ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nonperiodicVSS/nonperiodicVSS.bib
Revision: 4063
Committed: Thu Mar 13 15:44:27 2014 UTC (10 years, 3 months ago) by gezelter
File size: 101068 byte(s)
Log Message:
Significant edits

File Contents

# User Rev Content
1 kstocke1 4059 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 gezelter 4063 %% Created for Dan Gezelter at 2014-03-13 11:05:16 -0400
6 kstocke1 4059
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11     @string{acp = {Adv. Chem. Phys.}}
12    
13     @string{bj = {Biophys. J.}}
14    
15     @string{ccp5 = {CCP5 Information Quarterly}}
16    
17     @string{cp = {Chem. Phys.}}
18    
19     @string{cpl = {Chem. Phys. Lett.}}
20    
21     @string{ea = {Electrochim. Acta}}
22    
23     @string{jacs = {J. Am. Chem. Soc.}}
24    
25     @string{jbc = {J. Biol. Chem.}}
26    
27     @string{jcat = {J. Catalysis}}
28    
29     @string{jcc = {J. Comp. Chem.}}
30    
31     @string{jcop = {J. Comp. Phys.}}
32    
33     @string{jcp = {J. Chem. Phys.}}
34    
35     @string{jctc = {J. Chem. Theory Comp.}}
36    
37     @string{jmc = {J. Med. Chem.}}
38    
39     @string{jml = {J. Mol. Liq.}}
40    
41     @string{jmm = {J. Mol. Model.}}
42    
43     @string{jpc = {J. Phys. Chem.}}
44    
45     @string{jpca = {J. Phys. Chem. A}}
46    
47     @string{jpcb = {J. Phys. Chem. B}}
48    
49     @string{jpcc = {J. Phys. Chem. C}}
50    
51     @string{jpcl = {J. Phys. Chem. Lett.}}
52    
53     @string{mp = {Mol. Phys.}}
54    
55     @string{pams = {Proc. Am. Math Soc.}}
56    
57     @string{pccp = {Phys. Chem. Chem. Phys.}}
58    
59     @string{pnas = {Proc. Natl. Acad. Sci. USA}}
60    
61     @string{pr = {Phys. Rev.}}
62    
63     @string{pra = {Phys. Rev. A}}
64    
65     @string{prb = {Phys. Rev. B}}
66    
67     @string{pre = {Phys. Rev. E}}
68    
69     @string{prl = {Phys. Rev. Lett.}}
70    
71     @string{rmp = {Rev. Mod. Phys.}}
72    
73     @string{ss = {Surf. Sci.}}
74    
75    
76 gezelter 4063 @article{Berendsen87,
77     Author = {Berendsen, H. J. C. and Grigera, J. R. and Straatsma, T. P.},
78     Date-Added = {2014-03-13 15:02:07 +0000},
79     Date-Modified = {2014-03-13 15:02:07 +0000},
80     Doi = {10.1021/j100308a038},
81     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/j100308a038},
82     Journal = {The Journal of Physical Chemistry},
83     Number = {24},
84     Pages = {6269-6271},
85     Title = {The missing term in effective pair potentials},
86     Url = {http://pubs.acs.org/doi/abs/10.1021/j100308a038},
87     Volume = {91},
88     Year = {1987},
89     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/j100308a038},
90     Bdsk-Url-2 = {http://dx.doi.org/10.1021/j100308a038}}
91    
92     @article{Stocker:2013cl,
93     Author = {Stocker, Kelsey M. and Gezelter, J. Daniel},
94     Date-Added = {2014-03-13 14:20:18 +0000},
95     Date-Modified = {2014-03-13 14:21:57 +0000},
96     Doi = {10.1021/jp312734f},
97     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp312734f},
98     Journal = {The Journal of Physical Chemistry C},
99     Number = {15},
100     Pages = {7605-7612},
101     Title = {Simulations of Heat Conduction at Thiolate-Capped Gold Surfaces: The Role of Chain Length and Solvent Penetration},
102     Url = {http://pubs.acs.org/doi/abs/10.1021/jp312734f},
103     Volume = {117},
104     Year = {2013},
105     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp312734f},
106     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp312734f}}
107    
108     @article{Picalek:2009rz,
109     Abstract = {Temperature dependence of viscosity of butyl-3-methylimidazolium
110     hexafluorophosphate is investigated by non-equilibrium molecular
111     dynamics simulations with cosine-modulated force in the temperature
112     range from 360 to 480K. It is shown that this method is able to
113     correctly predict the shear viscosity. The simulation setting and
114     choice of the force field are discussed in detail. The all-atom force
115     field exhibits a bad convergence and the shear viscosity is
116     overestimated, while the simple united atom model predicts the kinetics
117     very well. The results are compared with the equilibrium molecular
118     dynamics simulations. The relationship between the diffusion
119     coefficient and viscosity is examined by means of the hydrodynamic
120     radii calculated from the Stokes-Einstein equation and the solvation
121     properties are discussed.},
122     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
123     Affiliation = {Kolafa, J (Reprint Author), Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic. {[}Picalek, Jan; Kolafa, Jiri] Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic.},
124     Author = {Picalek, Jan and Kolafa, Jiri},
125     Author-Email = {jiri.kolafa@vscht.cz},
126     Date-Added = {2014-03-13 14:11:53 +0000},
127     Date-Modified = {2014-03-13 14:12:08 +0000},
128     Doc-Delivery-Number = {448FD},
129     Doi = {10.1080/08927020802680703},
130     Funding-Acknowledgement = {Czech Science Foundation {[}203/07/1006]; Czech Ministry of Education {[}LC512]},
131     Funding-Text = {We gratefully acknowledge a support from the Czech Science Foundation (project 203/07/1006) and the computing facilities from the Czech Ministry of Education (Center for Biomolecules and Complex Molecular Systems, project LC512).},
132     Issn = {0892-7022},
133     Journal = {Mol. Simul.},
134     Journal-Iso = {Mol. Simul.},
135     Keywords = {room temperature ionic liquids; viscosity; non-equilibrium molecular dynamics; solvation; imidazolium},
136     Keywords-Plus = {1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICOCHEMICAL PROPERTIES; COMPUTER-SIMULATION; PHYSICAL-PROPERTIES; IMIDAZOLIUM CATION; FORCE-FIELD; AB-INITIO; TEMPERATURE; CHLORIDE; CONDUCTIVITY},
137     Language = {English},
138     Number = {8},
139     Number-Of-Cited-References = {50},
140     Pages = {685-690},
141     Publisher = {TAYLOR \& FRANCIS LTD},
142     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
143     Times-Cited = {2},
144     Title = {Shear viscosity of ionic liquids from non-equilibrium molecular dynamics simulation},
145     Type = {Article},
146     Unique-Id = {ISI:000266247600008},
147     Volume = {35},
148     Year = {2009},
149     Bdsk-Url-1 = {http://dx.doi.org/10.1080/08927020802680703%7D}}
150    
151     @article{Backer:2005sf,
152     Author = {J. A. Backer and C. P. Lowe and H. C. J. Hoefsloot and P. D. Iedema},
153     Date-Added = {2014-03-13 14:11:38 +0000},
154     Date-Modified = {2014-03-13 14:12:08 +0000},
155     Doi = {10.1063/1.1883163},
156     Eid = {154503},
157     Journal = {J. Chem. Phys.},
158     Keywords = {Poiseuille flow; flow simulation; Lennard-Jones potential; viscosity; boundary layers; computational fluid dynamics},
159     Number = {15},
160     Numpages = {6},
161     Pages = {154503},
162     Publisher = {AIP},
163     Title = {Poiseuille flow to measure the viscosity of particle model fluids},
164     Url = {http://link.aip.org/link/?JCP/122/154503/1},
165     Volume = {122},
166     Year = {2005},
167     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/122/154503/1},
168     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1883163}}
169    
170     @article{Vasquez:2004ty,
171     Abstract = {A method for fast calculation of viscosity from molecular dynamics simulation is revisited. The method consists of using a steady-state periodic perturbation. A methodology to choose the amplitude of the external perturbation, which is one of the major practical issues in the original technique of Gosling et al. {$[$}Mol. Phys. 26: 1475 (1973){$]$} is proposed. The amplitude of the perturbation required for fast caculations and the viscosity values for wide ranges of temperature and density of the Lennard-Jones (LJ) model fluid are reported. The viscosity results are in agreement with recent LJ viscosity calculations. Additionally, the simulations demonstrate that the proposed approach is suitable to efficiently generate viscosity data of good quality.},
172     Author = {Vasquez, V. R. and Macedo, E. A. and Zabaloy, M. S.},
173     Date = {2004/11/02/},
174     Date-Added = {2014-03-13 14:11:31 +0000},
175     Date-Modified = {2014-03-13 14:12:08 +0000},
176     Day = {02},
177     Journal = {Int. J. Thermophys.},
178     M3 = {10.1007/s10765-004-7736-3},
179     Month = {11},
180     Number = {6},
181     Pages = {1799--1818},
182     Title = {Lennard-Jones Viscosities in Wide Ranges of Temperature and Density: Fast Calculations Using a Steady--State Periodic Perturbation Method},
183     Ty = {JOUR},
184     Url = {http://dx.doi.org/10.1007/s10765-004-7736-3},
185     Volume = {25},
186     Year = {2004},
187     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-004-7736-3}}
188    
189     @article{Hess:2002nr,
190     Author = {Berk Hess},
191     Date-Added = {2014-03-13 14:11:23 +0000},
192     Date-Modified = {2014-03-13 14:12:08 +0000},
193     Doi = {10.1063/1.1421362},
194     Journal = {J. Chem. Phys.},
195     Keywords = {viscosity; molecular dynamics method; liquid theory; shear flow},
196     Number = {1},
197     Pages = {209-217},
198     Publisher = {AIP},
199     Title = {Determining the shear viscosity of model liquids from molecular dynamics simulations},
200     Url = {http://link.aip.org/link/?JCP/116/209/1},
201     Volume = {116},
202     Year = {2002},
203     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/116/209/1},
204     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1421362}}
205    
206     @article{Vogelsang:1988qv,
207     Address = {ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE},
208     Affiliation = {VOGELSANG, R (Reprint Author), RUHR UNIV BOCHUM,UNIV STR 150,D-4630 BOCHUM,FED REP GER. UNIV DUISBURG,THERMODYNAM,D-4100 DUISBURG,FED REP GER.},
209     Author = {Vogelsang, R and Hoheisel, G and Luckas, M},
210     Date-Added = {2014-03-13 14:11:16 +0000},
211     Date-Modified = {2014-03-13 14:12:08 +0000},
212     Doc-Delivery-Number = {Q2053},
213     Issn = {0026-8976},
214     Journal = {Mol. Phys.},
215     Journal-Iso = {Mol. Phys.},
216     Language = {English},
217     Month = {AUG 20},
218     Number = {6},
219     Number-Of-Cited-References = {14},
220     Pages = {1203-1213},
221     Publisher = {TAYLOR \& FRANCIS LTD},
222     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
223     Times-Cited = {12},
224     Title = {SHEAR VISCOSITY AND THERMAL-CONDUCTIVITY OF THE LENNARD-JONES LIQUID COMPUTED USING MOLECULAR-DYNAMICS AND PREDICTED BY A MEMORY FUNCTION MODEL FOR A LARGE NUMBER OF STATES},
225     Type = {Article},
226     Unique-Id = {ISI:A1988Q205300014},
227     Volume = {64},
228     Year = {1988}}
229    
230 kstocke1 4059 @article{Romer2012,
231     Author = {R{\"o}mer, Frank and Lervik, Anders and Bresme, Fernando},
232     Date-Added = {2014-01-08 20:51:36 +0000},
233     Date-Modified = {2014-01-08 20:53:28 +0000},
234     Journal = {J. Chem. Phys.},
235     Pages = {074503-1 - 8},
236     Title = {Nonequilibrium Molecular Dynamics Simulations of the Thermal Conductivity of Water: A Systematic Investigation of the SPC/E and TIP4P/2005 Models},
237     Volume = {137},
238     Year = {2012}}
239    
240     @article{Zhang2005,
241     Author = {Zhang, Meimei and Lussetti, Enrico and de Souza, Lu{\'\i}s and M\"{u}ller-Plathe, Florian},
242     Date-Added = {2014-01-08 20:49:09 +0000},
243     Date-Modified = {2014-01-08 20:51:28 +0000},
244     Journal = {J. Phys. Chem. B},
245     Pages = {15060-15067},
246     Title = {Thermal Conductivities of Molecular Liquids by Reverse Nonequilibrium Molecular Dynamics},
247     Volume = {109},
248     Year = {2005}}
249    
250     @article{Vardeman2011,
251     Author = {Charles F. Vardeman and Kelsey M. Stocker and J. Daniel Gezelter},
252     Date-Added = {2013-09-05 23:48:02 +0000},
253     Date-Modified = {2013-09-05 23:48:02 +0000},
254     Journal = {J. Chem. Theory Comput.},
255     Keywords = {Langevin Hull},
256     Pages = {834-842},
257     Title = {The Langevin Hull: Constant Pressure and Temperature Dynamics for Nonperiodic Systems},
258     Volume = {7},
259     Year = {2011},
260 gezelter 4063 Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QOS4uLy4uLy4uLy4uL1ZvbHVtZXMvVGltZSBNYWNoaW5lIEJhY2t1cHMvVmFyZGVtYW4yMDExLnBkZtIXCxgZV05TLmRhdGFPEQGEAAAAAAGEAAIAABRUaW1lIE1hY2hpbmUgQmFja3VwcwAAAAAAAADMiTMXSCsAAAAAAAIQVmFyZGVtYW4yMDExLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvNWMnJ/r4AAAAAAAAAAP////8AAAkAAAAAAAAAAAAAAAAAAAAAFFRpbWUgTWFjaGluZSBCYWNrdXBzABAACAAAzIlrVwAAABEACAAAyco2/gAAAAEAAAACACVUaW1lIE1hY2hpbmUgQmFja3VwczpWYXJkZW1hbjIwMTEucGRmAAAOACIAEABWAGEAcgBkAGUAbQBhAG4AMgAwADEAMQAuAHAAZABmAA8AKgAUAFQAaQBtAGUAIABNAGEAYwBoAGkAbgBlACAAQgBhAGMAawB1AHAAcwASABEvVmFyZGVtYW4yMDExLnBkZgAAEwAdL1ZvbHVtZXMvVGltZSBNYWNoaW5lIEJhY2t1cHMA//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4AygDPANcCXwJhAmYCcQJ6AogCjAKTApwCoQKuArECwwLGAssAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAACzQ==}}
261 kstocke1 4059
262     @article{EDELSBRUNNER:1994oq,
263     Abstract = {Frequently, data in scientific computing is in its abstract form a finite point set in space, and it is sometimes useful or required to compute what one might call the ''shape'' of the set. For that purpose, this article introduces the formal notion of the family of alpha-shapes of a finite point set in R3. Each shape is a well-defined polytope, derived from the Delaunay triangulation of the point set, with a parameter alpha is-an-element-of R controlling the desired level of detail. An algorithm is presented that constructs the entire family of shapes for a given set of size n in time O(n2), worst case. A robust implementation of the algorithm is discussed, and several applications in the area of scientific computing are mentioned.},
264     Address = {1515 BROADWAY, NEW YORK, NY 10036},
265     Author = {Edelsbrunner, H and Mucke, E.~P.},
266     Date = {JAN 1994},
267     Date-Added = {2013-09-05 23:47:03 +0000},
268     Date-Modified = {2013-09-05 23:47:03 +0000},
269     Journal = {ACM Trans. Graphics},
270     Keywords = {COMPUTATIONAL GRAPHICS; DELAUNAY TRIANGULATIONS; GEOMETRIC ALGORITHMS; POINT SETS; POLYTOPES; ROBUST IMPLEMENTATION; SCIENTIFIC COMPUTING; SCIENTIFIC VISUALIZATION; SIMPLICIAL COMPLEXES; SIMULATED PERTURBATION; 3-DIMENSIONAL SPACE},
271     Pages = {43-72},
272     Publisher = {ASSOC COMPUTING MACHINERY},
273     Timescited = {270},
274     Title = {3-DIMENSIONAL ALPHA-SHAPES},
275     Volume = {13},
276     Year = {1994}}
277    
278     @article{Barber96,
279     Author = {C.~B. Barber and D.~P. Dobkin and H.~T. Huhdanpaa},
280     Date-Added = {2013-09-05 23:46:55 +0000},
281     Date-Modified = {2013-09-05 23:46:55 +0000},
282     Journal = {ACM Trans. Math. Software},
283     Pages = {469-483},
284     Title = {The Quickhull Algorithm for Convex Hulls},
285     Volume = 22,
286     Year = 1996}
287    
288     @article{Sun2008,
289     Author = {Xiuquan Sun and Teng Lin and J. Daniel Gezelter},
290     Date-Added = {2013-09-05 20:13:18 +0000},
291     Date-Modified = {2013-09-05 20:14:17 +0000},
292     Journal = {J. Chem. Phys.},
293     Pages = {234107},
294     Title = {Langevin Dynamics for Rigid Bodies of Arbitrary Shape},
295     Volume = {128},
296     Year = {2008}}
297    
298     @article{Zwanzig,
299     Author = {ChihMing Hu and Robert Zwanzig},
300     Date-Added = {2013-09-05 20:11:32 +0000},
301     Date-Modified = {2013-09-05 20:12:42 +0000},
302     Journal = {J. Chem. Phys.},
303     Number = {11},
304     Pages = {4353-4357},
305     Title = {Rotational Friction Coefficients for Spheroids with the Slipping Boundary Condition},
306     Volume = {60},
307     Year = {1974}}
308    
309     @article{hartland2011,
310     Author = {Hartland, Gregory V.},
311     Date-Added = {2013-02-11 22:54:29 +0000},
312     Date-Modified = {2013-02-18 17:56:29 +0000},
313     Journal = {Chem. Rev.},
314     Pages = {3858-3887},
315     Title = {Optical Studies of Dynamics in Noble Metal Nanostructures},
316     Volume = {11},
317     Year = {2011}}
318    
319     @article{hase:2010,
320     Abstract = {Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang{,} J. A. Carter{,} A. Lagutchev{,} Y. K. Koh{,} N.-H. Seong{,} D. G. Cahill{,} and D. D. Dlott{,} Science{,} 2007{,} 317{,} 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface{,} and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly{,} much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM{,} perpendicular to the interface{,} results in nearly identical temperatures for the CH2 and CH3 groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate{,} the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM{,} there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.},
321     Author = {Zhang, Yue and Barnes, George L. and Yan, Tianying and Hase, William L.},
322     Date-Added = {2012-12-25 17:47:40 +0000},
323     Date-Modified = {2012-12-25 17:47:40 +0000},
324     Doi = {10.1039/B923858C},
325     Issue = {17},
326     Journal = {Phys. Chem. Chem. Phys.},
327     Pages = {4435-4445},
328     Publisher = {The Royal Society of Chemistry},
329     Title = {Model Non-Equilibrium Molecular Dynamics Simulations of Heat Transfer from a Hot Gold Surface to an Alkylthiolate Self-Assembled Monolayer},
330     Url = {http://dx.doi.org/10.1039/B923858C},
331     Volume = {12},
332     Year = {2010},
333     Bdsk-Url-1 = {http://dx.doi.org/10.1039/B923858C}}
334    
335     @article{hase:2011,
336     Abstract = { In a previous article (Phys. Chem. Chem. Phys.2010, 12, 4435), nonequilibrium molecular dynamics (MD) simulations of heat transfer from a hot Au{111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) were presented. The simulations were performed for an H-SAM chain length of eight carbon atoms, and a qualitative agreement with the experiments of Wang et al. (Science2007, 317, 787) was found. Here, simulation results are presented for heat transfer to H-SAM surfaces with carbon chain lengths of 10--20 carbon atoms. Relaxation times for heat transfer are extracted, compared with experiment, and a qualitative agreement is obtained. The same relaxation time is found from either the temperature of the H-SAM or the orientational disorder of the H-SAM versus time. For a simulation model with the Au substrate thermally equilibrated, the relaxation times determined from the simulations are approximately a factor of 4 larger than the experimental values. },
337     Author = {Manikandan, Paranjothy and Carter, Jeffrey A. and Dlott, Dana D. and Hase, William L.},
338     Date-Added = {2012-12-25 17:47:40 +0000},
339     Date-Modified = {2013-02-18 17:57:24 +0000},
340     Doi = {10.1021/jp200672e},
341     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp200672e},
342     Journal = {J. Phys. Chem. C},
343     Number = {19},
344     Pages = {9622-9628},
345     Title = {Effect of Carbon Chain Length on the Dynamics of Heat Transfer at a Gold/Hydrocarbon Interface: Comparison of Simulation with Experiment},
346     Url = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
347     Volume = {115},
348     Year = {2011},
349     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
350     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp200672e}}
351    
352     @article{RevModPhys.61.605,
353     Author = {Swartz, E. T. and Pohl, R. O.},
354     Date-Added = {2012-12-21 20:34:12 +0000},
355     Date-Modified = {2012-12-21 20:34:12 +0000},
356     Doi = {10.1103/RevModPhys.61.605},
357     Issue = {3},
358     Journal = {Rev. Mod. Phys.},
359     Month = {Jul},
360     Pages = {605--668},
361     Publisher = {American Physical Society},
362     Title = {Thermal Boundary Resistance},
363     Url = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
364     Volume = {61},
365     Year = {1989},
366     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
367     Bdsk-Url-2 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
368    
369     @article{packmol,
370     Author = {L. Mart\'{\i}nez and R. Andrade and Ernesto G. Birgin and Jos{\'e} Mario Mart\'{\i}nez},
371     Bibsource = {DBLP, http://dblp.uni-trier.de},
372     Date-Added = {2011-02-01 15:13:02 -0500},
373     Date-Modified = {2013-02-18 18:01:34 +0000},
374     Ee = {http://dx.doi.org/10.1002/jcc.21224},
375     Journal = {J. Comput. Chem.},
376     Number = {13},
377     Pages = {2157-2164},
378     Title = {PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations},
379     Volume = {30},
380     Year = {2009}}
381    
382     @article{doi:10.1021/jp034405s,
383     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
384     Author = {Leng, Y. and Keffer, David J. and Cummings, Peter T.},
385     Date-Added = {2012-12-17 18:38:38 +0000},
386     Date-Modified = {2012-12-17 18:38:38 +0000},
387     Doi = {10.1021/jp034405s},
388     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
389     Journal = {J. Phys. Chem. B},
390     Number = {43},
391     Pages = {11940-11950},
392     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
393     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
394     Volume = {107},
395     Year = {2003},
396     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
397     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
398    
399     @article{hautman:4994,
400     Author = {Joseph Hautman and Michael L. Klein},
401     Date-Added = {2012-12-17 18:38:26 +0000},
402     Date-Modified = {2012-12-17 18:38:26 +0000},
403     Doi = {10.1063/1.457621},
404     Journal = {J. Chem. Phys.},
405     Keywords = {MOLECULAR DYNAMICS CALCULATIONS; SIMULATION; MONOLAYERS; THIOLS; ALKYL COMPOUNDS; CHAINS; SURFACE STRUCTURE; GOLD; SUBSTRATES; CHEMISORPTION; SURFACE PROPERTIES},
406     Number = {8},
407     Pages = {4994-5001},
408     Publisher = {AIP},
409     Title = {Simulation of a Monolayer of Alkyl Thiol Chains},
410     Url = {http://link.aip.org/link/?JCP/91/4994/1},
411     Volume = {91},
412     Year = {1989},
413     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/91/4994/1},
414     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.457621}}
415    
416     @article{vlugt:cpc2007154,
417     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
418     Date-Added = {2012-12-17 18:38:20 +0000},
419     Date-Modified = {2013-02-18 18:04:43 +0000},
420     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
421     Issn = {0010-4655},
422     Journal = {Comput. Phys. Commun.},
423     Keywords = {Gold nanocrystals},
424     Note = {Proceedings of the Conference on Computational Physics 2006: CCP 2006 - Conference on Computational Physics 2006},
425     Number = {1-2},
426     Pages = {154 - 157},
427     Title = {Selective Adsorption of Alkyl Thiols on Gold in Different Geometries},
428     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
429     Volume = {177},
430     Year = {2007},
431     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
432     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
433    
434     @article{landman:1998,
435     Abstract = { Equilibrium structures and thermodynamic properties of dodecanethiol self-assembled monolayers on small (Au140) and larger (Au1289) gold nanocrystallites were investigated with the use of molecular dynamics simulations. Compact passivating monolayers are formed on the (111) and (100) facets of the nanocrystallites, with adsorption site geometries differing from those found on extended flat Au(111) and Au(100) surfaces, as well as with higher packing densities. At lower temperatures the passivating molecules organize into preferentially oriented molecular bundles with the molecules in the bundles aligned approximately parallel to each other. Thermal disordering starts at T ≳200 K, initiating at the boundaries of the bundles and involving generation of intramolecular conformational (gauche) defects which occur first at bonds near the chains' outer terminus and propagate inward toward the underlying gold nanocrystalline surface as the temperature is increased. The disordering process culminates in melting of the molecular bundles, resulting in a uniform orientational distribution of the molecules around the gold nanocrystallites. From the inflection points in the calculated caloric curves, melting temperatures were determined as 280 and 294 K for the monolayers adsorbed on the smaller and larger gold nanocrystallites, respectively. These temperatures are significantly lower than the melting temperature estimated for a self-assembled monolayer of dodecanethiol adsorbed on an extended Au(111) surface. The theoretically predicted disordering mechanisms and melting scenario, resulting in a temperature-broadened transition, support recent experimental investigations. },
436     Author = {Luedtke, W. D. and Landman, Uzi},
437     Date-Added = {2012-12-17 18:38:13 +0000},
438     Date-Modified = {2012-12-17 18:38:13 +0000},
439     Doi = {10.1021/jp981745i},
440     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp981745i},
441     Journal = {J. Phys. Chem. B},
442     Number = {34},
443     Pages = {6566-6572},
444     Title = {Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites},
445     Url = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
446     Volume = {102},
447     Year = {1998},
448     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
449     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp981745i}}
450    
451     @article{PhysRevLett.96.186101,
452     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
453     Date-Added = {2012-12-17 17:44:53 +0000},
454     Date-Modified = {2012-12-17 17:44:53 +0000},
455     Doi = {10.1103/PhysRevLett.96.186101},
456     Journal = prl,
457     Month = {May},
458     Number = {18},
459     Numpages = {4},
460     Pages = {186101},
461     Publisher = {American Physical Society},
462     Title = {Thermal Conductance of Hydrophilic and Hydrophobic Interfaces},
463     Volume = {96},
464     Year = {2006},
465     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.96.186101}}
466    
467     @article{Larson:2007hw,
468     Abstract = {Nanoparticles which consist of a plasmonic layer and an iron oxide moiety could provide a promising platform for development of multimodal imaging and therapy approaches in future medicine. However, the feasibility of this platform has yet to be fully explored. In this study we demonstrated the use of gold-coated iron oxide hybrid nanoparticles for combined molecular specific MRI/optical imaging and photothermal therapy of cancer cells. The gold layer exhibits a surface plasmon resonance that provides optical contrast due to light scattering in the visible region and also presents a convenient surface for conjugating targeting moieties, while the iron oxide cores give strong T-2 (spin-spin relaxation time) contrast. The strong optical absorption of the plasmonic gold layer also makes these nanoparticles a promising agent for photothermal therapy. We synthesized hybrid nanoparticles which specifically target epidermal growth factor receptor (EGFR), a common biomarker for many epithelial cancers. We demonstrated molecular specific MRI and optical imaging in MDA-MB-468 breast cancer cells. Furthermore, we showed that receptor-mediated aggregation of anti-EGFR hybrid nanoparticles allows selective destruction of highly proliferative cancer cells using a nanosecond pulsed laser at 700 nm wavelength, a significant shift from the peak absorbance of isolated hybrid nanoparticles at 532 nm.},
469     Address = {DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND},
470     Author = {Larson, Timothy A. and Bankson, James and Aaron, Jesse and Sokolov, Konstantin},
471     Date = {AUG 15 2007},
472     Date-Added = {2012-12-17 17:44:44 +0000},
473     Date-Modified = {2013-02-18 17:34:30 +0000},
474     Doi = {ARTN 325101},
475     Journal = {Nanotechnology},
476     Pages = {325101},
477     Publisher = {IOP PUBLISHING LTD},
478     Timescited = {5},
479     Title = {Hybrid Plasmonic Magnetic Nanoparticles as Molecular Specific Agents for MRI/Optical Imaging and Photothermal Therapy of Cancer Cells},
480     Volume = {18},
481     Year = {2007},
482     Bdsk-Url-1 = {http://dx.doi.org/325101}}
483    
484     @article{Huff:2007ye,
485     Abstract = {Plasmon-resonant gold nanorods, which have large absorption cross sections at near-infrared frequencies, are excellent candidates as multifunctional agents for image-guided therapies based on localized hyperthermia. The controlled modification of the surface chemistry of the nanorods is of critical importance, as issues of cell-specific targeting and nonspecific uptake must be addressed prior to clinical evaluation. Nanorods coated with cetyltrimethylammonium bromide (a cationic surfactant used in nanorod synthesis) are internalized within hours into KB cells by a nonspecific uptake pathway, whereas the careful removal of cetyltrimethylammonium bromide from nanorods functionalized with folate results in their accumulation on the cell surface over the same time interval. In either case, the nanorods render the tumor cells highly susceptible to photothermal damage when irradiated at the nanorods' longitudinal plasmon resonance, generating extensive blebbing of the cell membrane at laser fluences as low as 30 J/cm(2).},
486     Address = {UNITEC HOUSE, 3RD FLOOR, 2 ALBERT PLACE, FINCHLEY CENTRAL, LONDON, N3 1QB, ENGLAND},
487     Author = {Huff, Terry B. and Tong, Ling and Zhao, Yan and Hansen, Matthew N. and Cheng, Ji-Xin and Wei, Alexander},
488     Date = {FEB 2007},
489     Date-Added = {2012-12-17 17:44:36 +0000},
490     Date-Modified = {2012-12-17 17:44:36 +0000},
491     Doi = {DOI 10.2217/17435889.2.1.125},
492     Journal = {Nanomedicine},
493     Keywords = {folate receptor; hyperthermia; imaging; nanorods; nonlinear optical microscopy; plasmon resonance; targeted therapy},
494     Pages = {125-132},
495     Publisher = {FUTURE MEDICINE LTD},
496     Timescited = {13},
497     Title = {Hyperthermic Effects of Gold Nanorods on Tumor Cells},
498     Volume = {2},
499     Year = {2007},
500     Bdsk-Url-1 = {http://dx.doi.org/10.2217/17435889.2.1.125}}
501    
502 gezelter 4063 @article{Jiang:2008hc,
503 kstocke1 4059 Abstract = {Abstract: Nonequilibrium molecular dynamics simulations with the nonpolarizable SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121, 9549) force fields have been employed to calculate the thermal conductivity and other associated properties of methane hydrate over a temperature range from 30 to 260 K. The calculated results are compared to experimental data over this same range. The values of the thermal conductivity calculated with the COS/G2 model are closer to the experimental values than are those calculated with the nonpolarizable SPC/E model. The calculations match the temperature trend in the experimental data at temperatures below 50 K; however, they exhibit a slight decrease in thermal conductivity at higher temperatures in comparison to an opposite trend in the experimental data. The calculated thermal conductivity values are found to be relatively insensitive to the occupancy of the cages except at low (T d 50 K) temperatures, which indicates that the differences between the two lattice structures may have a more dominant role than generally thought in explaining the low thermal conductivity of methane hydrate compared to ice Ih. The introduction of defects into the water lattice is found to cause a reduction in the thermal conductivity but to have a negligible impact on its temperature dependence.},
504     Affiliation = {National Energy Technology Laboratory, U.S. Department of Energy, Post Office Box 10940, Pittsburgh, Pennsylvania 15236, Department of Chemistry and Center for Molecular and Materials Simulations, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and Parsons Project Services, Inc., South Park, Pennsylvania 15129},
505     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
506     Date-Added = {2012-12-17 16:57:19 +0000},
507 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
508 kstocke1 4059 Doi = {10.1021/jp802942v},
509     Issn = {1520-6106},
510     Journal = jpcb,
511     Pages = {10207-10216},
512     Title = {Molecular Dynamics Simulations of the Thermal Conductivity of Methane Hydrate},
513     Volume = {112},
514     Year = {2008},
515     Bdsk-Url-1 = {http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp802942v}}
516    
517     @article{Schelling:2002dp,
518     Author = {Schelling, P. K. and Phillpot, S. R. and Keblinski, P.},
519     Date = {APR 1 2002},
520     Date-Added = {2012-12-17 16:57:10 +0000},
521 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
522 kstocke1 4059 Doi = {10.1103/PhysRevB.65.144306},
523     Isi = {WOS:000174980300055},
524     Issn = {1098-0121},
525     Journal = prb,
526     Month = {Apr},
527     Number = {14},
528     Pages = {144306},
529     Publication-Type = {J},
530     Times-Cited = {288},
531     Title = {Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity},
532     Volume = {65},
533     Year = {2002},
534     Z8 = {12},
535     Z9 = {296},
536     Zb = {0},
537     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.65.144306}}
538    
539 gezelter 4063 @article{Evans:2002tg,
540 kstocke1 4059 Author = {Evans, D. J. and Searles, D. J.},
541     Date = {NOV 2002},
542     Date-Added = {2012-12-17 16:56:59 +0000},
543 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
544 kstocke1 4059 Doi = {10.1080/00018730210155133},
545     Isi = {WOS:000179448200001},
546     Issn = {0001-8732},
547     Journal = {Adv. Phys.},
548     Month = {Nov},
549     Number = {7},
550     Pages = {1529--1585},
551     Publication-Type = {J},
552     Times-Cited = {309},
553     Title = {The Fluctuation Theorem},
554     Volume = {51},
555     Year = {2002},
556     Z8 = {3},
557     Z9 = {311},
558     Zb = {9},
559     Bdsk-Url-1 = {http://dx.doi.org/10.1080/00018730210155133}}
560    
561 gezelter 4063 @article{Berthier:2002ai,
562 kstocke1 4059 Author = {Berthier, L. and Barrat, J. L.},
563     Date = {APR 8 2002},
564     Date-Added = {2012-12-17 16:56:47 +0000},
565 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
566 kstocke1 4059 Doi = {10.1063/1.1460862},
567     Isi = {WOS:000174634200036},
568     Issn = {0021-9606},
569     Journal = jcp,
570     Month = {Apr},
571     Number = {14},
572     Pages = {6228--6242},
573     Publication-Type = {J},
574     Times-Cited = {172},
575     Title = {Nonequilibrium Dynamics and Fluctuation-Dissipation Relation in a Sheared Fluid},
576     Volume = {116},
577     Year = {2002},
578     Z8 = {0},
579     Z9 = {172},
580     Zb = {1},
581     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1460862}}
582    
583 gezelter 4063 @article{Maginn:1993kl,
584 kstocke1 4059 Author = {Maginn, E. J. and Bell, A. T. and Theodorou, D. N.},
585     Date = {APR 22 1993},
586     Date-Added = {2012-12-17 16:56:40 +0000},
587 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
588 kstocke1 4059 Doi = {10.1021/j100118a038},
589     Isi = {WOS:A1993KY46600039},
590     Issn = {0022-3654},
591     Journal = jpc,
592     Month = {Apr},
593     Number = {16},
594     Pages = {4173--4181},
595     Publication-Type = {J},
596     Times-Cited = {198},
597     Title = {Transport Diffusivity of Methane in Silicalite from Equilibrium and Nonequilibrium Simulations},
598     Volume = {97},
599     Year = {1993},
600     Z8 = {4},
601     Z9 = {201},
602     Zb = {0},
603     Bdsk-Url-1 = {http://dx.doi.org/10.1021/j100118a038}}
604    
605 gezelter 4063 @article{Erpenbeck:1984qe,
606 kstocke1 4059 Author = {Erpenbeck, J. J.},
607     Date = {1984},
608     Date-Added = {2012-12-17 16:56:32 +0000},
609 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
610 kstocke1 4059 Doi = {10.1103/PhysRevLett.52.1333},
611     Isi = {WOS:A1984SK96700021},
612     Issn = {0031-9007},
613     Journal = prl,
614     Number = {15},
615     Pages = {1333--1335},
616     Publication-Type = {J},
617     Times-Cited = {189},
618     Title = {Shear Viscosity of the Hard-Sphere Fluid via Nonequilibrium Molecular Dynamics},
619     Volume = {52},
620     Year = {1984},
621     Z8 = {0},
622     Z9 = {189},
623     Zb = {1},
624     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.52.1333}}
625    
626 gezelter 4063 @article{Evans:1982oq,
627 kstocke1 4059 Author = {Evans, Denis J.},
628     Date-Added = {2012-12-17 16:56:24 +0000},
629 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
630 kstocke1 4059 Journal = {Phys. Lett. A},
631     Number = {9},
632     Pages = {457--460},
633     Title = {Homogeneous NEMD Algorithm for Thermal Conductivity -- Application of Non-Canonical Linear Response Theory},
634     Ty = {JOUR},
635     Url = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50},
636     Volume = {91},
637     Year = {1982},
638     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50}}
639    
640 gezelter 4063 @article{Ashurst:1975eu,
641 kstocke1 4059 Author = {Ashurst, W. T. and Hoover, W. G.},
642     Date = {1975},
643     Date-Added = {2012-12-17 16:56:05 +0000},
644 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
645 kstocke1 4059 Doi = {10.1103/PhysRevA.11.658},
646     Isi = {WOS:A1975V548400036},
647     Issn = {1050-2947},
648     Journal = pra,
649     Number = {2},
650     Pages = {658--678},
651     Publication-Type = {J},
652     Times-Cited = {295},
653     Title = {Dense-Fluid Shear Viscosity via Nonequilibrium Molecular Dynamics},
654     Volume = {11},
655     Year = {1975},
656     Z8 = {3},
657     Z9 = {298},
658     Zb = {1},
659     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.11.658}}
660    
661     @article{kinaci:014106,
662     Author = {A. Kinaci and J. B. Haskins and T. \c{C}a\u{g}in},
663     Date-Added = {2012-12-17 16:55:56 +0000},
664     Date-Modified = {2012-12-17 16:55:56 +0000},
665     Doi = {10.1063/1.4731450},
666     Eid = {014106},
667     Journal = jcp,
668     Keywords = {argon; elemental semiconductors; Ge-Si alloys; molecular dynamics method; nanostructured materials; porous semiconductors; silicon; thermal conductivity},
669     Number = {1},
670     Numpages = {8},
671     Pages = {014106},
672     Publisher = {AIP},
673     Title = {On Calculation of Thermal Conductivity from Einstein Relation in Equilibrium Molecular Dynamics},
674     Url = {http://link.aip.org/link/?JCP/137/014106/1},
675     Volume = {137},
676     Year = {2012},
677     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/137/014106/1},
678     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.4731450}}
679    
680     @article{che:6888,
681     Author = {Jianwei Che and Tahir Cagin and Weiqiao Deng and William A. Goddard III},
682     Date-Added = {2012-12-17 16:55:48 +0000},
683     Date-Modified = {2012-12-17 16:55:48 +0000},
684     Doi = {10.1063/1.1310223},
685     Journal = jcp,
686     Keywords = {diamond; thermal conductivity; digital simulation; vacancies (crystal); Green's function methods; isotope effects},
687     Number = {16},
688     Pages = {6888-6900},
689     Publisher = {AIP},
690     Title = {Thermal Conductivity of Diamond and Related Materials from Molecular Dynamics Simulations},
691     Url = {http://link.aip.org/link/?JCP/113/6888/1},
692     Volume = {113},
693     Year = {2000},
694     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/113/6888/1},
695     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1310223}}
696    
697     @article{Viscardy:2007rp,
698     Abstract = {The thermal conductivity is calculated with the Helfand-moment method in the Lennard-Jones fluid near the triple point. The Helfand moment of thermal conductivity is here derived for molecular dynamics with periodic boundary conditions. Thermal conductivity is given by a generalized Einstein relation with this Helfand moment. The authors compute thermal conductivity by this new method and compare it with their own values obtained by the standard Green-Kubo method. The agreement is excellent. (C) 2007 American Institute of Physics.},
699     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
700     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
701     Date = {MAY 14 2007},
702     Date-Added = {2012-12-17 16:55:32 +0000},
703     Date-Modified = {2013-02-18 17:58:40 +0000},
704     Doi = {ARTN 184513},
705     Journal = jcp,
706     Pages = {184513},
707     Publisher = {AMER INST PHYSICS},
708     Timescited = {1},
709     Title = {Transport and Helfand Moments in the Lennard-Jones Fluid. II. Thermal Conductivity},
710     Volume = {126},
711     Year = {2007},
712     Bdsk-Url-1 = {http://dx.doi.org/184513}}
713    
714     @article{PhysRev.119.1,
715     Author = {Helfand, Eugene},
716     Date-Added = {2012-12-17 16:55:19 +0000},
717     Date-Modified = {2012-12-17 16:55:19 +0000},
718     Doi = {10.1103/PhysRev.119.1},
719     Journal = {Phys. Rev.},
720     Month = {Jul},
721     Number = {1},
722     Numpages = {8},
723     Pages = {1--9},
724     Publisher = {American Physical Society},
725     Title = {Transport Coefficients from Dissipation in a Canonical Ensemble},
726     Volume = {119},
727     Year = {1960},
728     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRev.119.1}}
729    
730 gezelter 4063 @article{Evans:1986nx,
731 kstocke1 4059 Author = {Evans, Denis J.},
732     Date-Added = {2012-12-17 16:55:19 +0000},
733 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
734 kstocke1 4059 Doi = {10.1103/PhysRevA.34.1449},
735     Journal = {Phys. Rev. A},
736     Month = {Aug},
737     Number = {2},
738     Numpages = {4},
739     Pages = {1449--1453},
740     Publisher = {American Physical Society},
741     Title = {Thermal Conductivity of the Lennard-Jones Fluid},
742     Volume = {34},
743     Year = {1986},
744     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.34.1449}}
745    
746     @article{MASSOBRIO:1984bl,
747     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
748     Author = {Massobrio, C and Ciccotti, G},
749     Date = {1984},
750     Date-Added = {2012-12-17 16:55:03 +0000},
751     Date-Modified = {2012-12-21 22:42:02 +0000},
752     Journal = pra,
753     Pages = {3191-3197},
754     Publisher = {AMERICAN PHYSICAL SOC},
755     Timescited = {29},
756     Title = {Lennard-Jones Triple-Point Conductivity via Weak External Fields},
757     Volume = {30},
758     Year = {1984}}
759    
760     @article{PhysRevB.37.5677,
761     Author = {Heyes, David M.},
762     Date-Added = {2012-12-17 16:54:55 +0000},
763     Date-Modified = {2012-12-17 16:54:55 +0000},
764     Doi = {10.1103/PhysRevB.37.5677},
765     Journal = prb,
766     Month = {Apr},
767     Number = {10},
768     Numpages = {19},
769     Pages = {5677--5696},
770     Publisher = {American Physical Society},
771     Title = {Transport Coefficients of Lennard-Jones Fluids: A Molecular-Dynamics and Effective-Hard-Sphere Treatment},
772     Volume = {37},
773     Year = {1988},
774     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.37.5677}}
775    
776     @article{PhysRevB.80.195406,
777     Author = {Juv\'e, Vincent and Scardamaglia, Mattia and Maioli, Paolo and Crut, Aur\'elien and Merabia, Samy and Joly, Laurent and Del Fatti, Natalia and Vall\'ee, Fabrice},
778     Date-Added = {2012-12-17 16:54:55 +0000},
779     Date-Modified = {2012-12-17 16:54:55 +0000},
780     Doi = {10.1103/PhysRevB.80.195406},
781     Journal = prb,
782     Month = {Nov},
783     Number = {19},
784     Numpages = {6},
785     Pages = {195406},
786     Publisher = {American Physical Society},
787     Title = {Cooling Dynamics and Thermal Interface Resistance of Glass-Embedded Metal Nanoparticles},
788     Volume = {80},
789     Year = {2009},
790     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.80.195406}}
791    
792     @article{Wang10082007,
793     Abstract = {At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.},
794     Author = {Wang, Zhaohui and Carter, Jeffrey A. and Lagutchev, Alexei and Koh, Yee Kan and Seong, Nak-Hyun and Cahill, David G. and Dlott, Dana D.},
795     Date-Added = {2012-12-17 16:54:31 +0000},
796     Date-Modified = {2012-12-17 16:54:31 +0000},
797     Doi = {10.1126/science.1145220},
798     Eprint = {http://www.sciencemag.org/content/317/5839/787.full.pdf},
799     Journal = {Science},
800     Number = {5839},
801     Pages = {787-790},
802     Title = {Ultrafast Flash Thermal Conductance of Molecular Chains},
803     Url = {http://www.sciencemag.org/content/317/5839/787.abstract},
804     Volume = {317},
805     Year = {2007},
806     Bdsk-Url-1 = {http://www.sciencemag.org/content/317/5839/787.abstract},
807     Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.1145220}}
808    
809     @article{doi:10.1021/la904855s,
810     Annote = {PMID: 20166728},
811     Author = {Alper, Joshua and Hamad-Schifferli, Kimberly},
812     Date-Added = {2012-12-17 16:54:12 +0000},
813     Date-Modified = {2013-02-18 17:57:03 +0000},
814     Doi = {10.1021/la904855s},
815     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la904855s},
816     Journal = {Langmuir},
817     Number = {6},
818     Pages = {3786-3789},
819     Title = {Effect of Ligands on Thermal Dissipation from Gold Nanorods},
820     Url = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
821     Volume = {26},
822     Year = {2010},
823     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
824     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la904855s}}
825    
826     @article{doi:10.1021/jp048375k,
827     Abstract = { Water- and alcohol-soluble AuPd nanoparticles have been investigated to determine the effect of the organic stabilizing group on the thermal conductance G of the particle/fluid interface. The thermal decays of tiopronin-stabilized 3−5-nm diameter AuPd alloy nanoparticles, thioalkylated ethylene glycol-stabilized 3−5-nm diameter AuPd nanoparticles, and cetyltrimethylammonium bromide-stabilized 22-nm diameter Au-core/AuPd-shell nanoparticles give thermal conductances G ≈ 100−300 MW m-2 K-1 for the particle/water interfaces, approximately an order of magnitude larger than the conductance of the interfaces between alkanethiol-terminated AuPd nanoparticles and toluene. The similar values of G for particles ranging in size from 3 to 24 nm with widely varying surface chemistry indicate that the thermal coupling between AuPd nanoparticles and water is strong regardless of the self-assembled stabilizing group. },
828     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
829     Date-Added = {2012-12-17 16:54:03 +0000},
830     Date-Modified = {2012-12-17 16:54:03 +0000},
831     Doi = {10.1021/jp048375k},
832     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048375k},
833     Journal = jpcb,
834     Number = {49},
835     Pages = {18870-18875},
836     Title = {AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution},
837     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
838     Volume = {108},
839     Year = {2004},
840     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
841     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048375k}}
842    
843     @article{doi:10.1021/jp8051888,
844     Abstract = { Thermal transport between CTAB passivated gold nanorods and solvent is studied by an optical pump−probe technique. Increasing the free CTAB concentration from 1 mM to 10 mM causes a ∼3× increase in the CTAB layer's effective thermal interface conductance and a corresponding shift in the longitudinal surface plasmon resonance. The transition occurs near the CTAB critical micelle concentration, revealing the importance of the role of free ligand on thermal transport. },
845     Author = {Schmidt, Aaron J. and Alper, Joshua D. and Chiesa, Matteo and Chen, Gang and Das, Sarit K. and Hamad-Schifferli, Kimberly},
846     Date-Added = {2012-12-17 16:54:03 +0000},
847     Date-Modified = {2013-02-18 17:54:59 +0000},
848     Doi = {10.1021/jp8051888},
849     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp8051888},
850     Journal = jpcc,
851     Number = {35},
852     Pages = {13320-13323},
853     Title = {Probing the Gold Nanorod-Ligand-Solvent Interface by Plasmonic Absorption and Thermal Decay},
854     Url = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
855     Volume = {112},
856     Year = {2008},
857     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
858     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp8051888}}
859    
860     @article{PhysRevB.67.054302,
861     Author = {Costescu, Ruxandra M. and Wall, Marcel A. and Cahill, David G.},
862     Date-Added = {2012-12-17 16:53:48 +0000},
863     Date-Modified = {2012-12-17 16:53:48 +0000},
864     Doi = {10.1103/PhysRevB.67.054302},
865     Journal = prb,
866     Month = {Feb},
867     Number = {5},
868     Numpages = {5},
869     Pages = {054302},
870     Publisher = {American Physical Society},
871     Title = {Thermal Conductance of Epitaxial Interfaces},
872     Volume = {67},
873     Year = {2003},
874     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.67.054302}}
875    
876     @article{cahill:793,
877     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
878     Date-Added = {2012-12-17 16:53:36 +0000},
879     Date-Modified = {2012-12-17 16:53:36 +0000},
880     Doi = {10.1063/1.1524305},
881     Journal = {J. Appl. Phys.},
882     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
883     Number = {2},
884     Pages = {793-818},
885     Publisher = {AIP},
886     Title = {Nanoscale Thermal Transport},
887     Url = {http://link.aip.org/link/?JAP/93/793/1},
888     Volume = {93},
889     Year = {2003},
890     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
891     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
892    
893     @article{Eapen:2007mw,
894     Abstract = {In a well-dispersed nanofluid with strong cluster-fluid attraction, thermal conduction paths can arise through percolating amorphouslike interfacial structures. This results in a thermal conductivity enhancement beyond the Maxwell limit of 3 phi, with phi being the nanoparticle volume fraction. Our findings from nonequilibrium molecular dynamics simulations, which are amenable to experimental verification, can provide a theoretical basis for the development of future nanofluids.},
895     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
896     Author = {Eapen, Jacob and Li, Ju and Yip, Sidney},
897     Date = {DEC 2007},
898     Date-Added = {2012-12-17 16:53:30 +0000},
899     Date-Modified = {2013-02-18 17:48:08 +0000},
900     Doi = {ARTN 062501},
901     Journal = pre,
902     Pages = {062501},
903     Publisher = {AMER PHYSICAL SOC},
904     Timescited = {0},
905     Title = {Beyond the Maxwell Limit: Thermal Conduction in Nanofluids with Percolating Fluid Structures},
906     Volume = {76},
907     Year = {2007},
908     Bdsk-Url-1 = {http://dx.doi.org/062501}}
909    
910     @article{Xue:2003ya,
911     Abstract = {Using nonequilibrium molecular dynamics simulations in which a temperature gradient is imposed, we determine the thermal resistance of a model liquid-solid interface. Our simulations reveal that the strength of the bonding between liquid and solid atoms plays a key role in determining interfacial thermal resistance. Moreover, we find that the functional dependence of the thermal resistance on the strength of the liquid-solid interactions exhibits two distinct regimes: (i) exponential dependence for weak bonding (nonwetting liquid) and (ii) power law dependence for strong bonding (wetting liquid). The identification of the two regimes of the Kapitza resistance has profound implications for understanding and designing the thermal properties of nanocomposite materials. (C) 2003 American Institute of Physics.},
912     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
913     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
914     Date = {JAN 1 2003},
915     Date-Added = {2012-12-17 16:53:22 +0000},
916     Date-Modified = {2012-12-17 16:53:22 +0000},
917     Doi = {DOI 10.1063/1.1525806},
918     Journal = jcp,
919     Pages = {337-339},
920     Publisher = {AMER INST PHYSICS},
921     Timescited = {19},
922     Title = {Two Regimes of Thermal Resistance at a Liquid-Solid Interface},
923     Volume = {118},
924     Year = {2003},
925     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1525806}}
926    
927     @article{Xue:2004oa,
928     Abstract = {Using non-equilibrium molecular dynamics simulations in which a temperature gradient is imposed, we study how the ordering of the liquid at the liquid-solid interface affects the interfacial thermal resistance. Our simulations of a simple monoatomic liquid show no effect on the thermal transport either normal to the surface or parallel to the surface. Even for of a liquid that is highly confined between two solids, we find no effect on thermal conductivity. This contrasts with well-known significant effect of confinement on the viscoelastic response. Our findings suggest that the experimentally observed large enhancement of thermal conductivity in suspensions of solid nanosized particles (nanofluids) can not be explained by altered thermal transport properties of the layered liquid. (C) 2004 Elsevier Ltd. All rights reserved.},
929     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
930     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
931     Date = {SEP 2004},
932     Date-Added = {2012-12-17 16:53:22 +0000},
933     Date-Modified = {2013-02-18 17:47:37 +0000},
934     Doi = {DOI 10.1016/ijheatmasstransfer.2004.05.016},
935     Journal = {Int. J. Heat Mass Tran.},
936     Keywords = {interfacial Thermal Resistance; liquid-solid interface; molecular dynamics simulations; nanofluids},
937     Pages = {4277-4284},
938     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
939     Timescited = {29},
940     Title = {Effect of Liquid Layering at the Liquid-Solid Interface on Thermal Transport},
941     Volume = {47},
942     Year = {2004},
943     Bdsk-Url-1 = {http://dx.doi.org/10.1016/ijheatmasstransfer.2004.05.016}}
944    
945     @article{Lee:1999ct,
946     Abstract = {Oxide nanofluids were produced and their thermal conductivities were measured by a transient hot-wire method. The experimental results show that these nanofluids, containing a small amount of nanoparticles, have substantially higher thermal conductivities than the same liquids without nanoparticles. Comparisons between experiments and the Hamilton and Crosser model show that the model can predict the thermal conductivity of nanofluids containing large agglomerated Al2O3 particles. However, the model appears to be inadequate for nanofluids containing CuO particles. This suggests that not only particle shape but size is considered to be dominant in enhancing the thermal conductivity of nanofluids.},
947     Address = {345 E 47TH ST, NEW YORK, NY 10017 USA},
948     Author = {Lee, S and Choi, SUS and Li, S and Eastman, JA},
949     Date = {MAY 1999},
950     Date-Added = {2012-12-17 16:53:15 +0000},
951     Date-Modified = {2013-02-18 17:46:57 +0000},
952     Journal = {J. Heat Transf.},
953     Keywords = {conduction; enhancement; heat transfer; nanoscale; two-phase},
954     Pages = {280-289},
955     Publisher = {ASME-AMER SOC MECHANICAL ENG},
956     Timescited = {183},
957     Title = {Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles},
958     Volume = {121},
959     Year = {1999}}
960    
961     @article{Keblinski:2002bx,
962     Abstract = {Recent measurements on nanofluids have demonstrated that the thermal conductivity increases with decreasing grain size. However, Such increases cannot be explained by existing theories. We explore four possible explanations for this anomalous increase: Brownian motion of the particles, molecular-level layering of the liquid at the liquid/particle interface, the nature of heat transport in the nanoparticles. and the effects of nanoparticle clustering. We show that the key factors in understanding thermal properties of nanofluids are the ballistic, rather than diffusive, nature of heat transport in the nanoparticles, combined with direct or fluid-mediated clustering effects that provide paths for rapid heat transport. (C) 2001 Elsevier Science Ltd. All rights reserved.},
963     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
964     Author = {Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
965     Date = {FEB 2002},
966     Date-Added = {2012-12-17 16:53:06 +0000},
967     Date-Modified = {2013-02-18 17:41:04 +0000},
968     Journal = {Int. J. Heat Mass Tran.},
969     Keywords = {thermal conductivity; nanofluids; molecular dynamics simulations; ballistic heat transport},
970     Pages = {855-863},
971     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
972     Timescited = {161},
973     Title = {Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)},
974     Volume = {45},
975     Year = {2002}}
976    
977     @article{Eastman:2001wb,
978     Abstract = {It is shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure ethylene glycol or ethylene glycol containing the same volume fraction of dispersed oxide nanoparticles. The effective thermal conductivity of ethylene glycol is shown to be increased by up to 40\% for a nanofluid consisting of ethylene glycol containing approximately 0.3 vol \% Cu nanoparticles of mean diameter < 10 nm. The results are anomalous based on previous theoretical calculations that had predicted a strong effect of particle shape on effective nanofluid thermal conductivity, but no effect of either particle size or particle thermal conductivity. (C) 2001 American Institute of Physics.},
979     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
980     Author = {Eastman, JA and Choi, SUS and Li, S and Yu, W and Thompson, LJ},
981     Date = {FEB 5 2001},
982     Date-Added = {2012-12-17 16:52:55 +0000},
983     Date-Modified = {2013-02-18 17:40:41 +0000},
984     Journal = {Appl. Phys. Lett.},
985     Pages = {718-720},
986     Publisher = {AMER INST PHYSICS},
987     Timescited = {246},
988     Title = {Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles},
989     Volume = {78},
990     Year = {2001}}
991    
992     @article{Eapen:2007th,
993     Abstract = {Transient hot-wire data on thermal conductivity of suspensions of silica and perfluorinated particles show agreement with the mean-field theory of Maxwell but not with the recently postulated microconvection mechanism. The influence of interfacial thermal resistance, convective effects at microscales, and the possibility of thermal conductivity enhancements beyond the Maxwell limit are discussed.},
994     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
995     Author = {Eapen, Jacob and Williams, Wesley C. and Buongiorno, Jacopo and Hu, Lin-Wen and Yip, Sidney and Rusconi, Roberto and Piazza, Roberto},
996     Date = {AUG 31 2007},
997     Date-Added = {2012-12-17 16:52:46 +0000},
998     Date-Modified = {2013-02-18 17:40:15 +0000},
999     Doi = {ARTN 095901},
1000     Journal = prl,
1001     Pages = {095901},
1002     Publisher = {AMER PHYSICAL SOC},
1003     Timescited = {8},
1004     Title = {Mean-Field Versus Microconvection Effects in Nanofluid Thermal Conduction},
1005     Volume = {99},
1006     Year = {2007},
1007     Bdsk-Url-1 = {http://dx.doi.org/095901}}
1008    
1009     @article{Plech:2005kx,
1010     Abstract = {The transient structural response of laser excited gold nanoparticle sols has been recorded by pulsed X-ray scattering. Time resolved wide angle and small angle scattering (SAXS) record the changes in structure both of the nanoparticles and the water environment subsequent to femtosecond laser excitation. Within the first nanosecond after the excitation of the nanoparticles, the water phase shows a signature of compression, induced by a heat-induced evaporation of the water shell close to the heated nanoparticles. The particles themselves undergo a melting transition and are fragmented to Form new clusters in the nanometer range. (C) 2004 Elsevier B.V. All rights reserved.},
1011     Author = {Plech, A and Kotaidis, V and Lorenc, M and Wulff, M},
1012     Date-Added = {2012-12-17 16:52:34 +0000},
1013     Date-Modified = {2012-12-17 16:52:34 +0000},
1014     Doi = {DOI 10.1016/j.cplett.2004.11.072},
1015     Journal = cpl,
1016     Local-Url = {file://localhost/Users/charles/Documents/Papers/sdarticle3.pdf},
1017     Pages = {565-569},
1018     Title = {Thermal Dynamics in Laser Excited Metal Nanoparticles},
1019     Volume = {401},
1020     Year = {2005},
1021     Bdsk-Url-1 = {http://dx.doi.org/10.1016/j.cplett.2004.11.072}}
1022    
1023     @article{Wilson:2002uq,
1024     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
1025     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
1026     Date-Added = {2012-12-17 16:52:22 +0000},
1027     Date-Modified = {2013-02-18 17:34:52 +0000},
1028     Doi = {ARTN 224301},
1029     Journal = {Phys. Rev. B},
1030     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
1031     Pages = {224301},
1032     Title = {Colloidal Metal Particles as Probes of Nanoscale Thermal Transport in Fluids},
1033     Volume = {66},
1034     Year = {2002},
1035     Bdsk-Url-1 = {http://dx.doi.org/224301}}
1036    
1037     @article{Mazzaglia:2008to,
1038     Abstract = {Amphiphilic cyclodextrins (CDs) modified in the upper rim with thiohexyl groups and in the lower rim with oligoethylene amino (SC6NH2) or oligoethylene hydroxyl groups (SC6OH) can bind gold colloids, yielding Au/CD particles with an average hydrodynamic radius (RH) of 2 and 25 rim in water solution. The systems were investigated by UV-vis, quasi-elastic light scattering, and FTIR-ATR techniques. The concentration of amphiphiles was kept above the concentration of gold colloids to afford complete covering. In the case of SC6NH2, basic conditions (Et3N, pH 11) yield promptly the decoration of Au, which can be stabilized by linkage of CD amino and/or thioether groups. The critical aggregation concentration of SC6NH2 was measured (similar to 4 mu M) by surface tension measurements, pointing out that about 50\% of CDs are present in nonaggregated form. Whereas Au/SC6NH2 colloids were stable in size and morphology for at least one month, the size of the Au/SC6OH system increases remarkably, forming nanoaggregates of 20 and 80 rim in two hours. Under physiological conditions, the gold/amino amphiphiles system can internalize in HeLa cells, as shown by extinction spectra registered on the immobilized cells. The gold delivered by cyclodextrins can induce photothermal damage upon irradiation, doubling the cell mortality with respect to uncovered gold colloids. These findings can open useful perspectives to the application of these self-assembled systems in cancer photothermal therapy.},
1039     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1040     Author = {Mazzaglia, Antonino and Trapani, Mariachiara and Villari, Valentina and Micali, Norberto and Merlo, Francesca Marino and Zaccaria, Daniela and Sciortino, Maria Teresa and Previti, Francesco and Patane, Salvatore and Scolaro, Luigi Monsu},
1041     Date = {MAY 1 2008},
1042     Date-Added = {2012-12-17 16:52:15 +0000},
1043     Date-Modified = {2012-12-17 16:52:15 +0000},
1044     Doi = {DOI 10.1021/jp7120033},
1045     Journal = jpcc,
1046     Pages = {6764-6769},
1047     Publisher = {AMER CHEMICAL SOC},
1048     Timescited = {0},
1049     Title = {Amphiphilic Cyclodextrins as Capping Agents for Gold Colloids: A Spectroscopic Investigation with Perspectives in Photothermal Therapy},
1050     Volume = {112},
1051     Year = {2008},
1052     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp7120033}}
1053    
1054     @article{Gnyawali:2008lp,
1055     Abstract = {Tissue surface temperature distribution on the treatment site can serve as an indicator for the effectiveness of a photothermal therapy. In this study, both infrared thermography and theoretical simulation were used to determine the surface temperature distribution during laser irradiation of both gel phantom and animal tumors. Selective photothermal interaction was attempted by using intratumoral indocyanine green enhancement and irradiation via a near-infrared laser. An immunoadjuvant was also used to enhance immunological responses during tumor treatment. Monte Carlo method for tissue absorption of light and finite difference method for heat diffusion in tissue were used to simulate the temperature distribution during the selective laser photothermal interaction. An infrared camera was used to capture the thermal images during the laser treatment and the surface temperature was determined. Our findings show that the theoretical and experimental results are in good agreement and that the surface temperature of irradiated tissue can be controlled with appropriate dye and adjuvant enhancement. These results can be used to control the laser tumor treatment parameters and to optimize the treatment outcome. More importantly, when used with immunotherapy as a precursor of immunological responses, the selective photothermal treatment can be guided by the tissue temperature profiles both in the tumor and on the surface.},
1056     Address = {TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY},
1057     Author = {Gnyawali, Surya C. and Chen, Yicho and Wu, Feng and Bartels, Kenneth E. and Wicksted, James P. and Liu, Hong and Sen, Chandan K. and Chen, Wei R.},
1058     Date = {FEB 2008},
1059     Date-Added = {2012-12-17 16:52:08 +0000},
1060     Date-Modified = {2013-02-18 17:32:43 +0000},
1061     Doi = {DOI 10.1007/s11517-007-0251-5},
1062     Journal = {Med. Biol. Eng. Comput.},
1063     Keywords = {infrared thermography; indocyanine green; glycated chitosan; surface temperature; Monte Carlo simulation},
1064     Pages = {159-168},
1065     Publisher = {SPRINGER HEIDELBERG},
1066     Timescited = {0},
1067     Title = {Temperature Measurement on Tissue Surface During Laser Irradiation},
1068     Volume = {46},
1069     Year = {2008},
1070     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11517-007-0251-5}}
1071    
1072     @article{Petrova:2007ad,
1073     Abstract = {This paper describes our recent time-resolved spectroscopy studies of the properties of gold particles at high laser excitation levels. In these experiments, an intense pump laser pulse rapidly heats the particle, creating very high lattice temperatures - up to the melting point of bulk gold. These high temperatures can have dramatic effects on the particle and the surroundings. The lattice temperature created is determined by observing the coherently excited the vibrational modes of the particles. The periods of these modes depend on temperature, thus, they act as an internal thermometer. We have used these experiments to provide values for the threshold temperatures for explosive boiling of the solvent surrounding the particles, and laser induced structural transformations in non-spherical particles. The results of these experiments are relevant to the use of metal nanoparticles in photothermal therapy, where laser induced heating is used to selectively kill cells.},
1074     Address = {LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY},
1075     Author = {Petrova, Hristina and Hu, Min and Hartland, Gregory V.},
1076     Date = {2007},
1077     Date-Added = {2012-12-17 16:52:01 +0000},
1078     Date-Modified = {2013-02-18 17:32:23 +0000},
1079     Doi = {DOI 10.1524/zpch.2007.221.3.361},
1080     Journal = {Z Phys. Chem.},
1081     Keywords = {metal nanoparticles; phonon modes; photothermal properties; laser-induced heating},
1082     Pages = {361-376},
1083     Publisher = {OLDENBOURG VERLAG},
1084     Timescited = {2},
1085     Title = {Photothermal Properties of Gold Nanoparticles},
1086     Volume = {221},
1087     Year = {2007},
1088     Bdsk-Url-1 = {http://dx.doi.org/10.1524/zpch.2007.221.3.361}}
1089    
1090     @article{Jain:2007ux,
1091     Abstract = {Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this review, we discuss the SPR-enhanced optical properties of noble metal nanoparticles, with an emphasis on the recent advances in the utility of these plasmonic properties in molecular-specific imaging and sensing, photo-diagnostics, and selective photothermal therapy. The strongly enhanced SPR scattering from Au nanoparticles makes them useful as bright optical tags for molecular-specific biological imaging and detection using simple dark-field optical microscopy. On the other hand, the SPR absorption of the nanoparticles has allowed their use in the selective laser photothermal therapy of cancer. We also discuss the sensitivity of the nanoparticle SPR frequency to the local medium dielectric constant, which has been successfully exploited for the optical sensing of chemical and biological analytes. Plasmon coupling between metal nanoparticle pairs is also discussed, which forms the basis for nanoparticle assembly-based biodiagnostics and the plasmon ruler for dynamic measurement of nanoscale distances in biological systems.},
1092     Address = {233 SPRING STREET, NEW YORK, NY 10013 USA},
1093     Author = {Jain, Prashant K. and Huang, Xiaohua and El-Sayed, Ivan H. and El-Sayad, Mostafa A.},
1094     Date = {SEP 2007},
1095     Date-Added = {2012-12-17 16:51:52 +0000},
1096     Date-Modified = {2013-02-18 17:25:37 +0000},
1097     Doi = {DOI 10.1007/s11468-007-9031-1},
1098     Journal = {Plasmonics},
1099     Keywords = {surface plasmon resonance (SPR); SPR sensing; Mie scattering; metal nanocrystals for biodiagnostics; photothermal therapy; plasmon coupling},
1100     Number = {3},
1101     Pages = {107-118},
1102     Publisher = {SPRINGER},
1103     Timescited = {2},
1104     Title = {Review of Some Interesting Surface Plasmon Resonance-Enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems},
1105     Volume = {2},
1106     Year = {2007},
1107     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11468-007-9031-1}}
1108    
1109     @techreport{Goddard1998,
1110     Author = {Kimura, Y. and Cagin, T. and Goddard III, W.A.},
1111     Date-Added = {2012-12-05 22:18:01 +0000},
1112     Date-Modified = {2012-12-05 22:18:01 +0000},
1113     Institution = {California Institute of Technology},
1114     Lastchecked = {January 19, 2011},
1115     Number = {003},
1116     Title = {The Quantum Sutton-Chen Many Body Potential for Properties of fcc Metals},
1117     Url = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf},
1118     Year = {1998},
1119     Bdsk-Url-1 = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf}}
1120    
1121 gezelter 4063 @article{Kuang:2010if,
1122 kstocke1 4059 Author = {Shenyu Kuang and J. Daniel Gezelter},
1123     Date-Added = {2012-12-05 22:18:01 +0000},
1124 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1125 kstocke1 4059 Journal = {J. Chem. Phys.},
1126     Keywords = {NIVS, RNEMD, NIVS-RNEMD},
1127     Month = {October},
1128     Pages = {164101-1 - 164101-9},
1129     Title = {A Gentler Approach to RNEMD: Nonisotropic Velocity Scaling for Computing Thermal Conductivity and Shear Viscosity},
1130     Volume = {133},
1131     Year = {2010}}
1132    
1133 gezelter 4063 @article{Kuang:2012fe,
1134 kstocke1 4059 Author = {Shenyu Kuang and J. Daniel Gezelter},
1135     Date-Added = {2012-12-05 22:18:01 +0000},
1136 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1137 kstocke1 4059 Journal = {Mol. Phys.},
1138     Keywords = {VSS, RNEMD, VSS-RNEMD},
1139     Month = {May},
1140     Number = {9-10},
1141     Pages = {691-701},
1142     Title = {Velocity Shearing and Scaling RNEMD: A Minimally Perturbing Method for Simulating Temperature and Momentum Gradients},
1143     Volume = {110},
1144     Year = {2012}}
1145    
1146     @article{doi:10.1080/0026897031000068578,
1147     Abstract = { Using equilibrium and non-equilibrium molecular dynamics simulations, we determine the Kapitza resistance (or thermal contact resistance) at a model liquid-solid interface. The Kapitza resistance (or the associated Kapitza length) can reach appreciable values when the liquid does not wet the solid. The analogy with the hydrodynamic slip length is discussed. },
1148     Author = {Barrat, Jean-Louis and Chiaruttini, Fran{\c c}ois},
1149     Date-Added = {2011-12-13 17:17:05 -0500},
1150     Date-Modified = {2011-12-13 17:17:05 -0500},
1151     Doi = {10.1080/0026897031000068578},
1152     Eprint = {http://tandfprod.literatumonline.com/doi/pdf/10.1080/0026897031000068578},
1153     Journal = {Mol. Phys.},
1154     Number = {11},
1155     Pages = {1605-1610},
1156     Title = {Kapitza Resistance at the Liquid--Solid Interface},
1157     Url = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
1158     Volume = {101},
1159     Year = {2003},
1160     Bdsk-Url-1 = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
1161     Bdsk-Url-2 = {http://dx.doi.org/10.1080/0026897031000068578}}
1162    
1163     @article{Medina2011,
1164     Abstract = {Molecular dynamics (MD) simulations are carried out on a system of rigid or flexible water molecules at a series of temperatures between 273 and 368&#xa0;K. Collective transport coefficients, such as shear and bulk viscosities are calculated, and their behavior is systematically investigated as a function of flexibility and temperature. It is found that by including the intramolecular terms in the potential the calculated viscosity values are in overall much better agreement, compared to earlier and recent available experimental data, than those obtained with the rigid SPC/E model. The effect of the intramolecular degrees of freedom on transport properties of liquid water is analyzed and the incorporation of polarizability is discussed for further improvements. To our knowledge the present study constitutes the first compendium of results on viscosities for pure liquid water, including flexible models, that has been assembled.},
1165     Author = {J.S. Medina and R. Prosmiti and P. Villarreal and G. Delgado-Barrio and G. Winter and B. Gonz{\'a}lez and J.V. Alem{\'a}n and C. Collado},
1166     Date-Added = {2011-12-13 17:08:34 -0500},
1167     Date-Modified = {2011-12-13 17:08:49 -0500},
1168     Doi = {10.1016/j.chemphys.2011.07.001},
1169     Issn = {0301-0104},
1170     Journal = {Chemical Physics},
1171     Keywords = {Viscosity calculations},
1172     Number = {1-3},
1173     Pages = {9 - 18},
1174     Title = {Molecular Dynamics Simulations of Rigid and Flexible Water Models: Temperature Dependence of Viscosity},
1175     Url = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
1176     Volume = {388},
1177     Year = {2011},
1178     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
1179     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.chemphys.2011.07.001}}
1180    
1181     @book{WagnerKruse,
1182     Address = {Berlin},
1183     Author = {W. Wagner and A. Kruse},
1184     Date-Added = {2011-12-13 14:57:08 -0500},
1185     Date-Modified = {2011-12-13 14:57:08 -0500},
1186     Publisher = {Springer-Verlag},
1187     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
1188     Year = {1998}}
1189    
1190 gezelter 4063 @article{Shenogina:2009ix,
1191 kstocke1 4059 Author = {Shenogina, Natalia and Godawat, Rahul and Keblinski, Pawel and Garde, Shekhar},
1192     Date-Added = {2011-12-13 12:48:51 -0500},
1193 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1194 kstocke1 4059 Doi = {10.1103/PhysRevLett.102.156101},
1195     Journal = {Phys. Rev. Lett.},
1196     Month = {Apr},
1197     Number = {15},
1198     Numpages = {4},
1199     Pages = {156101},
1200     Publisher = {American Physical Society},
1201     Title = {How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces},
1202     Volume = {102},
1203     Year = {2009},
1204     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.102.156101}}
1205    
1206 gezelter 4063 @article{Patel:2005zm,
1207 kstocke1 4059 Abstract = { Systems with nanoscopic features contain a high density of interfaces. Thermal transport in such systems can be governed by the resistance to heat transfer, the Kapitza resistance (RK), at the interface. Although soft interfaces, such as those between immiscible liquids or between a biomolecule and solvent, are ubiquitous, few studies of thermal transport at such interfaces have been reported. Here we characterize the interfacial conductance, 1/RK, of soft interfaces as a function of molecular architecture, chemistry, and the strength of cross-interfacial intermolecular interactions through detailed molecular dynamics simulations. The conductance of various interfaces studied here, for example, water−organic liquid, water−surfactant, surfactant−organic liquid, is relatively high (in the range of 65−370 MW/m2 K) compared to that for solid−liquid interfaces (∼10 MW/m2 K). Interestingly, the dependence of interfacial conductance on the chemistry and molecular architecture cannot be explained solely in terms of either bulk property mismatch or the strength of intermolecular attraction between the two phases. The observed trends can be attributed to a combination of strong cross-interface intermolecular interactions and good thermal coupling via soft vibration modes present at liquid−liquid interfaces. },
1208     Annote = {PMID: 16277458},
1209     Author = {Patel, Harshit A. and Garde, Shekhar and Keblinski, Pawel},
1210     Date-Added = {2011-12-13 12:48:51 -0500},
1211 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1212 kstocke1 4059 Doi = {10.1021/nl051526q},
1213     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/nl051526q},
1214     Journal = {Nano Lett.},
1215     Number = {11},
1216     Pages = {2225-2231},
1217     Title = {Thermal Resistance of Nanoscopic Liquid−Liquid Interfaces:  Dependence on Chemistry and Molecular Architecture},
1218     Url = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
1219     Volume = {5},
1220     Year = {2005},
1221     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
1222     Bdsk-Url-2 = {http://dx.doi.org/10.1021/nl051526q}}
1223    
1224     @article{melchionna93,
1225     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
1226     Date-Added = {2011-12-12 17:52:15 -0500},
1227     Date-Modified = {2011-12-12 17:52:15 -0500},
1228     Journal = {Mol. Phys.},
1229     Pages = {533-544},
1230     Title = {Hoover {\sc NPT} Dynamics for Systems Varying in Shape and Size},
1231     Volume = 78,
1232     Year = 1993}
1233    
1234     @article{TraPPE-UA.thiols,
1235     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
1236     Date-Added = {2011-12-07 15:06:12 -0500},
1237     Date-Modified = {2011-12-07 15:06:12 -0500},
1238     Doi = {10.1021/jp0549125},
1239     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
1240     Journal = {J. Phys. Chem. B},
1241     Number = {50},
1242     Pages = {24100-24107},
1243     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
1244     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
1245     Volume = {109},
1246     Year = {2005},
1247     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
1248     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
1249    
1250     @article{TraPPE-UA.alkylbenzenes,
1251     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
1252     Date-Added = {2011-12-07 15:06:12 -0500},
1253     Date-Modified = {2011-12-07 15:06:12 -0500},
1254     Doi = {10.1021/jp001044x},
1255     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
1256     Journal = {J. Phys. Chem. B},
1257     Number = {33},
1258     Pages = {8008-8016},
1259     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
1260     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
1261     Volume = {104},
1262     Year = {2000},
1263     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
1264     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
1265    
1266     @article{TraPPE-UA.alkanes,
1267     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
1268     Date-Added = {2011-12-07 15:06:12 -0500},
1269     Date-Modified = {2011-12-07 15:06:12 -0500},
1270     Doi = {10.1021/jp972543+},
1271     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
1272     Journal = {J. Phys. Chem. B},
1273     Number = {14},
1274     Pages = {2569-2577},
1275     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
1276     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
1277     Volume = {102},
1278     Year = {1998},
1279     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
1280     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+},
1281     Bdsk-Url-3 = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B}}
1282    
1283     @article{ISI:000167766600035,
1284     Abstract = {Molecular dynamics simulations are used to
1285     investigate the separation of water films adjacent
1286     to a hot metal surface. The simulations clearly show
1287     that the water layers nearest the surface overheat
1288     and undergo explosive boiling. For thick films, the
1289     expansion of the vaporized molecules near the
1290     surface forces the outer water layers to move away
1291     from the surface. These results are of interest for
1292     mass spectrometry of biological molecules, steam
1293     cleaning of surfaces, and medical procedures.},
1294     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1295     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1296     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1297     Date-Added = {2011-12-07 15:02:32 -0500},
1298     Date-Modified = {2011-12-07 15:02:32 -0500},
1299     Doc-Delivery-Number = {416ED},
1300     Issn = {1089-5639},
1301     Journal = {J. Phys. Chem. A},
1302     Journal-Iso = {J. Phys. Chem. A},
1303     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1304     Language = {English},
1305     Month = {MAR 29},
1306     Number = {12},
1307     Number-Of-Cited-References = {65},
1308     Pages = {2748-2755},
1309     Publisher = {AMER CHEMICAL SOC},
1310     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1311     Times-Cited = {66},
1312     Title = {Explosive Boiling of Water Films Adjacent to Heated Surfaces: A Microscopic Description},
1313     Type = {Article},
1314     Unique-Id = {ISI:000167766600035},
1315     Volume = {105},
1316     Year = {2001}}
1317    
1318     @article{Chen90,
1319     Author = {A.~P. Sutton and J. Chen},
1320     Date-Added = {2011-12-07 15:01:59 -0500},
1321     Date-Modified = {2013-02-18 18:01:16 +0000},
1322     Journal = {Phil. Mag. Lett.},
1323     Pages = {139-146},
1324     Title = {Long-Range Finnis Sinclair Potentials},
1325     Volume = 61,
1326     Year = {1990}}
1327    
1328     @article{PhysRevB.59.3527,
1329     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
1330     Date-Added = {2011-12-07 15:01:36 -0500},
1331     Date-Modified = {2013-02-18 18:00:57 +0000},
1332     Doi = {10.1103/PhysRevB.59.3527},
1333     Journal = {Phys. Rev. B},
1334     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
1335     Month = {Feb},
1336     Number = {5},
1337     Numpages = {6},
1338     Pages = {3527-3533},
1339     Publisher = {American Physical Society},
1340     Title = {Molecular-Dynamics Simulations of Glass Formation and Crystallization in Binary Liquid Metals: {C}u-{A}g and {C}u-{N}i},
1341     Volume = {59},
1342     Year = {1999},
1343     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
1344    
1345     @article{Bedrov:2000,
1346     Abstract = {We have applied a new nonequilibrium molecular
1347     dynamics (NEMD) method {[}F. Muller-Plathe,
1348     J. Chem. Phys. 106, 6082 (1997)] previously applied
1349     to monatomic Lennard-Jones fluids in the
1350     determination of the thermal conductivity of
1351     molecular fluids. The method was modified in order
1352     to be applicable to systems with holonomic
1353     constraints. Because the method involves imposing a
1354     known heat flux it is particularly attractive for
1355     systems involving long-range and many-body
1356     interactions where calculation of the microscopic
1357     heat flux is difficult. The predicted thermal
1358     conductivities of liquid n-butane and water using
1359     the imposed-flux NEMD method were found to be in a
1360     good agreement with previous simulations and
1361     experiment. (C) 2000 American Institute of
1362     Physics. {[}S0021-9606(00)50841-1].},
1363     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1364     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1365     Author = {Bedrov, D and Smith, GD},
1366     Date-Added = {2011-12-07 15:00:27 -0500},
1367     Date-Modified = {2011-12-07 15:00:27 -0500},
1368     Doc-Delivery-Number = {369BF},
1369     Issn = {0021-9606},
1370     Journal = {J. Chem. Phys.},
1371     Journal-Iso = {J. Chem. Phys.},
1372     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1373     Language = {English},
1374     Month = {NOV 8},
1375     Number = {18},
1376     Number-Of-Cited-References = {26},
1377     Pages = {8080-8084},
1378     Publisher = {AMER INST PHYSICS},
1379     Read = {1},
1380     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1381     Times-Cited = {23},
1382     Title = {Thermal Conductivity of Molecular Fluids from Molecular Dynamics Simulations: Application of a New Imposed-Flux Method},
1383     Type = {Article},
1384     Unique-Id = {ISI:000090151400044},
1385     Volume = {113},
1386     Year = {2000}}
1387    
1388     @article{10.1063/1.3330544,
1389     Author = {Miguel Angel Gonz{\'a}lez and Jos{\'e} L. F. Abascal},
1390     Coden = {JCPSA6},
1391     Date-Added = {2011-12-07 14:59:20 -0500},
1392     Date-Modified = {2011-12-15 13:10:11 -0500},
1393     Doi = {DOI:10.1063/1.3330544},
1394     Eissn = {10897690},
1395     Issn = {00219606},
1396     Journal = {J. Chem. Phys.},
1397     Keywords = {shear strength; viscosity;},
1398     Number = {9},
1399     Pages = {096101},
1400     Publisher = {AIP},
1401     Title = {The Shear Viscosity of Rigid Water Models},
1402     Url = {http://dx.doi.org/doi/10.1063/1.3330544},
1403     Volume = {132},
1404     Year = {2010},
1405     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3330544},
1406     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3330544}}
1407    
1408     @article{doi:10.1021/jp048434u,
1409     Abstract = { The different possible proton-ordered structures of ice Ih for an orthorombic unit cell with 8 water molecules were derived. The number of unique structures was found to be 16. The crystallographic coordinates of these are reported. The energetics of the different polymorphs were investigated by quantum-mechanical density-functional theory calculations and for comparison by molecular-mechanics analytical potential models. The polymorphs were found to be close in energy, i.e., within approximately 0.25 kcal/mol H2O, on the basis of the quantum-chemical DFT methods. At 277 K, the different energy levels are about evenly populated, but at a lower temperature, a transition to an ordered form is expected. This form was found to agree with the ice phase XI. The difference in lattice energies among the polymorphs was rationalized in terms of structural characteristics. The most important parameters to determine the lattice energies were found to be the distributions of water dimer H-bonded pair conformations, in an intricate manner. },
1410     Author = {Hirsch, Tomas K. and Ojam{\"a}e, Lars},
1411     Date-Added = {2011-12-07 14:38:30 -0500},
1412     Date-Modified = {2011-12-07 14:38:30 -0500},
1413     Doi = {10.1021/jp048434u},
1414     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048434u},
1415     Journal = {J. Phys. Chem. B},
1416     Number = {40},
1417     Pages = {15856-15864},
1418     Title = {Quantum-Chemical and Force-Field Investigations of Ice Ih:  Computation of Proton-Ordered Structures and Prediction of Their Lattice Energies},
1419     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1420     Volume = {108},
1421     Year = {2004},
1422     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1423     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048434u}}
1424    
1425     @article{Meineke:2005gd,
1426     Abstract = {OOPSE is a new molecular dynamics simulation program
1427     that is capable of efficiently integrating equations
1428     of motion for atom types with orientational degrees
1429     of freedom (e.g. #sticky# atoms and point
1430     dipoles). Transition metals can also be simulated
1431     using the embedded atom method (EAM) potential
1432     included in the code. Parallel simulations are
1433     carried out using the force-based decomposition
1434     method. Simulations are specified using a very
1435     simple C-based meta-data language. A number of
1436     advanced integrators are included, and the basic
1437     integrator for orientational dynamics provides
1438     substantial improvements over older quaternion-based
1439     schemes.},
1440     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1441     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1442     Date-Added = {2011-12-07 13:33:04 -0500},
1443     Date-Modified = {2011-12-07 13:33:04 -0500},
1444     Doi = {DOI 10.1002/jcc.20161},
1445     Isi = {000226558200006},
1446     Isi-Recid = {142688207},
1447     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1448     Journal = {J. Comput. Chem.},
1449     Keywords = {OOPSE; molecular dynamics},
1450     Month = feb,
1451     Number = {3},
1452     Pages = {252-271},
1453     Publisher = {JOHN WILEY \& SONS INC},
1454     Times-Cited = {9},
1455     Title = {OOPSE: An Object-Oriented Parallel Simulation Engine for Molecular Dynamics},
1456     Volume = {26},
1457     Year = {2005},
1458     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1459     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1460    
1461     @article{hoover85,
1462     Author = {W.~G. Hoover},
1463     Date-Added = {2011-12-06 14:23:41 -0500},
1464     Date-Modified = {2011-12-06 14:23:41 -0500},
1465     Journal = {Phys. Rev. A},
1466     Pages = 1695,
1467     Title = {Canonical Dynamics: Equilibrium Phase-Space Distributions},
1468     Volume = 31,
1469     Year = 1985}
1470    
1471 gezelter 4063 @article{Tenney:2010rp,
1472 kstocke1 4059 Abstract = {The reverse nonequilibrium molecular dynamics
1473     (RNEMD) method calculates the shear viscosity of a
1474     fluid by imposing a nonphysical exchange of momentum
1475     and measuring the resulting shear velocity
1476     gradient. In this study we investigate the range of
1477     momentum flux values over which RNEMD yields usable
1478     (linear) velocity gradients. We find that nonlinear
1479     velocity profiles result primarily from gradients in
1480     fluid temperature and density. The temperature
1481     gradient results from conversion of heat into bulk
1482     kinetic energy, which is transformed back into heat
1483     elsewhere via viscous heating. An expression is
1484     derived to predict the temperature profile resulting
1485     from a specified momentum flux for a given fluid and
1486     simulation cell. Although primarily bounded above,
1487     we also describe milder low-flux limitations. RNEMD
1488     results for a Lennard-Jones fluid agree with
1489     equilibrium molecular dynamics and conventional
1490     nonequilibrium molecular dynamics calculations at
1491     low shear, but RNEMD underpredicts viscosity
1492     relative to conventional NEMD at high shear.},
1493     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1494     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1495     Article-Number = {014103},
1496     Author = {Tenney, Craig M. and Maginn, Edward J.},
1497     Author-Email = {ed@nd.edu},
1498     Date-Added = {2011-12-05 18:29:08 -0500},
1499 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1500 kstocke1 4059 Doc-Delivery-Number = {542DQ},
1501     Doi = {10.1063/1.3276454},
1502     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1503     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1504     Issn = {0021-9606},
1505     Journal = {J. Chem. Phys.},
1506     Journal-Iso = {J. Chem. Phys.},
1507     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1508     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1509     Language = {English},
1510     Month = {JAN 7},
1511     Number = {1},
1512     Number-Of-Cited-References = {20},
1513     Pages = {014103},
1514     Publisher = {AMER INST PHYSICS},
1515     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1516     Times-Cited = {0},
1517     Title = {Limitations and Recommendations for the Calculation of Shear Viscosity using Reverse Nonequilibrium Molecular Dynamics},
1518     Type = {Article},
1519     Unique-Id = {ISI:000273472300004},
1520     Volume = {132},
1521     Year = {2010},
1522     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1523    
1524 gezelter 4063 @article{Muller-Plathe:1999ao,
1525 kstocke1 4059 Abstract = {A nonequilibrium method for calculating the shear
1526     viscosity is presented. It reverses the
1527     cause-and-effect picture customarily used in
1528     nonequilibrium molecular dynamics: the effect, the
1529     momentum flux or stress, is imposed, whereas the
1530     cause, the velocity gradient or shear rate, is
1531     obtained from the simulation. It differs from other
1532     Norton-ensemble methods by the way in which the
1533     steady-state momentum flux is maintained. This
1534     method involves a simple exchange of particle
1535     momenta, which is easy to implement. Moreover, it
1536     can be made to conserve the total energy as well as
1537     the total linear momentum, so no coupling to an
1538     external temperature bath is needed. The resulting
1539     raw data, the velocity profile, is a robust and
1540     rapidly converging property. The method is tested on
1541     the Lennard-Jones fluid near its triple point. It
1542     yields a viscosity of 3.2-3.3, in Lennard-Jones
1543     reduced units, in agreement with literature
1544     results. {[}S1063-651X(99)03105-0].},
1545     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1546     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1547     Author = {M\"{u}ller-Plathe, F},
1548     Date-Added = {2011-12-05 18:18:37 -0500},
1549 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1550 kstocke1 4059 Doc-Delivery-Number = {197TX},
1551     Issn = {1063-651X},
1552     Journal = {Phys. Rev. E},
1553     Journal-Iso = {Phys. Rev. E},
1554     Language = {English},
1555     Month = {MAY},
1556     Number = {5, Part A},
1557     Number-Of-Cited-References = {17},
1558     Pages = {4894-4898},
1559     Publisher = {AMERICAN PHYSICAL SOC},
1560     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1561     Times-Cited = {57},
1562     Title = {Reversing the Perturbation in Nonequilibrium Molecular Dynamics: An Easy Way to Calculate the Shear Viscosity of Fluids},
1563     Type = {Article},
1564     Unique-Id = {ISI:000080382700030},
1565     Volume = {59},
1566     Year = {1999}}
1567    
1568 gezelter 4063 @article{Muller-Plathe:1997wq,
1569 kstocke1 4059 Abstract = {A nonequilibrium molecular dynamics method for
1570     calculating the thermal conductivity is
1571     presented. It reverses the usual cause and effect
1572     picture. The ''effect,'' the heat flux, is imposed
1573     on the system and the ''cause,'' the temperature
1574     gradient is obtained from the simulation. Besides
1575     being very simple to implement, the scheme offers
1576     several advantages such as compatibility with
1577     periodic boundary conditions, conservation of total
1578     energy and total linear momentum, and the sampling
1579     of a rapidly converging quantity (temperature
1580     gradient) rather than a slowly converging one (heat
1581     flux). The scheme is tested on the Lennard-Jones
1582     fluid. (C) 1997 American Institute of Physics.},
1583     Address = {WOODBURY},
1584     Author = {M\"{u}ller-Plathe, F.},
1585     Cited-Reference-Count = {13},
1586     Date = {APR 8},
1587     Date-Added = {2011-12-05 18:18:37 -0500},
1588 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1589 kstocke1 4059 Document-Type = {Article},
1590     Isi = {ISI:A1997WR62000032},
1591     Isi-Document-Delivery-Number = {WR620},
1592     Iso-Source-Abbreviation = {J. Chem. Phys.},
1593     Issn = {0021-9606},
1594     Journal = {J. Chem. Phys.},
1595     Language = {English},
1596     Month = {Apr},
1597     Number = {14},
1598     Page-Count = {4},
1599     Pages = {6082--6085},
1600     Publication-Type = {J},
1601     Publisher = {AMER INST PHYSICS},
1602     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1603     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1604     Source = {J CHEM PHYS},
1605     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1606     Times-Cited = {106},
1607     Title = {A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity},
1608     Volume = {106},
1609     Year = {1997}}
1610    
1611     @article{priezjev:204704,
1612     Author = {Nikolai V. Priezjev},
1613     Date-Added = {2011-11-28 14:39:18 -0500},
1614     Date-Modified = {2011-11-28 14:39:18 -0500},
1615     Doi = {10.1063/1.3663384},
1616     Eid = {204704},
1617     Journal = {J. Chem. Phys.},
1618     Keywords = {channel flow; diffusion; flow simulation; hydrodynamics; molecular dynamics method; pattern formation; random processes; shear flow; slip flow; wetting},
1619     Number = {20},
1620     Numpages = {9},
1621     Pages = {204704},
1622     Publisher = {AIP},
1623     Title = {Molecular Diffusion and Slip Boundary Conditions at Smooth Surfaces with Periodic and Random Nanoscale Textures},
1624     Url = {http://link.aip.org/link/?JCP/135/204704/1},
1625     Volume = {135},
1626     Year = {2011},
1627     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/135/204704/1},
1628     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3663384}}
1629    
1630     @article{bryk:10258,
1631     Author = {Taras Bryk and A. D. J. Haymet},
1632     Date-Added = {2011-11-22 17:06:35 -0500},
1633     Date-Modified = {2011-11-22 17:06:35 -0500},
1634     Doi = {10.1063/1.1519538},
1635     Journal = {J. Chem. Phys.},
1636     Keywords = {liquid structure; molecular dynamics method; water; ice; interface structure},
1637     Number = {22},
1638     Pages = {10258-10268},
1639     Publisher = {AIP},
1640     Title = {Ice 1h/Water Interface of the SPC/E Model: Molecular Dynamics Simulations of the Equilibrium Basal and Prism Interfaces},
1641     Url = {http://link.aip.org/link/?JCP/117/10258/1},
1642     Volume = {117},
1643     Year = {2002},
1644     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/117/10258/1},
1645     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1519538}}
1646    
1647     @misc{openmd,
1648     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
1649     Date-Added = {2011-11-18 15:32:23 -0500},
1650     Date-Modified = {2011-11-18 15:32:23 -0500},
1651     Howpublished = {Available at {\tt http://openmd.net}},
1652     Title = {{OpenMD, an Open Source Engine for Molecular Dynamics}}}
1653    
1654 gezelter 4063 @article{Kuang:2011ef,
1655 kstocke1 4059 Author = {Kuang, Shenyu and Gezelter, J. Daniel},
1656     Date-Added = {2011-11-18 13:03:06 -0500},
1657 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1658 kstocke1 4059 Doi = {10.1021/jp2073478},
1659     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp2073478},
1660     Journal = {J. Phys. Chem. C},
1661     Number = {45},
1662     Pages = {22475-22483},
1663     Title = {Simulating Interfacial Thermal Conductance at Metal-Solvent Interfaces: The Role of Chemical Capping Agents},
1664     Url = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1665     Volume = {115},
1666     Year = {2011},
1667     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1668     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp2073478}}
1669    
1670     @article{10.1063/1.2772547,
1671     Author = {Hideo Kaburaki and Ju Li and Sidney Yip and Hajime Kimizuka},
1672     Coden = {JAPIAU},
1673     Date-Added = {2011-11-01 16:46:32 -0400},
1674     Date-Modified = {2011-11-01 16:46:32 -0400},
1675     Doi = {DOI:10.1063/1.2772547},
1676     Eissn = {10897550},
1677     Issn = {00218979},
1678     Keywords = {argon; Lennard-Jones potential; phonons; thermal conductivity;},
1679     Number = {4},
1680     Pages = {043514},
1681     Publisher = {AIP},
1682     Title = {Dynamical Thermal Conductivity of Argon Crystal},
1683     Url = {http://dx.doi.org/10.1063/1.2772547},
1684     Volume = {102},
1685     Year = {2007},
1686     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2772547}}
1687    
1688     @article{PhysRevLett.82.4671,
1689     Author = {Barrat, Jean-Louis and Bocquet, Lyd\'eric},
1690     Date-Added = {2011-11-01 16:44:29 -0400},
1691     Date-Modified = {2011-11-01 16:44:29 -0400},
1692     Doi = {10.1103/PhysRevLett.82.4671},
1693     Issue = {23},
1694     Journal = {Phys. Rev. Lett.},
1695     Month = {Jun},
1696     Pages = {4671--4674},
1697     Publisher = {American Physical Society},
1698     Title = {Large Slip Effect at a Nonwetting Fluid-Solid Interface},
1699     Url = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1700     Volume = {82},
1701     Year = {1999},
1702     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1703     Bdsk-Url-2 = {http://dx.doi.org/10.1103/PhysRevLett.82.4671}}
1704    
1705     @article{10.1063/1.1610442,
1706     Author = {J. R. Schmidt and J. L. Skinner},
1707     Coden = {JCPSA6},
1708     Date-Added = {2011-10-13 16:28:43 -0400},
1709     Date-Modified = {2011-12-15 13:11:53 -0500},
1710     Doi = {DOI:10.1063/1.1610442},
1711     Eissn = {10897690},
1712     Issn = {00219606},
1713     Journal = {J. Chem. Phys.},
1714     Keywords = {hydrodynamics; Brownian motion; molecular dynamics method; diffusion;},
1715     Number = {15},
1716     Pages = {8062-8068},
1717     Publisher = {AIP},
1718     Title = {Hydrodynamic Boundary Conditions, the Stokes?Einstein Law, and Long-Time Tails in the Brownian Limit},
1719     Url = {http://dx.doi.org/10.1063/1.1610442},
1720     Volume = {119},
1721     Year = {2003},
1722     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1610442}}
1723    
1724     @article{10.1063/1.3274802,
1725     Author = {Ting Chen and Berend Smit and Alexis T. Bell},
1726     Coden = {JCPSA6},
1727     Doi = {DOI:10.1063/1.3274802},
1728     Eissn = {10897690},
1729     Issn = {00219606},
1730     Keywords = {fluctuations; molecular dynamics method; viscosity;},
1731     Number = {24},
1732     Pages = {246101},
1733     Publisher = {AIP},
1734     Title = {Are Pressure Fluctuation-Based Equilibrium Methods Really Worse than Nonequilibrium Methods for Calculating Viscosities?},
1735     Url = {http://dx.doi.org/doi/10.1063/1.3274802},
1736     Volume = {131},
1737     Year = {2009},
1738     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3274802},
1739     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3274802}}
1740 gezelter 4063
1741     @comment{BibDesk Static Groups{
1742     <?xml version="1.0" encoding="UTF-8"?>
1743     <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
1744     <plist version="1.0">
1745     <array>
1746     <dict>
1747     <key>group name</key>
1748     <string>NEMD</string>
1749     <key>keys</key>
1750     <string>Ashurst:1975eu,Hess:2002nr,Evans:2002tg,Vogelsang:1988qv,Picalek:2009rz,Backer:2005sf,Erpenbeck:1984qe,Schelling:2002dp,Maginn:1993kl,Berthier:2002ai,Evans:1986nx,Jiang:2008hc,Vasquez:2004ty,Evans:1982oq</string>
1751     </dict>
1752     <dict>
1753     <key>group name</key>
1754     <string>RNEMD</string>
1755     <key>keys</key>
1756     <string>Kuang:2012fe,Tenney:2010rp,Kuang:2011ef,Muller-Plathe:1997wq,Muller-Plathe:1999ao,Shenogina:2009ix,Patel:2005zm,Stocker:2013cl,Kuang:2010if</string>
1757     </dict>
1758     </array>
1759     </plist>
1760     }}

Properties

Name Value
svn:executable *