = {Article},
1410     Unique-Id = {ISI:000080382700030},
1411     Volume = {59},
1412     Year = {1999}}
1413    
1414     @article{MullerPlathe:1997xw,
1415     Abstract = {A nonequilibrium molecular dynamics method for
1416     calculating the thermal conductivity is
1417     presented. It reverses the usual cause and effect
1418     picture. The ''effect,'' the heat flux, is imposed
1419     on the system and the ''cause,'' the temperature
1420     gradient is obtained from the simulation. Besides
1421     being very simple to implement, the scheme offers
1422     several advantages such as compatibility with
1423     periodic boundary conditions, conservation of total
1424     energy and total linear momentum, and the sampling
1425     of a rapidly converging quantity (temperature
1426     gradient) rather than a slowly converging one (heat
1427     flux). The scheme is tested on the Lennard-Jones
1428     fluid. (C) 1997 American Institute of Physics.},
1429     Address = {WOODBURY},
1430     Author = {M\"{u}ller-Plathe, F.},
1431     Cited-Reference-Count = {13},
1432     Date = {APR 8},
1433     Date-Added = {2011-12-05 18:18:37 -0500},
1434     Date-Modified = {2011-12-05 18:18:37 -0500},
1435     Document-Type = {Article},
1436     Isi = {ISI:A1997WR62000032},
1437     Isi-Document-Delivery-Number = {WR620},
1438     Iso-Source-Abbreviation = {J. Chem. Phys.},
1439     Issn = {0021-9606},
1440     Journal = {J. Chem. Phys.},
1441     Language = {English},
1442     Month = {Apr},
1443     Number = {14},
1444     Page-Count = {4},
1445     Pages = {6082--6085},
1446     Publication-Type = {J},
1447     Publisher = {AMER INST PHYSICS},
1448     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1449     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1450     Source = {J CHEM PHYS},
1451     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1452     Times-Cited = {106},
1453     Title = {A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity},
1454     Volume = {106},
1455     Year = {1997}}
1456    
1457     @article{priezjev:204704,
1458     Author = {Nikolai V. Priezjev},
1459     Date-Added = {2011-11-28 14:39:18 -0500},
1460     Date-Modified = {2011-11-28 14:39:18 -0500},
1461     Doi = {10.1063/1.3663384},
1462     Eid = {204704},
1463     Journal = {J. Chem. Phys.},
1464     Keywords = {channel flow; diffusion; flow simulation; hydrodynamics; molecular dynamics method; pattern formation; random processes; shear flow; slip flow; wetting},
1465     Number = {20},
1466     Numpages = {9},
1467     Pages = {204704},
1468     Publisher = {AIP},
1469     Title = {Molecular Diffusion and Slip Boundary Conditions at Smooth Surfaces with Periodic and Random Nanoscale Textures},
1470     Url = {http://link.aip.org/link/?JCP/135/204704/1},
1471     Volume = {135},
1472     Year = {2011},
1473     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/135/204704/1},
1474     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3663384}}
1475    
1476     @article{bryk:10258,
1477     Author = {Taras Bryk and A. D. J. Haymet},
1478     Date-Added = {2011-11-22 17:06:35 -0500},
1479     Date-Modified = {2011-11-22 17:06:35 -0500},
1480     Doi = {10.1063/1.1519538},
1481     Journal = {J. Chem. Phys.},
1482     Keywords = {liquid structure; molecular dynamics method; water; ice; interface structure},
1483     Number = {22},
1484     Pages = {10258-10268},
1485     Publisher = {AIP},
1486     Title = {Ice 1h/Water Interface of the SPC/E Model: Molecular Dynamics Simulations of the Equilibrium Basal and Prism Interfaces},
1487     Url = {http://link.aip.org/link/?JCP/117/10258/1},
1488     Volume = {117},
1489     Year = {2002},
1490     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/117/10258/1},
1491     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1519538}}
1492    
1493     @misc{openmd,
1494     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
1495     Date-Added = {2011-11-18 15:32:23 -0500},
1496     Date-Modified = {2011-11-18 15:32:23 -0500},
1497     Howpublished = {Available at {\tt http://openmd.net}},
1498     Title = {{OpenMD, an Open Source Engine for Molecular Dynamics}}}
1499    
1500     @article{kuang:AuThl,
1501     Author = {Kuang, Shenyu and Gezelter, J. Daniel},
1502     Date-Added = {2011-11-18 13:03:06 -0500},
1503     Date-Modified = {2011-12-05 17:58:01 -0500},
1504     Doi = {10.1021/jp2073478},
1505     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp2073478},
1506     Journal = {J. Phys. Chem. C},
1507     Number = {45},
1508     Pages = {22475-22483},
1509     Title = {Simulating Interfacial Thermal Conductance at Metal-Solvent Interfaces: The Role of Chemical Capping Agents},
1510     Url = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1511     Volume = {115},
1512     Year = {2011},
1513     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1514     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp2073478}}
1515    
1516     @article{10.1063/1.2772547,
1517     Author = {Hideo Kaburaki and Ju Li and Sidney Yip and Hajime Kimizuka},
1518     Coden = {JAPIAU},
1519     Date-Added = {2011-11-01 16:46:32 -0400},
1520     Date-Modified = {2011-11-01 16:46:32 -0400},
1521     Doi = {DOI:10.1063/1.2772547},
1522     Eissn = {10897550},
1523     Issn = {00218979},
1524     Keywords = {argon; Lennard-Jones potential; phonons; thermal conductivity;},
1525     Number = {4},
1526     Pages = {043514},
1527     Publisher = {AIP},
1528     Title = {Dynamical Thermal Conductivity of Argon Crystal},
1529     Url = {http://dx.doi.org/10.1063/1.2772547},
1530     Volume = {102},
1531     Year = {2007},
1532     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2772547}}
1533    
1534     @article{PhysRevLett.82.4671,
1535     Author = {Barrat, Jean-Louis and Bocquet, Lyd\'eric},
1536     Date-Added = {2011-11-01 16:44:29 -0400},
1537     Date-Modified = {2011-11-01 16:44:29 -0400},
1538     Doi = {10.1103/PhysRevLett.82.4671},
1539     Issue = {23},
1540     Journal = {Phys. Rev. Lett.},
1541     Month = {Jun},
1542     Pages = {4671--4674},
1543     Publisher = {American Physical Society},
1544     Title = {Large Slip Effect at a Nonwetting Fluid-Solid Interface},
1545     Url = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1546     Volume = {82},
1547     Year = {1999},
1548     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1549     Bdsk-Url-2 = {http://dx.doi.org/10.1103/PhysRevLett.82.4671}}
1550    
1551     @article{10.1063/1.1610442,
1552     Author = {J. R. Schmidt and J. L. Skinner},
1553     Coden = {JCPSA6},
1554     Date-Added = {2011-10-13 16:28:43 -0400},
1555     Date-Modified = {2011-12-15 13:11:53 -0500},
1556     Doi = {DOI:10.1063/1.1610442},
1557     Eissn = {10897690},
1558     Issn = {00219606},
1559     Journal = {J. Chem. Phys.},
1560     Keywords = {hydrodynamics; Brownian motion; molecular dynamics method; diffusion;},
1561     Number = {15},
1562     Pages = {8062-8068},
1563     Publisher = {AIP},
1564     Title = {Hydrodynamic Boundary Conditions, the Stokes?Einstein Law, and Long-Time Tails in the Brownian Limit},
1565     Url = {http://dx.doi.org/10.1063/1.1610442},
1566     Volume = {119},
1567     Year = {2003},
1568     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1610442}}
1569    
1570     @article{10.1063/1.3274802,
1571     Author = {Ting Chen and Berend Smit and Alexis T. Bell},
1572     Coden = {JCPSA6},
1573     Doi = {DOI:10.1063/1.3274802},
1574     Eissn = {10897690},
1575     Issn = {00219606},
1576     Keywords = {fluctuations; molecular dynamics method; viscosity;},
1577     Number = {24},
1578     Pages = {246101},
1579     Publisher = {AIP},
1580     Title = {Are Pressure Fluctuation-Based Equilibrium Methods Really Worse than Nonequilibrium Methods for Calculating Viscosities?},
1581     Url = {http://dx.doi.org/doi/10.1063/1.3274802},
1582     Volume = {131},
1583     Year = {2009},
1584     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3274802},
1585     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3274802}}

Properties

Name Value
svn:executable *