ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nonperiodicVSS/nonperiodicVSS.bib
Revision: 4078
Committed: Fri Mar 14 19:50:31 2014 UTC (10 years, 3 months ago) by kstocke1
File size: 106715 byte(s)
Log Message:
Nearly done

File Contents

# User Rev Content
1 kstocke1 4059 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 kstocke1 4078 %% Created for Kelsey Stocker at 2014-03-14 15:40:59 -0400
6 kstocke1 4059
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11     @string{acp = {Adv. Chem. Phys.}}
12    
13     @string{bj = {Biophys. J.}}
14    
15     @string{ccp5 = {CCP5 Information Quarterly}}
16    
17     @string{cp = {Chem. Phys.}}
18    
19     @string{cpl = {Chem. Phys. Lett.}}
20    
21     @string{ea = {Electrochim. Acta}}
22    
23     @string{jacs = {J. Am. Chem. Soc.}}
24    
25     @string{jbc = {J. Biol. Chem.}}
26    
27     @string{jcat = {J. Catalysis}}
28    
29     @string{jcc = {J. Comp. Chem.}}
30    
31     @string{jcop = {J. Comp. Phys.}}
32    
33     @string{jcp = {J. Chem. Phys.}}
34    
35     @string{jctc = {J. Chem. Theory Comp.}}
36    
37     @string{jmc = {J. Med. Chem.}}
38    
39     @string{jml = {J. Mol. Liq.}}
40    
41     @string{jmm = {J. Mol. Model.}}
42    
43     @string{jpc = {J. Phys. Chem.}}
44    
45     @string{jpca = {J. Phys. Chem. A}}
46    
47     @string{jpcb = {J. Phys. Chem. B}}
48    
49     @string{jpcc = {J. Phys. Chem. C}}
50    
51     @string{jpcl = {J. Phys. Chem. Lett.}}
52    
53     @string{mp = {Mol. Phys.}}
54    
55     @string{pams = {Proc. Am. Math Soc.}}
56    
57     @string{pccp = {Phys. Chem. Chem. Phys.}}
58    
59     @string{pnas = {Proc. Natl. Acad. Sci. USA}}
60    
61     @string{pr = {Phys. Rev.}}
62    
63     @string{pra = {Phys. Rev. A}}
64    
65     @string{prb = {Phys. Rev. B}}
66    
67     @string{pre = {Phys. Rev. E}}
68    
69     @string{prl = {Phys. Rev. Lett.}}
70    
71     @string{rmp = {Rev. Mod. Phys.}}
72    
73     @string{ss = {Surf. Sci.}}
74    
75    
76 kstocke1 4078 @article{Jeffery:1915fk,
77     Author = {Jeffery, G. B.},
78     Date-Added = {2014-03-14 19:37:02 +0000},
79     Date-Modified = {2014-03-14 19:40:55 +0000},
80     Doi = {10.1112/plms/s2_14.1.327},
81     Eprint = {http://plms.oxfordjournals.org/content/s2_14/1/327.full.pdf+html},
82     Journal = {Proceedings of the London Mathematical Society},
83     Number = {1242},
84     Pages = {327-338},
85     Title = {On the Steady Rotation of a Solid of Revolution in a Viscous Fluid},
86     Url = {http://plms.oxfordjournals.org/content/s2_14/1/327.short},
87     Volume = {series 2, volume 14},
88     Year = {1915},
89     Bdsk-Url-1 = {http://plms.oxfordjournals.org/content/s2_14/1/327.short},
90     Bdsk-Url-2 = {http://dx.doi.org/10.1112/plms/s2_14.1.327}}
91    
92 gezelter 4077 @article{Schmidt:2003kx,
93     Abstract = {Using molecular dynamics computer simulation, we have calculated the velocity autocorrelation function and diffusion constant for a spherical solute in a dense fluid of spherical solvent particles. The size and mass of the solute particle are related in such a way that we can naturally approach the Brownian limit (when the solute becomes much larger and more massive than the solvent particles). We find that as long as the solute radius is interpreted as an effective hydrodynamic radius, the Stokes-Einstein law with slip boundary conditions is satisfied as the Brownian limit is approached (specifically, when the solute is roughly 100 times more massive than the solvent particles). In contrast, the Stokes-Einstein law is not satisfied for a tagged particle of the neat solvent. We also find that in the Brownian limit the amplitude of the long-time tail of the solute's velocity autocorrelation function is in good agreement with theoretical hydrodynamic predictions. When the solvent density is substantially lower than the triple density, the Stokes-Einstein law is no longer satisfied, and the amplitude of the long-time tail is not in good agreement with theoretical predictions, signaling the breakdown of hydrodynamics. (C) 2003 American Institute of Physics.},
94     Author = {Schmidt, JR and Skinner, JL},
95     Date-Added = {2014-03-14 18:36:17 +0000},
96     Date-Modified = {2014-03-14 18:36:17 +0000},
97     Doi = {DOI 10.1063/1.1610442},
98     Journal = jcp,
99     Pages = {8062-8068},
100     Title = {Hydrodynamic boundary conditions, the Stokes-Einstein law, and long-time tails in the Brownian limit},
101     Volume = 119,
102     Year = 2003,
103     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1610442}}
104    
105     @article{Schmidt:2004fj,
106     Abstract = {Using molecular dynamics computer simulation, we have calculated the velocity autocorrelation function and diffusion constant for a variety of solutes in a dense fluid of spherical solvent particles. We explore the effects of surface roughness of the solute on the resulting hydrodynamic boundary condition as we naturally approach the Brownian limit (when the solute becomes much larger and more massive than the solvent particles). We find that when the solute and solvent interact through a purely repulsive isotropic potential, in the Brownian limit the Stokes-Einstein law is satisfied with slip boundary conditions. However, when surface roughness is introduced through an anisotropic solute-solvent interaction potential, we find that the Stokes-Einstein law is satisfied with stick boundary conditions. In addition, when the attractive strength of a short-range isotropic solute-solvent potential is increased, the solute becomes dressed with solvent particles, making it effectively rough, and so stick boundary conditions are again recovered.},
107     Author = {Schmidt, JR and Skinner, JL},
108     Date-Added = {2014-03-14 18:36:17 +0000},
109     Date-Modified = {2014-03-14 18:36:17 +0000},
110     Doi = {DOI 10.1021/jp037185r},
111     Journal = jpcb,
112     Pages = {6767-6771},
113     Title = {Brownian motion of a rough sphere and the Stokes-Einstein Law},
114     Volume = 108,
115     Year = 2004,
116     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp037185r}}
117    
118 gezelter 4076 @article{Lervik:2009fk,
119     Abstract = {We investigate{,} using transient non-equilibrium molecular-dynamics simulations{,} heat-transfer through nanometer-scale interfaces consisting of n-decane (2-12 nm diameter) droplets in water. Using computer simulation results of the temperature relaxation of the nanodroplet as a function of time we have computed the thermal conductivity and the interfacial conductance of the droplet and the droplet/water interface respectively. We find that the thermal conductivity of the n-decane droplets is insensitive to droplet size{,} whereas the interfacial conductance shows a strong dependence on the droplet radius. We rationalize this behavior in terms of a modification of the n-decane/water surface-tension with droplet curvature. This enhancement in interfacial conductance would contribute{,} in the case of a suspension{,} to an increase in the thermal conductivity with decreasing particle radius. This notion is consistent with recent experimental studies of nanofluids. We also investigate the accuracy of different diffusion equations to model the temperature relaxation in non stationary non equilibrium processes. We show that the modeling of heat transfer across a nanodroplet/fluid interface requires the consideration of the thermal conductivity of the nanodroplet as well as the temperature discontinuity across the interface. The relevance of this result in diffusion models that neglect thermal conductivity effects in the modeling of the temperature relaxation is discussed.},
120     Author = {Lervik, Anders and Bresme, Fernando and Kjelstrup, Signe},
121     Date-Added = {2014-03-14 17:33:22 +0000},
122     Date-Modified = {2014-03-14 17:33:22 +0000},
123     Doi = {10.1039/B817666C},
124     Issue = {12},
125     Journal = {Soft Matter},
126     Pages = {2407-2414},
127     Publisher = {The Royal Society of Chemistry},
128     Title = {Heat transfer in soft nanoscale interfaces: the influence of interface curvature},
129     Url = {http://dx.doi.org/10.1039/B817666C},
130     Volume = {5},
131     Year = {2009},
132     Bdsk-Url-1 = {http://dx.doi.org/10.1039/B817666C}}
133    
134 gezelter 4064 @article{Vogelsang:1988qv,
135     Author = {Vogelsang, R. and Hoheisel, G. and Luckas, M.},
136     Date-Added = {2014-03-13 20:40:44 +0000},
137     Date-Modified = {2014-03-13 20:40:58 +0000},
138     Doi = {10.1080/00268978800100813},
139     Eprint = {http://www.tandfonline.com/doi/pdf/10.1080/00268978800100813},
140     Journal = {Molecular Physics},
141     Number = {6},
142     Pages = {1203-1213},
143     Title = {Shear viscosity and thermal conductivity of the Lennard-Jones liquid computed using molecular dynamics and predicted by a memory function model for a large number of states},
144     Url = {http://www.tandfonline.com/doi/abs/10.1080/00268978800100813},
145     Volume = {64},
146     Year = {1988},
147     Bdsk-Url-1 = {http://www.tandfonline.com/doi/abs/10.1080/00268978800100813},
148     Bdsk-Url-2 = {http://dx.doi.org/10.1080/00268978800100813}}
149    
150 gezelter 4063 @article{Berendsen87,
151     Author = {Berendsen, H. J. C. and Grigera, J. R. and Straatsma, T. P.},
152     Date-Added = {2014-03-13 15:02:07 +0000},
153     Date-Modified = {2014-03-13 15:02:07 +0000},
154     Doi = {10.1021/j100308a038},
155     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/j100308a038},
156     Journal = {The Journal of Physical Chemistry},
157     Number = {24},
158     Pages = {6269-6271},
159     Title = {The missing term in effective pair potentials},
160     Url = {http://pubs.acs.org/doi/abs/10.1021/j100308a038},
161     Volume = {91},
162     Year = {1987},
163     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/j100308a038},
164     Bdsk-Url-2 = {http://dx.doi.org/10.1021/j100308a038}}
165    
166     @article{Stocker:2013cl,
167     Author = {Stocker, Kelsey M. and Gezelter, J. Daniel},
168     Date-Added = {2014-03-13 14:20:18 +0000},
169     Date-Modified = {2014-03-13 14:21:57 +0000},
170     Doi = {10.1021/jp312734f},
171     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp312734f},
172     Journal = {The Journal of Physical Chemistry C},
173     Number = {15},
174     Pages = {7605-7612},
175     Title = {Simulations of Heat Conduction at Thiolate-Capped Gold Surfaces: The Role of Chain Length and Solvent Penetration},
176     Url = {http://pubs.acs.org/doi/abs/10.1021/jp312734f},
177     Volume = {117},
178     Year = {2013},
179     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp312734f},
180     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp312734f}}
181    
182     @article{Picalek:2009rz,
183     Abstract = {Temperature dependence of viscosity of butyl-3-methylimidazolium
184     hexafluorophosphate is investigated by non-equilibrium molecular
185     dynamics simulations with cosine-modulated force in the temperature
186     range from 360 to 480K. It is shown that this method is able to
187     correctly predict the shear viscosity. The simulation setting and
188     choice of the force field are discussed in detail. The all-atom force
189     field exhibits a bad convergence and the shear viscosity is
190     overestimated, while the simple united atom model predicts the kinetics
191     very well. The results are compared with the equilibrium molecular
192     dynamics simulations. The relationship between the diffusion
193     coefficient and viscosity is examined by means of the hydrodynamic
194     radii calculated from the Stokes-Einstein equation and the solvation
195     properties are discussed.},
196     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
197     Affiliation = {Kolafa, J (Reprint Author), Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic. {[}Picalek, Jan; Kolafa, Jiri] Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic.},
198     Author = {Picalek, Jan and Kolafa, Jiri},
199     Author-Email = {jiri.kolafa@vscht.cz},
200     Date-Added = {2014-03-13 14:11:53 +0000},
201     Date-Modified = {2014-03-13 14:12:08 +0000},
202     Doc-Delivery-Number = {448FD},
203     Doi = {10.1080/08927020802680703},
204     Funding-Acknowledgement = {Czech Science Foundation {[}203/07/1006]; Czech Ministry of Education {[}LC512]},
205     Funding-Text = {We gratefully acknowledge a support from the Czech Science Foundation (project 203/07/1006) and the computing facilities from the Czech Ministry of Education (Center for Biomolecules and Complex Molecular Systems, project LC512).},
206     Issn = {0892-7022},
207     Journal = {Mol. Simul.},
208     Journal-Iso = {Mol. Simul.},
209     Keywords = {room temperature ionic liquids; viscosity; non-equilibrium molecular dynamics; solvation; imidazolium},
210     Keywords-Plus = {1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICOCHEMICAL PROPERTIES; COMPUTER-SIMULATION; PHYSICAL-PROPERTIES; IMIDAZOLIUM CATION; FORCE-FIELD; AB-INITIO; TEMPERATURE; CHLORIDE; CONDUCTIVITY},
211     Language = {English},
212     Number = {8},
213     Number-Of-Cited-References = {50},
214     Pages = {685-690},
215     Publisher = {TAYLOR \& FRANCIS LTD},
216     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
217     Times-Cited = {2},
218     Title = {Shear viscosity of ionic liquids from non-equilibrium molecular dynamics simulation},
219     Type = {Article},
220     Unique-Id = {ISI:000266247600008},
221     Volume = {35},
222     Year = {2009},
223     Bdsk-Url-1 = {http://dx.doi.org/10.1080/08927020802680703%7D}}
224    
225     @article{Backer:2005sf,
226     Author = {J. A. Backer and C. P. Lowe and H. C. J. Hoefsloot and P. D. Iedema},
227     Date-Added = {2014-03-13 14:11:38 +0000},
228     Date-Modified = {2014-03-13 14:12:08 +0000},
229     Doi = {10.1063/1.1883163},
230     Eid = {154503},
231     Journal = {J. Chem. Phys.},
232     Keywords = {Poiseuille flow; flow simulation; Lennard-Jones potential; viscosity; boundary layers; computational fluid dynamics},
233     Number = {15},
234     Numpages = {6},
235     Pages = {154503},
236     Publisher = {AIP},
237     Title = {Poiseuille flow to measure the viscosity of particle model fluids},
238     Url = {http://link.aip.org/link/?JCP/122/154503/1},
239     Volume = {122},
240     Year = {2005},
241     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/122/154503/1},
242     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1883163}}
243    
244     @article{Vasquez:2004ty,
245     Abstract = {A method for fast calculation of viscosity from molecular dynamics simulation is revisited. The method consists of using a steady-state periodic perturbation. A methodology to choose the amplitude of the external perturbation, which is one of the major practical issues in the original technique of Gosling et al. {$[$}Mol. Phys. 26: 1475 (1973){$]$} is proposed. The amplitude of the perturbation required for fast caculations and the viscosity values for wide ranges of temperature and density of the Lennard-Jones (LJ) model fluid are reported. The viscosity results are in agreement with recent LJ viscosity calculations. Additionally, the simulations demonstrate that the proposed approach is suitable to efficiently generate viscosity data of good quality.},
246     Author = {Vasquez, V. R. and Macedo, E. A. and Zabaloy, M. S.},
247     Date = {2004/11/02/},
248     Date-Added = {2014-03-13 14:11:31 +0000},
249     Date-Modified = {2014-03-13 14:12:08 +0000},
250     Day = {02},
251     Journal = {Int. J. Thermophys.},
252     M3 = {10.1007/s10765-004-7736-3},
253     Month = {11},
254     Number = {6},
255     Pages = {1799--1818},
256     Title = {Lennard-Jones Viscosities in Wide Ranges of Temperature and Density: Fast Calculations Using a Steady--State Periodic Perturbation Method},
257     Ty = {JOUR},
258     Url = {http://dx.doi.org/10.1007/s10765-004-7736-3},
259     Volume = {25},
260     Year = {2004},
261     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-004-7736-3}}
262    
263     @article{Hess:2002nr,
264     Author = {Berk Hess},
265     Date-Added = {2014-03-13 14:11:23 +0000},
266     Date-Modified = {2014-03-13 14:12:08 +0000},
267     Doi = {10.1063/1.1421362},
268     Journal = {J. Chem. Phys.},
269     Keywords = {viscosity; molecular dynamics method; liquid theory; shear flow},
270     Number = {1},
271     Pages = {209-217},
272     Publisher = {AIP},
273     Title = {Determining the shear viscosity of model liquids from molecular dynamics simulations},
274     Url = {http://link.aip.org/link/?JCP/116/209/1},
275     Volume = {116},
276     Year = {2002},
277     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/116/209/1},
278     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1421362}}
279    
280 kstocke1 4059 @article{Romer2012,
281     Author = {R{\"o}mer, Frank and Lervik, Anders and Bresme, Fernando},
282     Date-Added = {2014-01-08 20:51:36 +0000},
283     Date-Modified = {2014-01-08 20:53:28 +0000},
284     Journal = {J. Chem. Phys.},
285     Pages = {074503-1 - 8},
286     Title = {Nonequilibrium Molecular Dynamics Simulations of the Thermal Conductivity of Water: A Systematic Investigation of the SPC/E and TIP4P/2005 Models},
287     Volume = {137},
288     Year = {2012}}
289    
290     @article{Zhang2005,
291     Author = {Zhang, Meimei and Lussetti, Enrico and de Souza, Lu{\'\i}s and M\"{u}ller-Plathe, Florian},
292     Date-Added = {2014-01-08 20:49:09 +0000},
293     Date-Modified = {2014-01-08 20:51:28 +0000},
294     Journal = {J. Phys. Chem. B},
295     Pages = {15060-15067},
296     Title = {Thermal Conductivities of Molecular Liquids by Reverse Nonequilibrium Molecular Dynamics},
297     Volume = {109},
298     Year = {2005}}
299    
300     @article{Vardeman2011,
301     Author = {Charles F. Vardeman and Kelsey M. Stocker and J. Daniel Gezelter},
302     Date-Added = {2013-09-05 23:48:02 +0000},
303     Date-Modified = {2013-09-05 23:48:02 +0000},
304     Journal = {J. Chem. Theory Comput.},
305     Keywords = {Langevin Hull},
306     Pages = {834-842},
307     Title = {The Langevin Hull: Constant Pressure and Temperature Dynamics for Nonperiodic Systems},
308     Volume = {7},
309     Year = {2011},
310 gezelter 4063 Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QOS4uLy4uLy4uLy4uL1ZvbHVtZXMvVGltZSBNYWNoaW5lIEJhY2t1cHMvVmFyZGVtYW4yMDExLnBkZtIXCxgZV05TLmRhdGFPEQGEAAAAAAGEAAIAABRUaW1lIE1hY2hpbmUgQmFja3VwcwAAAAAAAADMiTMXSCsAAAAAAAIQVmFyZGVtYW4yMDExLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvNWMnJ/r4AAAAAAAAAAP////8AAAkAAAAAAAAAAAAAAAAAAAAAFFRpbWUgTWFjaGluZSBCYWNrdXBzABAACAAAzIlrVwAAABEACAAAyco2/gAAAAEAAAACACVUaW1lIE1hY2hpbmUgQmFja3VwczpWYXJkZW1hbjIwMTEucGRmAAAOACIAEABWAGEAcgBkAGUAbQBhAG4AMgAwADEAMQAuAHAAZABmAA8AKgAUAFQAaQBtAGUAIABNAGEAYwBoAGkAbgBlACAAQgBhAGMAawB1AHAAcwASABEvVmFyZGVtYW4yMDExLnBkZgAAEwAdL1ZvbHVtZXMvVGltZSBNYWNoaW5lIEJhY2t1cHMA//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4AygDPANcCXwJhAmYCcQJ6AogCjAKTApwCoQKuArECwwLGAssAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAACzQ==}}
311 kstocke1 4059
312     @article{EDELSBRUNNER:1994oq,
313     Abstract = {Frequently, data in scientific computing is in its abstract form a finite point set in space, and it is sometimes useful or required to compute what one might call the ''shape'' of the set. For that purpose, this article introduces the formal notion of the family of alpha-shapes of a finite point set in R3. Each shape is a well-defined polytope, derived from the Delaunay triangulation of the point set, with a parameter alpha is-an-element-of R controlling the desired level of detail. An algorithm is presented that constructs the entire family of shapes for a given set of size n in time O(n2), worst case. A robust implementation of the algorithm is discussed, and several applications in the area of scientific computing are mentioned.},
314     Address = {1515 BROADWAY, NEW YORK, NY 10036},
315     Author = {Edelsbrunner, H and Mucke, E.~P.},
316     Date = {JAN 1994},
317     Date-Added = {2013-09-05 23:47:03 +0000},
318     Date-Modified = {2013-09-05 23:47:03 +0000},
319     Journal = {ACM Trans. Graphics},
320     Keywords = {COMPUTATIONAL GRAPHICS; DELAUNAY TRIANGULATIONS; GEOMETRIC ALGORITHMS; POINT SETS; POLYTOPES; ROBUST IMPLEMENTATION; SCIENTIFIC COMPUTING; SCIENTIFIC VISUALIZATION; SIMPLICIAL COMPLEXES; SIMULATED PERTURBATION; 3-DIMENSIONAL SPACE},
321     Pages = {43-72},
322     Publisher = {ASSOC COMPUTING MACHINERY},
323     Timescited = {270},
324     Title = {3-DIMENSIONAL ALPHA-SHAPES},
325     Volume = {13},
326     Year = {1994}}
327    
328     @article{Barber96,
329     Author = {C.~B. Barber and D.~P. Dobkin and H.~T. Huhdanpaa},
330     Date-Added = {2013-09-05 23:46:55 +0000},
331     Date-Modified = {2013-09-05 23:46:55 +0000},
332     Journal = {ACM Trans. Math. Software},
333     Pages = {469-483},
334     Title = {The Quickhull Algorithm for Convex Hulls},
335     Volume = 22,
336     Year = 1996}
337    
338     @article{Sun2008,
339     Author = {Xiuquan Sun and Teng Lin and J. Daniel Gezelter},
340     Date-Added = {2013-09-05 20:13:18 +0000},
341     Date-Modified = {2013-09-05 20:14:17 +0000},
342     Journal = {J. Chem. Phys.},
343     Pages = {234107},
344     Title = {Langevin Dynamics for Rigid Bodies of Arbitrary Shape},
345     Volume = {128},
346     Year = {2008}}
347    
348     @article{Zwanzig,
349     Author = {ChihMing Hu and Robert Zwanzig},
350     Date-Added = {2013-09-05 20:11:32 +0000},
351     Date-Modified = {2013-09-05 20:12:42 +0000},
352     Journal = {J. Chem. Phys.},
353     Number = {11},
354     Pages = {4353-4357},
355     Title = {Rotational Friction Coefficients for Spheroids with the Slipping Boundary Condition},
356     Volume = {60},
357     Year = {1974}}
358    
359     @article{hartland2011,
360     Author = {Hartland, Gregory V.},
361     Date-Added = {2013-02-11 22:54:29 +0000},
362     Date-Modified = {2013-02-18 17:56:29 +0000},
363     Journal = {Chem. Rev.},
364     Pages = {3858-3887},
365     Title = {Optical Studies of Dynamics in Noble Metal Nanostructures},
366     Volume = {11},
367     Year = {2011}}
368    
369     @article{hase:2010,
370     Abstract = {Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang{,} J. A. Carter{,} A. Lagutchev{,} Y. K. Koh{,} N.-H. Seong{,} D. G. Cahill{,} and D. D. Dlott{,} Science{,} 2007{,} 317{,} 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface{,} and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly{,} much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM{,} perpendicular to the interface{,} results in nearly identical temperatures for the CH2 and CH3 groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate{,} the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM{,} there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.},
371     Author = {Zhang, Yue and Barnes, George L. and Yan, Tianying and Hase, William L.},
372     Date-Added = {2012-12-25 17:47:40 +0000},
373     Date-Modified = {2012-12-25 17:47:40 +0000},
374     Doi = {10.1039/B923858C},
375     Issue = {17},
376     Journal = {Phys. Chem. Chem. Phys.},
377     Pages = {4435-4445},
378     Publisher = {The Royal Society of Chemistry},
379     Title = {Model Non-Equilibrium Molecular Dynamics Simulations of Heat Transfer from a Hot Gold Surface to an Alkylthiolate Self-Assembled Monolayer},
380     Url = {http://dx.doi.org/10.1039/B923858C},
381     Volume = {12},
382     Year = {2010},
383     Bdsk-Url-1 = {http://dx.doi.org/10.1039/B923858C}}
384    
385     @article{hase:2011,
386     Abstract = { In a previous article (Phys. Chem. Chem. Phys.2010, 12, 4435), nonequilibrium molecular dynamics (MD) simulations of heat transfer from a hot Au{111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) were presented. The simulations were performed for an H-SAM chain length of eight carbon atoms, and a qualitative agreement with the experiments of Wang et al. (Science2007, 317, 787) was found. Here, simulation results are presented for heat transfer to H-SAM surfaces with carbon chain lengths of 10--20 carbon atoms. Relaxation times for heat transfer are extracted, compared with experiment, and a qualitative agreement is obtained. The same relaxation time is found from either the temperature of the H-SAM or the orientational disorder of the H-SAM versus time. For a simulation model with the Au substrate thermally equilibrated, the relaxation times determined from the simulations are approximately a factor of 4 larger than the experimental values. },
387     Author = {Manikandan, Paranjothy and Carter, Jeffrey A. and Dlott, Dana D. and Hase, William L.},
388     Date-Added = {2012-12-25 17:47:40 +0000},
389     Date-Modified = {2013-02-18 17:57:24 +0000},
390     Doi = {10.1021/jp200672e},
391     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp200672e},
392     Journal = {J. Phys. Chem. C},
393     Number = {19},
394     Pages = {9622-9628},
395     Title = {Effect of Carbon Chain Length on the Dynamics of Heat Transfer at a Gold/Hydrocarbon Interface: Comparison of Simulation with Experiment},
396     Url = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
397     Volume = {115},
398     Year = {2011},
399     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
400     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp200672e}}
401    
402     @article{RevModPhys.61.605,
403     Author = {Swartz, E. T. and Pohl, R. O.},
404     Date-Added = {2012-12-21 20:34:12 +0000},
405     Date-Modified = {2012-12-21 20:34:12 +0000},
406     Doi = {10.1103/RevModPhys.61.605},
407     Issue = {3},
408     Journal = {Rev. Mod. Phys.},
409     Month = {Jul},
410     Pages = {605--668},
411     Publisher = {American Physical Society},
412     Title = {Thermal Boundary Resistance},
413     Url = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
414     Volume = {61},
415     Year = {1989},
416     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
417     Bdsk-Url-2 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
418    
419     @article{packmol,
420     Author = {L. Mart\'{\i}nez and R. Andrade and Ernesto G. Birgin and Jos{\'e} Mario Mart\'{\i}nez},
421     Bibsource = {DBLP, http://dblp.uni-trier.de},
422     Date-Added = {2011-02-01 15:13:02 -0500},
423     Date-Modified = {2013-02-18 18:01:34 +0000},
424     Ee = {http://dx.doi.org/10.1002/jcc.21224},
425     Journal = {J. Comput. Chem.},
426     Number = {13},
427     Pages = {2157-2164},
428     Title = {PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations},
429     Volume = {30},
430     Year = {2009}}
431    
432     @article{doi:10.1021/jp034405s,
433     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
434     Author = {Leng, Y. and Keffer, David J. and Cummings, Peter T.},
435     Date-Added = {2012-12-17 18:38:38 +0000},
436     Date-Modified = {2012-12-17 18:38:38 +0000},
437     Doi = {10.1021/jp034405s},
438     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
439     Journal = {J. Phys. Chem. B},
440     Number = {43},
441     Pages = {11940-11950},
442     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
443     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
444     Volume = {107},
445     Year = {2003},
446     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
447     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
448    
449     @article{hautman:4994,
450     Author = {Joseph Hautman and Michael L. Klein},
451     Date-Added = {2012-12-17 18:38:26 +0000},
452     Date-Modified = {2012-12-17 18:38:26 +0000},
453     Doi = {10.1063/1.457621},
454     Journal = {J. Chem. Phys.},
455     Keywords = {MOLECULAR DYNAMICS CALCULATIONS; SIMULATION; MONOLAYERS; THIOLS; ALKYL COMPOUNDS; CHAINS; SURFACE STRUCTURE; GOLD; SUBSTRATES; CHEMISORPTION; SURFACE PROPERTIES},
456     Number = {8},
457     Pages = {4994-5001},
458     Publisher = {AIP},
459     Title = {Simulation of a Monolayer of Alkyl Thiol Chains},
460     Url = {http://link.aip.org/link/?JCP/91/4994/1},
461     Volume = {91},
462     Year = {1989},
463     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/91/4994/1},
464     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.457621}}
465    
466     @article{vlugt:cpc2007154,
467     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
468     Date-Added = {2012-12-17 18:38:20 +0000},
469     Date-Modified = {2013-02-18 18:04:43 +0000},
470     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
471     Issn = {0010-4655},
472     Journal = {Comput. Phys. Commun.},
473     Keywords = {Gold nanocrystals},
474     Note = {Proceedings of the Conference on Computational Physics 2006: CCP 2006 - Conference on Computational Physics 2006},
475     Number = {1-2},
476     Pages = {154 - 157},
477     Title = {Selective Adsorption of Alkyl Thiols on Gold in Different Geometries},
478     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
479     Volume = {177},
480     Year = {2007},
481     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
482     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
483    
484     @article{landman:1998,
485     Abstract = { Equilibrium structures and thermodynamic properties of dodecanethiol self-assembled monolayers on small (Au140) and larger (Au1289) gold nanocrystallites were investigated with the use of molecular dynamics simulations. Compact passivating monolayers are formed on the (111) and (100) facets of the nanocrystallites, with adsorption site geometries differing from those found on extended flat Au(111) and Au(100) surfaces, as well as with higher packing densities. At lower temperatures the passivating molecules organize into preferentially oriented molecular bundles with the molecules in the bundles aligned approximately parallel to each other. Thermal disordering starts at T ≳200 K, initiating at the boundaries of the bundles and involving generation of intramolecular conformational (gauche) defects which occur first at bonds near the chains' outer terminus and propagate inward toward the underlying gold nanocrystalline surface as the temperature is increased. The disordering process culminates in melting of the molecular bundles, resulting in a uniform orientational distribution of the molecules around the gold nanocrystallites. From the inflection points in the calculated caloric curves, melting temperatures were determined as 280 and 294 K for the monolayers adsorbed on the smaller and larger gold nanocrystallites, respectively. These temperatures are significantly lower than the melting temperature estimated for a self-assembled monolayer of dodecanethiol adsorbed on an extended Au(111) surface. The theoretically predicted disordering mechanisms and melting scenario, resulting in a temperature-broadened transition, support recent experimental investigations. },
486     Author = {Luedtke, W. D. and Landman, Uzi},
487     Date-Added = {2012-12-17 18:38:13 +0000},
488     Date-Modified = {2012-12-17 18:38:13 +0000},
489     Doi = {10.1021/jp981745i},
490     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp981745i},
491     Journal = {J. Phys. Chem. B},
492     Number = {34},
493     Pages = {6566-6572},
494     Title = {Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites},
495     Url = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
496     Volume = {102},
497     Year = {1998},
498     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
499     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp981745i}}
500    
501     @article{PhysRevLett.96.186101,
502     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
503     Date-Added = {2012-12-17 17:44:53 +0000},
504     Date-Modified = {2012-12-17 17:44:53 +0000},
505     Doi = {10.1103/PhysRevLett.96.186101},
506     Journal = prl,
507     Month = {May},
508     Number = {18},
509     Numpages = {4},
510     Pages = {186101},
511     Publisher = {American Physical Society},
512     Title = {Thermal Conductance of Hydrophilic and Hydrophobic Interfaces},
513     Volume = {96},
514     Year = {2006},
515     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.96.186101}}
516    
517     @article{Larson:2007hw,
518     Abstract = {Nanoparticles which consist of a plasmonic layer and an iron oxide moiety could provide a promising platform for development of multimodal imaging and therapy approaches in future medicine. However, the feasibility of this platform has yet to be fully explored. In this study we demonstrated the use of gold-coated iron oxide hybrid nanoparticles for combined molecular specific MRI/optical imaging and photothermal therapy of cancer cells. The gold layer exhibits a surface plasmon resonance that provides optical contrast due to light scattering in the visible region and also presents a convenient surface for conjugating targeting moieties, while the iron oxide cores give strong T-2 (spin-spin relaxation time) contrast. The strong optical absorption of the plasmonic gold layer also makes these nanoparticles a promising agent for photothermal therapy. We synthesized hybrid nanoparticles which specifically target epidermal growth factor receptor (EGFR), a common biomarker for many epithelial cancers. We demonstrated molecular specific MRI and optical imaging in MDA-MB-468 breast cancer cells. Furthermore, we showed that receptor-mediated aggregation of anti-EGFR hybrid nanoparticles allows selective destruction of highly proliferative cancer cells using a nanosecond pulsed laser at 700 nm wavelength, a significant shift from the peak absorbance of isolated hybrid nanoparticles at 532 nm.},
519     Address = {DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND},
520     Author = {Larson, Timothy A. and Bankson, James and Aaron, Jesse and Sokolov, Konstantin},
521     Date = {AUG 15 2007},
522     Date-Added = {2012-12-17 17:44:44 +0000},
523     Date-Modified = {2013-02-18 17:34:30 +0000},
524     Doi = {ARTN 325101},
525     Journal = {Nanotechnology},
526     Pages = {325101},
527     Publisher = {IOP PUBLISHING LTD},
528     Timescited = {5},
529     Title = {Hybrid Plasmonic Magnetic Nanoparticles as Molecular Specific Agents for MRI/Optical Imaging and Photothermal Therapy of Cancer Cells},
530     Volume = {18},
531     Year = {2007},
532     Bdsk-Url-1 = {http://dx.doi.org/325101}}
533    
534     @article{Huff:2007ye,
535     Abstract = {Plasmon-resonant gold nanorods, which have large absorption cross sections at near-infrared frequencies, are excellent candidates as multifunctional agents for image-guided therapies based on localized hyperthermia. The controlled modification of the surface chemistry of the nanorods is of critical importance, as issues of cell-specific targeting and nonspecific uptake must be addressed prior to clinical evaluation. Nanorods coated with cetyltrimethylammonium bromide (a cationic surfactant used in nanorod synthesis) are internalized within hours into KB cells by a nonspecific uptake pathway, whereas the careful removal of cetyltrimethylammonium bromide from nanorods functionalized with folate results in their accumulation on the cell surface over the same time interval. In either case, the nanorods render the tumor cells highly susceptible to photothermal damage when irradiated at the nanorods' longitudinal plasmon resonance, generating extensive blebbing of the cell membrane at laser fluences as low as 30 J/cm(2).},
536     Address = {UNITEC HOUSE, 3RD FLOOR, 2 ALBERT PLACE, FINCHLEY CENTRAL, LONDON, N3 1QB, ENGLAND},
537     Author = {Huff, Terry B. and Tong, Ling and Zhao, Yan and Hansen, Matthew N. and Cheng, Ji-Xin and Wei, Alexander},
538     Date = {FEB 2007},
539     Date-Added = {2012-12-17 17:44:36 +0000},
540     Date-Modified = {2012-12-17 17:44:36 +0000},
541     Doi = {DOI 10.2217/17435889.2.1.125},
542     Journal = {Nanomedicine},
543     Keywords = {folate receptor; hyperthermia; imaging; nanorods; nonlinear optical microscopy; plasmon resonance; targeted therapy},
544     Pages = {125-132},
545     Publisher = {FUTURE MEDICINE LTD},
546     Timescited = {13},
547     Title = {Hyperthermic Effects of Gold Nanorods on Tumor Cells},
548     Volume = {2},
549     Year = {2007},
550     Bdsk-Url-1 = {http://dx.doi.org/10.2217/17435889.2.1.125}}
551    
552 gezelter 4063 @article{Jiang:2008hc,
553 kstocke1 4059 Abstract = {Abstract: Nonequilibrium molecular dynamics simulations with the nonpolarizable SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121, 9549) force fields have been employed to calculate the thermal conductivity and other associated properties of methane hydrate over a temperature range from 30 to 260 K. The calculated results are compared to experimental data over this same range. The values of the thermal conductivity calculated with the COS/G2 model are closer to the experimental values than are those calculated with the nonpolarizable SPC/E model. The calculations match the temperature trend in the experimental data at temperatures below 50 K; however, they exhibit a slight decrease in thermal conductivity at higher temperatures in comparison to an opposite trend in the experimental data. The calculated thermal conductivity values are found to be relatively insensitive to the occupancy of the cages except at low (T d 50 K) temperatures, which indicates that the differences between the two lattice structures may have a more dominant role than generally thought in explaining the low thermal conductivity of methane hydrate compared to ice Ih. The introduction of defects into the water lattice is found to cause a reduction in the thermal conductivity but to have a negligible impact on its temperature dependence.},
554     Affiliation = {National Energy Technology Laboratory, U.S. Department of Energy, Post Office Box 10940, Pittsburgh, Pennsylvania 15236, Department of Chemistry and Center for Molecular and Materials Simulations, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and Parsons Project Services, Inc., South Park, Pennsylvania 15129},
555     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
556     Date-Added = {2012-12-17 16:57:19 +0000},
557 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
558 kstocke1 4059 Doi = {10.1021/jp802942v},
559     Issn = {1520-6106},
560     Journal = jpcb,
561     Pages = {10207-10216},
562     Title = {Molecular Dynamics Simulations of the Thermal Conductivity of Methane Hydrate},
563     Volume = {112},
564     Year = {2008},
565     Bdsk-Url-1 = {http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp802942v}}
566    
567     @article{Schelling:2002dp,
568     Author = {Schelling, P. K. and Phillpot, S. R. and Keblinski, P.},
569     Date = {APR 1 2002},
570     Date-Added = {2012-12-17 16:57:10 +0000},
571 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
572 kstocke1 4059 Doi = {10.1103/PhysRevB.65.144306},
573     Isi = {WOS:000174980300055},
574     Issn = {1098-0121},
575     Journal = prb,
576     Month = {Apr},
577     Number = {14},
578     Pages = {144306},
579     Publication-Type = {J},
580     Times-Cited = {288},
581     Title = {Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity},
582     Volume = {65},
583     Year = {2002},
584     Z8 = {12},
585     Z9 = {296},
586     Zb = {0},
587     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.65.144306}}
588    
589 gezelter 4063 @article{Evans:2002tg,
590 kstocke1 4059 Author = {Evans, D. J. and Searles, D. J.},
591     Date = {NOV 2002},
592     Date-Added = {2012-12-17 16:56:59 +0000},
593 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
594 kstocke1 4059 Doi = {10.1080/00018730210155133},
595     Isi = {WOS:000179448200001},
596     Issn = {0001-8732},
597     Journal = {Adv. Phys.},
598     Month = {Nov},
599     Number = {7},
600     Pages = {1529--1585},
601     Publication-Type = {J},
602     Times-Cited = {309},
603     Title = {The Fluctuation Theorem},
604     Volume = {51},
605     Year = {2002},
606     Z8 = {3},
607     Z9 = {311},
608     Zb = {9},
609     Bdsk-Url-1 = {http://dx.doi.org/10.1080/00018730210155133}}
610    
611 gezelter 4063 @article{Berthier:2002ai,
612 kstocke1 4059 Author = {Berthier, L. and Barrat, J. L.},
613     Date = {APR 8 2002},
614     Date-Added = {2012-12-17 16:56:47 +0000},
615 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
616 kstocke1 4059 Doi = {10.1063/1.1460862},
617     Isi = {WOS:000174634200036},
618     Issn = {0021-9606},
619     Journal = jcp,
620     Month = {Apr},
621     Number = {14},
622     Pages = {6228--6242},
623     Publication-Type = {J},
624     Times-Cited = {172},
625     Title = {Nonequilibrium Dynamics and Fluctuation-Dissipation Relation in a Sheared Fluid},
626     Volume = {116},
627     Year = {2002},
628     Z8 = {0},
629     Z9 = {172},
630     Zb = {1},
631     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1460862}}
632    
633 gezelter 4063 @article{Maginn:1993kl,
634 kstocke1 4059 Author = {Maginn, E. J. and Bell, A. T. and Theodorou, D. N.},
635     Date = {APR 22 1993},
636     Date-Added = {2012-12-17 16:56:40 +0000},
637 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
638 kstocke1 4059 Doi = {10.1021/j100118a038},
639     Isi = {WOS:A1993KY46600039},
640     Issn = {0022-3654},
641     Journal = jpc,
642     Month = {Apr},
643     Number = {16},
644     Pages = {4173--4181},
645     Publication-Type = {J},
646     Times-Cited = {198},
647     Title = {Transport Diffusivity of Methane in Silicalite from Equilibrium and Nonequilibrium Simulations},
648     Volume = {97},
649     Year = {1993},
650     Z8 = {4},
651     Z9 = {201},
652     Zb = {0},
653     Bdsk-Url-1 = {http://dx.doi.org/10.1021/j100118a038}}
654    
655 gezelter 4063 @article{Erpenbeck:1984qe,
656 kstocke1 4059 Author = {Erpenbeck, J. J.},
657     Date = {1984},
658     Date-Added = {2012-12-17 16:56:32 +0000},
659 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
660 kstocke1 4059 Doi = {10.1103/PhysRevLett.52.1333},
661     Isi = {WOS:A1984SK96700021},
662     Issn = {0031-9007},
663     Journal = prl,
664     Number = {15},
665     Pages = {1333--1335},
666     Publication-Type = {J},
667     Times-Cited = {189},
668     Title = {Shear Viscosity of the Hard-Sphere Fluid via Nonequilibrium Molecular Dynamics},
669     Volume = {52},
670     Year = {1984},
671     Z8 = {0},
672     Z9 = {189},
673     Zb = {1},
674     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.52.1333}}
675    
676 gezelter 4063 @article{Evans:1982oq,
677 kstocke1 4059 Author = {Evans, Denis J.},
678     Date-Added = {2012-12-17 16:56:24 +0000},
679 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
680 kstocke1 4059 Journal = {Phys. Lett. A},
681     Number = {9},
682     Pages = {457--460},
683     Title = {Homogeneous NEMD Algorithm for Thermal Conductivity -- Application of Non-Canonical Linear Response Theory},
684     Ty = {JOUR},
685     Url = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50},
686     Volume = {91},
687     Year = {1982},
688     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50}}
689    
690 gezelter 4063 @article{Ashurst:1975eu,
691 kstocke1 4059 Author = {Ashurst, W. T. and Hoover, W. G.},
692     Date = {1975},
693     Date-Added = {2012-12-17 16:56:05 +0000},
694 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
695 kstocke1 4059 Doi = {10.1103/PhysRevA.11.658},
696     Isi = {WOS:A1975V548400036},
697     Issn = {1050-2947},
698     Journal = pra,
699     Number = {2},
700     Pages = {658--678},
701     Publication-Type = {J},
702     Times-Cited = {295},
703     Title = {Dense-Fluid Shear Viscosity via Nonequilibrium Molecular Dynamics},
704     Volume = {11},
705     Year = {1975},
706     Z8 = {3},
707     Z9 = {298},
708     Zb = {1},
709     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.11.658}}
710    
711     @article{kinaci:014106,
712     Author = {A. Kinaci and J. B. Haskins and T. \c{C}a\u{g}in},
713     Date-Added = {2012-12-17 16:55:56 +0000},
714     Date-Modified = {2012-12-17 16:55:56 +0000},
715     Doi = {10.1063/1.4731450},
716     Eid = {014106},
717     Journal = jcp,
718     Keywords = {argon; elemental semiconductors; Ge-Si alloys; molecular dynamics method; nanostructured materials; porous semiconductors; silicon; thermal conductivity},
719     Number = {1},
720     Numpages = {8},
721     Pages = {014106},
722     Publisher = {AIP},
723     Title = {On Calculation of Thermal Conductivity from Einstein Relation in Equilibrium Molecular Dynamics},
724     Url = {http://link.aip.org/link/?JCP/137/014106/1},
725     Volume = {137},
726     Year = {2012},
727     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/137/014106/1},
728     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.4731450}}
729    
730     @article{che:6888,
731     Author = {Jianwei Che and Tahir Cagin and Weiqiao Deng and William A. Goddard III},
732     Date-Added = {2012-12-17 16:55:48 +0000},
733     Date-Modified = {2012-12-17 16:55:48 +0000},
734     Doi = {10.1063/1.1310223},
735     Journal = jcp,
736     Keywords = {diamond; thermal conductivity; digital simulation; vacancies (crystal); Green's function methods; isotope effects},
737     Number = {16},
738     Pages = {6888-6900},
739     Publisher = {AIP},
740     Title = {Thermal Conductivity of Diamond and Related Materials from Molecular Dynamics Simulations},
741     Url = {http://link.aip.org/link/?JCP/113/6888/1},
742     Volume = {113},
743     Year = {2000},
744     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/113/6888/1},
745     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1310223}}
746    
747     @article{Viscardy:2007rp,
748     Abstract = {The thermal conductivity is calculated with the Helfand-moment method in the Lennard-Jones fluid near the triple point. The Helfand moment of thermal conductivity is here derived for molecular dynamics with periodic boundary conditions. Thermal conductivity is given by a generalized Einstein relation with this Helfand moment. The authors compute thermal conductivity by this new method and compare it with their own values obtained by the standard Green-Kubo method. The agreement is excellent. (C) 2007 American Institute of Physics.},
749     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
750     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
751     Date = {MAY 14 2007},
752     Date-Added = {2012-12-17 16:55:32 +0000},
753     Date-Modified = {2013-02-18 17:58:40 +0000},
754     Doi = {ARTN 184513},
755     Journal = jcp,
756     Pages = {184513},
757     Publisher = {AMER INST PHYSICS},
758     Timescited = {1},
759     Title = {Transport and Helfand Moments in the Lennard-Jones Fluid. II. Thermal Conductivity},
760     Volume = {126},
761     Year = {2007},
762     Bdsk-Url-1 = {http://dx.doi.org/184513}}
763    
764     @article{PhysRev.119.1,
765     Author = {Helfand, Eugene},
766     Date-Added = {2012-12-17 16:55:19 +0000},
767     Date-Modified = {2012-12-17 16:55:19 +0000},
768     Doi = {10.1103/PhysRev.119.1},
769     Journal = {Phys. Rev.},
770     Month = {Jul},
771     Number = {1},
772     Numpages = {8},
773     Pages = {1--9},
774     Publisher = {American Physical Society},
775     Title = {Transport Coefficients from Dissipation in a Canonical Ensemble},
776     Volume = {119},
777     Year = {1960},
778     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRev.119.1}}
779    
780 gezelter 4063 @article{Evans:1986nx,
781 kstocke1 4059 Author = {Evans, Denis J.},
782     Date-Added = {2012-12-17 16:55:19 +0000},
783 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
784 kstocke1 4059 Doi = {10.1103/PhysRevA.34.1449},
785     Journal = {Phys. Rev. A},
786     Month = {Aug},
787     Number = {2},
788     Numpages = {4},
789     Pages = {1449--1453},
790     Publisher = {American Physical Society},
791     Title = {Thermal Conductivity of the Lennard-Jones Fluid},
792     Volume = {34},
793     Year = {1986},
794     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.34.1449}}
795    
796     @article{MASSOBRIO:1984bl,
797     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
798     Author = {Massobrio, C and Ciccotti, G},
799     Date = {1984},
800     Date-Added = {2012-12-17 16:55:03 +0000},
801     Date-Modified = {2012-12-21 22:42:02 +0000},
802     Journal = pra,
803     Pages = {3191-3197},
804     Publisher = {AMERICAN PHYSICAL SOC},
805     Timescited = {29},
806     Title = {Lennard-Jones Triple-Point Conductivity via Weak External Fields},
807     Volume = {30},
808     Year = {1984}}
809    
810     @article{PhysRevB.37.5677,
811     Author = {Heyes, David M.},
812     Date-Added = {2012-12-17 16:54:55 +0000},
813     Date-Modified = {2012-12-17 16:54:55 +0000},
814     Doi = {10.1103/PhysRevB.37.5677},
815     Journal = prb,
816     Month = {Apr},
817     Number = {10},
818     Numpages = {19},
819     Pages = {5677--5696},
820     Publisher = {American Physical Society},
821     Title = {Transport Coefficients of Lennard-Jones Fluids: A Molecular-Dynamics and Effective-Hard-Sphere Treatment},
822     Volume = {37},
823     Year = {1988},
824     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.37.5677}}
825    
826     @article{PhysRevB.80.195406,
827     Author = {Juv\'e, Vincent and Scardamaglia, Mattia and Maioli, Paolo and Crut, Aur\'elien and Merabia, Samy and Joly, Laurent and Del Fatti, Natalia and Vall\'ee, Fabrice},
828     Date-Added = {2012-12-17 16:54:55 +0000},
829     Date-Modified = {2012-12-17 16:54:55 +0000},
830     Doi = {10.1103/PhysRevB.80.195406},
831     Journal = prb,
832     Month = {Nov},
833     Number = {19},
834     Numpages = {6},
835     Pages = {195406},
836     Publisher = {American Physical Society},
837     Title = {Cooling Dynamics and Thermal Interface Resistance of Glass-Embedded Metal Nanoparticles},
838     Volume = {80},
839     Year = {2009},
840     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.80.195406}}
841    
842     @article{Wang10082007,
843     Abstract = {At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.},
844     Author = {Wang, Zhaohui and Carter, Jeffrey A. and Lagutchev, Alexei and Koh, Yee Kan and Seong, Nak-Hyun and Cahill, David G. and Dlott, Dana D.},
845     Date-Added = {2012-12-17 16:54:31 +0000},
846     Date-Modified = {2012-12-17 16:54:31 +0000},
847     Doi = {10.1126/science.1145220},
848     Eprint = {http://www.sciencemag.org/content/317/5839/787.full.pdf},
849     Journal = {Science},
850     Number = {5839},
851     Pages = {787-790},
852     Title = {Ultrafast Flash Thermal Conductance of Molecular Chains},
853     Url = {http://www.sciencemag.org/content/317/5839/787.abstract},
854     Volume = {317},
855     Year = {2007},
856     Bdsk-Url-1 = {http://www.sciencemag.org/content/317/5839/787.abstract},
857     Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.1145220}}
858    
859     @article{doi:10.1021/la904855s,
860     Annote = {PMID: 20166728},
861     Author = {Alper, Joshua and Hamad-Schifferli, Kimberly},
862     Date-Added = {2012-12-17 16:54:12 +0000},
863     Date-Modified = {2013-02-18 17:57:03 +0000},
864     Doi = {10.1021/la904855s},
865     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la904855s},
866     Journal = {Langmuir},
867     Number = {6},
868     Pages = {3786-3789},
869     Title = {Effect of Ligands on Thermal Dissipation from Gold Nanorods},
870     Url = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
871     Volume = {26},
872     Year = {2010},
873     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
874     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la904855s}}
875    
876     @article{doi:10.1021/jp048375k,
877     Abstract = { Water- and alcohol-soluble AuPd nanoparticles have been investigated to determine the effect of the organic stabilizing group on the thermal conductance G of the particle/fluid interface. The thermal decays of tiopronin-stabilized 3−5-nm diameter AuPd alloy nanoparticles, thioalkylated ethylene glycol-stabilized 3−5-nm diameter AuPd nanoparticles, and cetyltrimethylammonium bromide-stabilized 22-nm diameter Au-core/AuPd-shell nanoparticles give thermal conductances G ≈ 100−300 MW m-2 K-1 for the particle/water interfaces, approximately an order of magnitude larger than the conductance of the interfaces between alkanethiol-terminated AuPd nanoparticles and toluene. The similar values of G for particles ranging in size from 3 to 24 nm with widely varying surface chemistry indicate that the thermal coupling between AuPd nanoparticles and water is strong regardless of the self-assembled stabilizing group. },
878     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
879     Date-Added = {2012-12-17 16:54:03 +0000},
880     Date-Modified = {2012-12-17 16:54:03 +0000},
881     Doi = {10.1021/jp048375k},
882     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048375k},
883     Journal = jpcb,
884     Number = {49},
885     Pages = {18870-18875},
886     Title = {AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution},
887     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
888     Volume = {108},
889     Year = {2004},
890     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
891     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048375k}}
892    
893     @article{doi:10.1021/jp8051888,
894     Abstract = { Thermal transport between CTAB passivated gold nanorods and solvent is studied by an optical pump−probe technique. Increasing the free CTAB concentration from 1 mM to 10 mM causes a ∼3× increase in the CTAB layer's effective thermal interface conductance and a corresponding shift in the longitudinal surface plasmon resonance. The transition occurs near the CTAB critical micelle concentration, revealing the importance of the role of free ligand on thermal transport. },
895     Author = {Schmidt, Aaron J. and Alper, Joshua D. and Chiesa, Matteo and Chen, Gang and Das, Sarit K. and Hamad-Schifferli, Kimberly},
896     Date-Added = {2012-12-17 16:54:03 +0000},
897     Date-Modified = {2013-02-18 17:54:59 +0000},
898     Doi = {10.1021/jp8051888},
899     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp8051888},
900     Journal = jpcc,
901     Number = {35},
902     Pages = {13320-13323},
903     Title = {Probing the Gold Nanorod-Ligand-Solvent Interface by Plasmonic Absorption and Thermal Decay},
904     Url = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
905     Volume = {112},
906     Year = {2008},
907     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
908     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp8051888}}
909    
910     @article{PhysRevB.67.054302,
911     Author = {Costescu, Ruxandra M. and Wall, Marcel A. and Cahill, David G.},
912     Date-Added = {2012-12-17 16:53:48 +0000},
913     Date-Modified = {2012-12-17 16:53:48 +0000},
914     Doi = {10.1103/PhysRevB.67.054302},
915     Journal = prb,
916     Month = {Feb},
917     Number = {5},
918     Numpages = {5},
919     Pages = {054302},
920     Publisher = {American Physical Society},
921     Title = {Thermal Conductance of Epitaxial Interfaces},
922     Volume = {67},
923     Year = {2003},
924     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.67.054302}}
925    
926     @article{cahill:793,
927     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
928     Date-Added = {2012-12-17 16:53:36 +0000},
929     Date-Modified = {2012-12-17 16:53:36 +0000},
930     Doi = {10.1063/1.1524305},
931     Journal = {J. Appl. Phys.},
932     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
933     Number = {2},
934     Pages = {793-818},
935     Publisher = {AIP},
936     Title = {Nanoscale Thermal Transport},
937     Url = {http://link.aip.org/link/?JAP/93/793/1},
938     Volume = {93},
939     Year = {2003},
940     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
941     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
942    
943     @article{Eapen:2007mw,
944     Abstract = {In a well-dispersed nanofluid with strong cluster-fluid attraction, thermal conduction paths can arise through percolating amorphouslike interfacial structures. This results in a thermal conductivity enhancement beyond the Maxwell limit of 3 phi, with phi being the nanoparticle volume fraction. Our findings from nonequilibrium molecular dynamics simulations, which are amenable to experimental verification, can provide a theoretical basis for the development of future nanofluids.},
945     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
946     Author = {Eapen, Jacob and Li, Ju and Yip, Sidney},
947     Date = {DEC 2007},
948     Date-Added = {2012-12-17 16:53:30 +0000},
949     Date-Modified = {2013-02-18 17:48:08 +0000},
950     Doi = {ARTN 062501},
951     Journal = pre,
952     Pages = {062501},
953     Publisher = {AMER PHYSICAL SOC},
954     Timescited = {0},
955     Title = {Beyond the Maxwell Limit: Thermal Conduction in Nanofluids with Percolating Fluid Structures},
956     Volume = {76},
957     Year = {2007},
958     Bdsk-Url-1 = {http://dx.doi.org/062501}}
959    
960     @article{Xue:2003ya,
961     Abstract = {Using nonequilibrium molecular dynamics simulations in which a temperature gradient is imposed, we determine the thermal resistance of a model liquid-solid interface. Our simulations reveal that the strength of the bonding between liquid and solid atoms plays a key role in determining interfacial thermal resistance. Moreover, we find that the functional dependence of the thermal resistance on the strength of the liquid-solid interactions exhibits two distinct regimes: (i) exponential dependence for weak bonding (nonwetting liquid) and (ii) power law dependence for strong bonding (wetting liquid). The identification of the two regimes of the Kapitza resistance has profound implications for understanding and designing the thermal properties of nanocomposite materials. (C) 2003 American Institute of Physics.},
962     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
963     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
964     Date = {JAN 1 2003},
965     Date-Added = {2012-12-17 16:53:22 +0000},
966     Date-Modified = {2012-12-17 16:53:22 +0000},
967     Doi = {DOI 10.1063/1.1525806},
968     Journal = jcp,
969     Pages = {337-339},
970     Publisher = {AMER INST PHYSICS},
971     Timescited = {19},
972     Title = {Two Regimes of Thermal Resistance at a Liquid-Solid Interface},
973     Volume = {118},
974     Year = {2003},
975     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1525806}}
976    
977     @article{Xue:2004oa,
978     Abstract = {Using non-equilibrium molecular dynamics simulations in which a temperature gradient is imposed, we study how the ordering of the liquid at the liquid-solid interface affects the interfacial thermal resistance. Our simulations of a simple monoatomic liquid show no effect on the thermal transport either normal to the surface or parallel to the surface. Even for of a liquid that is highly confined between two solids, we find no effect on thermal conductivity. This contrasts with well-known significant effect of confinement on the viscoelastic response. Our findings suggest that the experimentally observed large enhancement of thermal conductivity in suspensions of solid nanosized particles (nanofluids) can not be explained by altered thermal transport properties of the layered liquid. (C) 2004 Elsevier Ltd. All rights reserved.},
979     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
980     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
981     Date = {SEP 2004},
982     Date-Added = {2012-12-17 16:53:22 +0000},
983     Date-Modified = {2013-02-18 17:47:37 +0000},
984     Doi = {DOI 10.1016/ijheatmasstransfer.2004.05.016},
985     Journal = {Int. J. Heat Mass Tran.},
986     Keywords = {interfacial Thermal Resistance; liquid-solid interface; molecular dynamics simulations; nanofluids},
987     Pages = {4277-4284},
988     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
989     Timescited = {29},
990     Title = {Effect of Liquid Layering at the Liquid-Solid Interface on Thermal Transport},
991     Volume = {47},
992     Year = {2004},
993     Bdsk-Url-1 = {http://dx.doi.org/10.1016/ijheatmasstransfer.2004.05.016}}
994    
995     @article{Lee:1999ct,
996     Abstract = {Oxide nanofluids were produced and their thermal conductivities were measured by a transient hot-wire method. The experimental results show that these nanofluids, containing a small amount of nanoparticles, have substantially higher thermal conductivities than the same liquids without nanoparticles. Comparisons between experiments and the Hamilton and Crosser model show that the model can predict the thermal conductivity of nanofluids containing large agglomerated Al2O3 particles. However, the model appears to be inadequate for nanofluids containing CuO particles. This suggests that not only particle shape but size is considered to be dominant in enhancing the thermal conductivity of nanofluids.},
997     Address = {345 E 47TH ST, NEW YORK, NY 10017 USA},
998     Author = {Lee, S and Choi, SUS and Li, S and Eastman, JA},
999     Date = {MAY 1999},
1000     Date-Added = {2012-12-17 16:53:15 +0000},
1001     Date-Modified = {2013-02-18 17:46:57 +0000},
1002     Journal = {J. Heat Transf.},
1003     Keywords = {conduction; enhancement; heat transfer; nanoscale; two-phase},
1004     Pages = {280-289},
1005     Publisher = {ASME-AMER SOC MECHANICAL ENG},
1006     Timescited = {183},
1007     Title = {Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles},
1008     Volume = {121},
1009     Year = {1999}}
1010    
1011     @article{Keblinski:2002bx,
1012     Abstract = {Recent measurements on nanofluids have demonstrated that the thermal conductivity increases with decreasing grain size. However, Such increases cannot be explained by existing theories. We explore four possible explanations for this anomalous increase: Brownian motion of the particles, molecular-level layering of the liquid at the liquid/particle interface, the nature of heat transport in the nanoparticles. and the effects of nanoparticle clustering. We show that the key factors in understanding thermal properties of nanofluids are the ballistic, rather than diffusive, nature of heat transport in the nanoparticles, combined with direct or fluid-mediated clustering effects that provide paths for rapid heat transport. (C) 2001 Elsevier Science Ltd. All rights reserved.},
1013     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
1014     Author = {Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
1015     Date = {FEB 2002},
1016     Date-Added = {2012-12-17 16:53:06 +0000},
1017     Date-Modified = {2013-02-18 17:41:04 +0000},
1018     Journal = {Int. J. Heat Mass Tran.},
1019     Keywords = {thermal conductivity; nanofluids; molecular dynamics simulations; ballistic heat transport},
1020     Pages = {855-863},
1021     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
1022     Timescited = {161},
1023     Title = {Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)},
1024     Volume = {45},
1025     Year = {2002}}
1026    
1027     @article{Eastman:2001wb,
1028     Abstract = {It is shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure ethylene glycol or ethylene glycol containing the same volume fraction of dispersed oxide nanoparticles. The effective thermal conductivity of ethylene glycol is shown to be increased by up to 40\% for a nanofluid consisting of ethylene glycol containing approximately 0.3 vol \% Cu nanoparticles of mean diameter < 10 nm. The results are anomalous based on previous theoretical calculations that had predicted a strong effect of particle shape on effective nanofluid thermal conductivity, but no effect of either particle size or particle thermal conductivity. (C) 2001 American Institute of Physics.},
1029     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1030     Author = {Eastman, JA and Choi, SUS and Li, S and Yu, W and Thompson, LJ},
1031     Date = {FEB 5 2001},
1032     Date-Added = {2012-12-17 16:52:55 +0000},
1033     Date-Modified = {2013-02-18 17:40:41 +0000},
1034     Journal = {Appl. Phys. Lett.},
1035     Pages = {718-720},
1036     Publisher = {AMER INST PHYSICS},
1037     Timescited = {246},
1038     Title = {Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles},
1039     Volume = {78},
1040     Year = {2001}}
1041    
1042     @article{Eapen:2007th,
1043     Abstract = {Transient hot-wire data on thermal conductivity of suspensions of silica and perfluorinated particles show agreement with the mean-field theory of Maxwell but not with the recently postulated microconvection mechanism. The influence of interfacial thermal resistance, convective effects at microscales, and the possibility of thermal conductivity enhancements beyond the Maxwell limit are discussed.},
1044     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1045     Author = {Eapen, Jacob and Williams, Wesley C. and Buongiorno, Jacopo and Hu, Lin-Wen and Yip, Sidney and Rusconi, Roberto and Piazza, Roberto},
1046     Date = {AUG 31 2007},
1047     Date-Added = {2012-12-17 16:52:46 +0000},
1048     Date-Modified = {2013-02-18 17:40:15 +0000},
1049     Doi = {ARTN 095901},
1050     Journal = prl,
1051     Pages = {095901},
1052     Publisher = {AMER PHYSICAL SOC},
1053     Timescited = {8},
1054     Title = {Mean-Field Versus Microconvection Effects in Nanofluid Thermal Conduction},
1055     Volume = {99},
1056     Year = {2007},
1057     Bdsk-Url-1 = {http://dx.doi.org/095901}}
1058    
1059     @article{Plech:2005kx,
1060     Abstract = {The transient structural response of laser excited gold nanoparticle sols has been recorded by pulsed X-ray scattering. Time resolved wide angle and small angle scattering (SAXS) record the changes in structure both of the nanoparticles and the water environment subsequent to femtosecond laser excitation. Within the first nanosecond after the excitation of the nanoparticles, the water phase shows a signature of compression, induced by a heat-induced evaporation of the water shell close to the heated nanoparticles. The particles themselves undergo a melting transition and are fragmented to Form new clusters in the nanometer range. (C) 2004 Elsevier B.V. All rights reserved.},
1061     Author = {Plech, A and Kotaidis, V and Lorenc, M and Wulff, M},
1062     Date-Added = {2012-12-17 16:52:34 +0000},
1063     Date-Modified = {2012-12-17 16:52:34 +0000},
1064     Doi = {DOI 10.1016/j.cplett.2004.11.072},
1065     Journal = cpl,
1066     Local-Url = {file://localhost/Users/charles/Documents/Papers/sdarticle3.pdf},
1067     Pages = {565-569},
1068     Title = {Thermal Dynamics in Laser Excited Metal Nanoparticles},
1069     Volume = {401},
1070     Year = {2005},
1071     Bdsk-Url-1 = {http://dx.doi.org/10.1016/j.cplett.2004.11.072}}
1072    
1073     @article{Wilson:2002uq,
1074     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
1075     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
1076     Date-Added = {2012-12-17 16:52:22 +0000},
1077     Date-Modified = {2013-02-18 17:34:52 +0000},
1078     Doi = {ARTN 224301},
1079     Journal = {Phys. Rev. B},
1080     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
1081     Pages = {224301},
1082     Title = {Colloidal Metal Particles as Probes of Nanoscale Thermal Transport in Fluids},
1083     Volume = {66},
1084     Year = {2002},
1085     Bdsk-Url-1 = {http://dx.doi.org/224301}}
1086    
1087     @article{Mazzaglia:2008to,
1088     Abstract = {Amphiphilic cyclodextrins (CDs) modified in the upper rim with thiohexyl groups and in the lower rim with oligoethylene amino (SC6NH2) or oligoethylene hydroxyl groups (SC6OH) can bind gold colloids, yielding Au/CD particles with an average hydrodynamic radius (RH) of 2 and 25 rim in water solution. The systems were investigated by UV-vis, quasi-elastic light scattering, and FTIR-ATR techniques. The concentration of amphiphiles was kept above the concentration of gold colloids to afford complete covering. In the case of SC6NH2, basic conditions (Et3N, pH 11) yield promptly the decoration of Au, which can be stabilized by linkage of CD amino and/or thioether groups. The critical aggregation concentration of SC6NH2 was measured (similar to 4 mu M) by surface tension measurements, pointing out that about 50\% of CDs are present in nonaggregated form. Whereas Au/SC6NH2 colloids were stable in size and morphology for at least one month, the size of the Au/SC6OH system increases remarkably, forming nanoaggregates of 20 and 80 rim in two hours. Under physiological conditions, the gold/amino amphiphiles system can internalize in HeLa cells, as shown by extinction spectra registered on the immobilized cells. The gold delivered by cyclodextrins can induce photothermal damage upon irradiation, doubling the cell mortality with respect to uncovered gold colloids. These findings can open useful perspectives to the application of these self-assembled systems in cancer photothermal therapy.},
1089     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1090     Author = {Mazzaglia, Antonino and Trapani, Mariachiara and Villari, Valentina and Micali, Norberto and Merlo, Francesca Marino and Zaccaria, Daniela and Sciortino, Maria Teresa and Previti, Francesco and Patane, Salvatore and Scolaro, Luigi Monsu},
1091     Date = {MAY 1 2008},
1092     Date-Added = {2012-12-17 16:52:15 +0000},
1093     Date-Modified = {2012-12-17 16:52:15 +0000},
1094     Doi = {DOI 10.1021/jp7120033},
1095     Journal = jpcc,
1096     Pages = {6764-6769},
1097     Publisher = {AMER CHEMICAL SOC},
1098     Timescited = {0},
1099     Title = {Amphiphilic Cyclodextrins as Capping Agents for Gold Colloids: A Spectroscopic Investigation with Perspectives in Photothermal Therapy},
1100     Volume = {112},
1101     Year = {2008},
1102     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp7120033}}
1103    
1104     @article{Gnyawali:2008lp,
1105     Abstract = {Tissue surface temperature distribution on the treatment site can serve as an indicator for the effectiveness of a photothermal therapy. In this study, both infrared thermography and theoretical simulation were used to determine the surface temperature distribution during laser irradiation of both gel phantom and animal tumors. Selective photothermal interaction was attempted by using intratumoral indocyanine green enhancement and irradiation via a near-infrared laser. An immunoadjuvant was also used to enhance immunological responses during tumor treatment. Monte Carlo method for tissue absorption of light and finite difference method for heat diffusion in tissue were used to simulate the temperature distribution during the selective laser photothermal interaction. An infrared camera was used to capture the thermal images during the laser treatment and the surface temperature was determined. Our findings show that the theoretical and experimental results are in good agreement and that the surface temperature of irradiated tissue can be controlled with appropriate dye and adjuvant enhancement. These results can be used to control the laser tumor treatment parameters and to optimize the treatment outcome. More importantly, when used with immunotherapy as a precursor of immunological responses, the selective photothermal treatment can be guided by the tissue temperature profiles both in the tumor and on the surface.},
1106     Address = {TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY},
1107     Author = {Gnyawali, Surya C. and Chen, Yicho and Wu, Feng and Bartels, Kenneth E. and Wicksted, James P. and Liu, Hong and Sen, Chandan K. and Chen, Wei R.},
1108     Date = {FEB 2008},
1109     Date-Added = {2012-12-17 16:52:08 +0000},
1110     Date-Modified = {2013-02-18 17:32:43 +0000},
1111     Doi = {DOI 10.1007/s11517-007-0251-5},
1112     Journal = {Med. Biol. Eng. Comput.},
1113     Keywords = {infrared thermography; indocyanine green; glycated chitosan; surface temperature; Monte Carlo simulation},
1114     Pages = {159-168},
1115     Publisher = {SPRINGER HEIDELBERG},
1116     Timescited = {0},
1117     Title = {Temperature Measurement on Tissue Surface During Laser Irradiation},
1118     Volume = {46},
1119     Year = {2008},
1120     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11517-007-0251-5}}
1121    
1122     @article{Petrova:2007ad,
1123     Abstract = {This paper describes our recent time-resolved spectroscopy studies of the properties of gold particles at high laser excitation levels. In these experiments, an intense pump laser pulse rapidly heats the particle, creating very high lattice temperatures - up to the melting point of bulk gold. These high temperatures can have dramatic effects on the particle and the surroundings. The lattice temperature created is determined by observing the coherently excited the vibrational modes of the particles. The periods of these modes depend on temperature, thus, they act as an internal thermometer. We have used these experiments to provide values for the threshold temperatures for explosive boiling of the solvent surrounding the particles, and laser induced structural transformations in non-spherical particles. The results of these experiments are relevant to the use of metal nanoparticles in photothermal therapy, where laser induced heating is used to selectively kill cells.},
1124     Address = {LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY},
1125     Author = {Petrova, Hristina and Hu, Min and Hartland, Gregory V.},
1126     Date = {2007},
1127     Date-Added = {2012-12-17 16:52:01 +0000},
1128     Date-Modified = {2013-02-18 17:32:23 +0000},
1129     Doi = {DOI 10.1524/zpch.2007.221.3.361},
1130     Journal = {Z Phys. Chem.},
1131     Keywords = {metal nanoparticles; phonon modes; photothermal properties; laser-induced heating},
1132     Pages = {361-376},
1133     Publisher = {OLDENBOURG VERLAG},
1134     Timescited = {2},
1135     Title = {Photothermal Properties of Gold Nanoparticles},
1136     Volume = {221},
1137     Year = {2007},
1138     Bdsk-Url-1 = {http://dx.doi.org/10.1524/zpch.2007.221.3.361}}
1139    
1140     @article{Jain:2007ux,
1141     Abstract = {Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this review, we discuss the SPR-enhanced optical properties of noble metal nanoparticles, with an emphasis on the recent advances in the utility of these plasmonic properties in molecular-specific imaging and sensing, photo-diagnostics, and selective photothermal therapy. The strongly enhanced SPR scattering from Au nanoparticles makes them useful as bright optical tags for molecular-specific biological imaging and detection using simple dark-field optical microscopy. On the other hand, the SPR absorption of the nanoparticles has allowed their use in the selective laser photothermal therapy of cancer. We also discuss the sensitivity of the nanoparticle SPR frequency to the local medium dielectric constant, which has been successfully exploited for the optical sensing of chemical and biological analytes. Plasmon coupling between metal nanoparticle pairs is also discussed, which forms the basis for nanoparticle assembly-based biodiagnostics and the plasmon ruler for dynamic measurement of nanoscale distances in biological systems.},
1142     Address = {233 SPRING STREET, NEW YORK, NY 10013 USA},
1143     Author = {Jain, Prashant K. and Huang, Xiaohua and El-Sayed, Ivan H. and El-Sayad, Mostafa A.},
1144     Date = {SEP 2007},
1145     Date-Added = {2012-12-17 16:51:52 +0000},
1146     Date-Modified = {2013-02-18 17:25:37 +0000},
1147     Doi = {DOI 10.1007/s11468-007-9031-1},
1148     Journal = {Plasmonics},
1149     Keywords = {surface plasmon resonance (SPR); SPR sensing; Mie scattering; metal nanocrystals for biodiagnostics; photothermal therapy; plasmon coupling},
1150     Number = {3},
1151     Pages = {107-118},
1152     Publisher = {SPRINGER},
1153     Timescited = {2},
1154     Title = {Review of Some Interesting Surface Plasmon Resonance-Enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems},
1155     Volume = {2},
1156     Year = {2007},
1157     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11468-007-9031-1}}
1158    
1159     @techreport{Goddard1998,
1160     Author = {Kimura, Y. and Cagin, T. and Goddard III, W.A.},
1161     Date-Added = {2012-12-05 22:18:01 +0000},
1162     Date-Modified = {2012-12-05 22:18:01 +0000},
1163     Institution = {California Institute of Technology},
1164     Lastchecked = {January 19, 2011},
1165     Number = {003},
1166     Title = {The Quantum Sutton-Chen Many Body Potential for Properties of fcc Metals},
1167     Url = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf},
1168     Year = {1998},
1169     Bdsk-Url-1 = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf}}
1170    
1171 gezelter 4063 @article{Kuang:2010if,
1172 kstocke1 4059 Author = {Shenyu Kuang and J. Daniel Gezelter},
1173     Date-Added = {2012-12-05 22:18:01 +0000},
1174 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1175 kstocke1 4059 Journal = {J. Chem. Phys.},
1176     Keywords = {NIVS, RNEMD, NIVS-RNEMD},
1177     Month = {October},
1178     Pages = {164101-1 - 164101-9},
1179     Title = {A Gentler Approach to RNEMD: Nonisotropic Velocity Scaling for Computing Thermal Conductivity and Shear Viscosity},
1180     Volume = {133},
1181     Year = {2010}}
1182    
1183 gezelter 4063 @article{Kuang:2012fe,
1184 kstocke1 4059 Author = {Shenyu Kuang and J. Daniel Gezelter},
1185     Date-Added = {2012-12-05 22:18:01 +0000},
1186 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1187 kstocke1 4059 Journal = {Mol. Phys.},
1188     Keywords = {VSS, RNEMD, VSS-RNEMD},
1189     Month = {May},
1190     Number = {9-10},
1191     Pages = {691-701},
1192     Title = {Velocity Shearing and Scaling RNEMD: A Minimally Perturbing Method for Simulating Temperature and Momentum Gradients},
1193     Volume = {110},
1194     Year = {2012}}
1195    
1196     @article{doi:10.1080/0026897031000068578,
1197     Abstract = { Using equilibrium and non-equilibrium molecular dynamics simulations, we determine the Kapitza resistance (or thermal contact resistance) at a model liquid-solid interface. The Kapitza resistance (or the associated Kapitza length) can reach appreciable values when the liquid does not wet the solid. The analogy with the hydrodynamic slip length is discussed. },
1198     Author = {Barrat, Jean-Louis and Chiaruttini, Fran{\c c}ois},
1199     Date-Added = {2011-12-13 17:17:05 -0500},
1200     Date-Modified = {2011-12-13 17:17:05 -0500},
1201     Doi = {10.1080/0026897031000068578},
1202     Eprint = {http://tandfprod.literatumonline.com/doi/pdf/10.1080/0026897031000068578},
1203     Journal = {Mol. Phys.},
1204     Number = {11},
1205     Pages = {1605-1610},
1206     Title = {Kapitza Resistance at the Liquid--Solid Interface},
1207     Url = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
1208     Volume = {101},
1209     Year = {2003},
1210     Bdsk-Url-1 = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
1211     Bdsk-Url-2 = {http://dx.doi.org/10.1080/0026897031000068578}}
1212    
1213     @article{Medina2011,
1214     Abstract = {Molecular dynamics (MD) simulations are carried out on a system of rigid or flexible water molecules at a series of temperatures between 273 and 368&#xa0;K. Collective transport coefficients, such as shear and bulk viscosities are calculated, and their behavior is systematically investigated as a function of flexibility and temperature. It is found that by including the intramolecular terms in the potential the calculated viscosity values are in overall much better agreement, compared to earlier and recent available experimental data, than those obtained with the rigid SPC/E model. The effect of the intramolecular degrees of freedom on transport properties of liquid water is analyzed and the incorporation of polarizability is discussed for further improvements. To our knowledge the present study constitutes the first compendium of results on viscosities for pure liquid water, including flexible models, that has been assembled.},
1215     Author = {J.S. Medina and R. Prosmiti and P. Villarreal and G. Delgado-Barrio and G. Winter and B. Gonz{\'a}lez and J.V. Alem{\'a}n and C. Collado},
1216     Date-Added = {2011-12-13 17:08:34 -0500},
1217     Date-Modified = {2011-12-13 17:08:49 -0500},
1218     Doi = {10.1016/j.chemphys.2011.07.001},
1219     Issn = {0301-0104},
1220     Journal = {Chemical Physics},
1221     Keywords = {Viscosity calculations},
1222     Number = {1-3},
1223     Pages = {9 - 18},
1224     Title = {Molecular Dynamics Simulations of Rigid and Flexible Water Models: Temperature Dependence of Viscosity},
1225     Url = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
1226     Volume = {388},
1227     Year = {2011},
1228     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
1229     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.chemphys.2011.07.001}}
1230    
1231     @book{WagnerKruse,
1232     Address = {Berlin},
1233     Author = {W. Wagner and A. Kruse},
1234     Date-Added = {2011-12-13 14:57:08 -0500},
1235     Date-Modified = {2011-12-13 14:57:08 -0500},
1236     Publisher = {Springer-Verlag},
1237     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
1238     Year = {1998}}
1239    
1240 gezelter 4063 @article{Shenogina:2009ix,
1241 kstocke1 4059 Author = {Shenogina, Natalia and Godawat, Rahul and Keblinski, Pawel and Garde, Shekhar},
1242     Date-Added = {2011-12-13 12:48:51 -0500},
1243 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1244 kstocke1 4059 Doi = {10.1103/PhysRevLett.102.156101},
1245     Journal = {Phys. Rev. Lett.},
1246     Month = {Apr},
1247     Number = {15},
1248     Numpages = {4},
1249     Pages = {156101},
1250     Publisher = {American Physical Society},
1251     Title = {How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces},
1252     Volume = {102},
1253     Year = {2009},
1254     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.102.156101}}
1255    
1256 gezelter 4063 @article{Patel:2005zm,
1257 kstocke1 4059 Abstract = { Systems with nanoscopic features contain a high density of interfaces. Thermal transport in such systems can be governed by the resistance to heat transfer, the Kapitza resistance (RK), at the interface. Although soft interfaces, such as those between immiscible liquids or between a biomolecule and solvent, are ubiquitous, few studies of thermal transport at such interfaces have been reported. Here we characterize the interfacial conductance, 1/RK, of soft interfaces as a function of molecular architecture, chemistry, and the strength of cross-interfacial intermolecular interactions through detailed molecular dynamics simulations. The conductance of various interfaces studied here, for example, water−organic liquid, water−surfactant, surfactant−organic liquid, is relatively high (in the range of 65−370 MW/m2 K) compared to that for solid−liquid interfaces (∼10 MW/m2 K). Interestingly, the dependence of interfacial conductance on the chemistry and molecular architecture cannot be explained solely in terms of either bulk property mismatch or the strength of intermolecular attraction between the two phases. The observed trends can be attributed to a combination of strong cross-interface intermolecular interactions and good thermal coupling via soft vibration modes present at liquid−liquid interfaces. },
1258     Annote = {PMID: 16277458},
1259     Author = {Patel, Harshit A. and Garde, Shekhar and Keblinski, Pawel},
1260     Date-Added = {2011-12-13 12:48:51 -0500},
1261 gezelter 4064 Date-Modified = {2014-03-13 20:42:07 +0000},
1262 kstocke1 4059 Doi = {10.1021/nl051526q},
1263     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/nl051526q},
1264     Journal = {Nano Lett.},
1265     Number = {11},
1266     Pages = {2225-2231},
1267 gezelter 4064 Title = {Thermal Resistance of Nanoscopic Liquid-Liquid Interfaces: Dependence on Chemistry and Molecular Architecture},
1268 kstocke1 4059 Url = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
1269     Volume = {5},
1270     Year = {2005},
1271     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
1272     Bdsk-Url-2 = {http://dx.doi.org/10.1021/nl051526q}}
1273    
1274     @article{melchionna93,
1275     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
1276     Date-Added = {2011-12-12 17:52:15 -0500},
1277     Date-Modified = {2011-12-12 17:52:15 -0500},
1278     Journal = {Mol. Phys.},
1279     Pages = {533-544},
1280     Title = {Hoover {\sc NPT} Dynamics for Systems Varying in Shape and Size},
1281     Volume = 78,
1282     Year = 1993}
1283    
1284     @article{TraPPE-UA.thiols,
1285     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
1286     Date-Added = {2011-12-07 15:06:12 -0500},
1287     Date-Modified = {2011-12-07 15:06:12 -0500},
1288     Doi = {10.1021/jp0549125},
1289     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
1290     Journal = {J. Phys. Chem. B},
1291     Number = {50},
1292     Pages = {24100-24107},
1293     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
1294     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
1295     Volume = {109},
1296     Year = {2005},
1297     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
1298     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
1299    
1300     @article{TraPPE-UA.alkylbenzenes,
1301     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
1302     Date-Added = {2011-12-07 15:06:12 -0500},
1303     Date-Modified = {2011-12-07 15:06:12 -0500},
1304     Doi = {10.1021/jp001044x},
1305     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
1306     Journal = {J. Phys. Chem. B},
1307     Number = {33},
1308     Pages = {8008-8016},
1309     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
1310     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
1311     Volume = {104},
1312     Year = {2000},
1313     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
1314     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
1315    
1316     @article{TraPPE-UA.alkanes,
1317     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
1318     Date-Added = {2011-12-07 15:06:12 -0500},
1319     Date-Modified = {2011-12-07 15:06:12 -0500},
1320     Doi = {10.1021/jp972543+},
1321     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
1322     Journal = {J. Phys. Chem. B},
1323     Number = {14},
1324     Pages = {2569-2577},
1325     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
1326     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
1327     Volume = {102},
1328     Year = {1998},
1329     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
1330     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+},
1331     Bdsk-Url-3 = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B}}
1332    
1333     @article{ISI:000167766600035,
1334     Abstract = {Molecular dynamics simulations are used to
1335     investigate the separation of water films adjacent
1336     to a hot metal surface. The simulations clearly show
1337     that the water layers nearest the surface overheat
1338     and undergo explosive boiling. For thick films, the
1339     expansion of the vaporized molecules near the
1340     surface forces the outer water layers to move away
1341     from the surface. These results are of interest for
1342     mass spectrometry of biological molecules, steam
1343     cleaning of surfaces, and medical procedures.},
1344     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1345     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1346     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1347     Date-Added = {2011-12-07 15:02:32 -0500},
1348     Date-Modified = {2011-12-07 15:02:32 -0500},
1349     Doc-Delivery-Number = {416ED},
1350     Issn = {1089-5639},
1351     Journal = {J. Phys. Chem. A},
1352     Journal-Iso = {J. Phys. Chem. A},
1353     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1354     Language = {English},
1355     Month = {MAR 29},
1356     Number = {12},
1357     Number-Of-Cited-References = {65},
1358     Pages = {2748-2755},
1359     Publisher = {AMER CHEMICAL SOC},
1360     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1361     Times-Cited = {66},
1362     Title = {Explosive Boiling of Water Films Adjacent to Heated Surfaces: A Microscopic Description},
1363     Type = {Article},
1364     Unique-Id = {ISI:000167766600035},
1365     Volume = {105},
1366     Year = {2001}}
1367    
1368     @article{Chen90,
1369     Author = {A.~P. Sutton and J. Chen},
1370     Date-Added = {2011-12-07 15:01:59 -0500},
1371     Date-Modified = {2013-02-18 18:01:16 +0000},
1372     Journal = {Phil. Mag. Lett.},
1373     Pages = {139-146},
1374     Title = {Long-Range Finnis Sinclair Potentials},
1375     Volume = 61,
1376     Year = {1990}}
1377    
1378     @article{PhysRevB.59.3527,
1379     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
1380     Date-Added = {2011-12-07 15:01:36 -0500},
1381     Date-Modified = {2013-02-18 18:00:57 +0000},
1382     Doi = {10.1103/PhysRevB.59.3527},
1383     Journal = {Phys. Rev. B},
1384     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
1385     Month = {Feb},
1386     Number = {5},
1387     Numpages = {6},
1388     Pages = {3527-3533},
1389     Publisher = {American Physical Society},
1390     Title = {Molecular-Dynamics Simulations of Glass Formation and Crystallization in Binary Liquid Metals: {C}u-{A}g and {C}u-{N}i},
1391     Volume = {59},
1392     Year = {1999},
1393     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
1394    
1395     @article{Bedrov:2000,
1396     Abstract = {We have applied a new nonequilibrium molecular
1397     dynamics (NEMD) method {[}F. Muller-Plathe,
1398     J. Chem. Phys. 106, 6082 (1997)] previously applied
1399     to monatomic Lennard-Jones fluids in the
1400     determination of the thermal conductivity of
1401     molecular fluids. The method was modified in order
1402     to be applicable to systems with holonomic
1403     constraints. Because the method involves imposing a
1404     known heat flux it is particularly attractive for
1405     systems involving long-range and many-body
1406     interactions where calculation of the microscopic
1407     heat flux is difficult. The predicted thermal
1408     conductivities of liquid n-butane and water using
1409     the imposed-flux NEMD method were found to be in a
1410     good agreement with previous simulations and
1411     experiment. (C) 2000 American Institute of
1412     Physics. {[}S0021-9606(00)50841-1].},
1413     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1414     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1415     Author = {Bedrov, D and Smith, GD},
1416     Date-Added = {2011-12-07 15:00:27 -0500},
1417     Date-Modified = {2011-12-07 15:00:27 -0500},
1418     Doc-Delivery-Number = {369BF},
1419     Issn = {0021-9606},
1420     Journal = {J. Chem. Phys.},
1421     Journal-Iso = {J. Chem. Phys.},
1422     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1423     Language = {English},
1424     Month = {NOV 8},
1425     Number = {18},
1426     Number-Of-Cited-References = {26},
1427     Pages = {8080-8084},
1428     Publisher = {AMER INST PHYSICS},
1429     Read = {1},
1430     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1431     Times-Cited = {23},
1432     Title = {Thermal Conductivity of Molecular Fluids from Molecular Dynamics Simulations: Application of a New Imposed-Flux Method},
1433     Type = {Article},
1434     Unique-Id = {ISI:000090151400044},
1435     Volume = {113},
1436     Year = {2000}}
1437    
1438     @article{10.1063/1.3330544,
1439     Author = {Miguel Angel Gonz{\'a}lez and Jos{\'e} L. F. Abascal},
1440     Coden = {JCPSA6},
1441     Date-Added = {2011-12-07 14:59:20 -0500},
1442     Date-Modified = {2011-12-15 13:10:11 -0500},
1443     Doi = {DOI:10.1063/1.3330544},
1444     Eissn = {10897690},
1445     Issn = {00219606},
1446     Journal = {J. Chem. Phys.},
1447     Keywords = {shear strength; viscosity;},
1448     Number = {9},
1449     Pages = {096101},
1450     Publisher = {AIP},
1451     Title = {The Shear Viscosity of Rigid Water Models},
1452     Url = {http://dx.doi.org/doi/10.1063/1.3330544},
1453     Volume = {132},
1454     Year = {2010},
1455     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3330544},
1456     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3330544}}
1457    
1458     @article{doi:10.1021/jp048434u,
1459     Abstract = { The different possible proton-ordered structures of ice Ih for an orthorombic unit cell with 8 water molecules were derived. The number of unique structures was found to be 16. The crystallographic coordinates of these are reported. The energetics of the different polymorphs were investigated by quantum-mechanical density-functional theory calculations and for comparison by molecular-mechanics analytical potential models. The polymorphs were found to be close in energy, i.e., within approximately 0.25 kcal/mol H2O, on the basis of the quantum-chemical DFT methods. At 277 K, the different energy levels are about evenly populated, but at a lower temperature, a transition to an ordered form is expected. This form was found to agree with the ice phase XI. The difference in lattice energies among the polymorphs was rationalized in terms of structural characteristics. The most important parameters to determine the lattice energies were found to be the distributions of water dimer H-bonded pair conformations, in an intricate manner. },
1460     Author = {Hirsch, Tomas K. and Ojam{\"a}e, Lars},
1461     Date-Added = {2011-12-07 14:38:30 -0500},
1462     Date-Modified = {2011-12-07 14:38:30 -0500},
1463     Doi = {10.1021/jp048434u},
1464     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048434u},
1465     Journal = {J. Phys. Chem. B},
1466     Number = {40},
1467     Pages = {15856-15864},
1468     Title = {Quantum-Chemical and Force-Field Investigations of Ice Ih:  Computation of Proton-Ordered Structures and Prediction of Their Lattice Energies},
1469     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1470     Volume = {108},
1471     Year = {2004},
1472     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1473     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048434u}}
1474    
1475     @article{Meineke:2005gd,
1476     Abstract = {OOPSE is a new molecular dynamics simulation program
1477     that is capable of efficiently integrating equations
1478     of motion for atom types with orientational degrees
1479     of freedom (e.g. #sticky# atoms and point
1480     dipoles). Transition metals can also be simulated
1481     using the embedded atom method (EAM) potential
1482     included in the code. Parallel simulations are
1483     carried out using the force-based decomposition
1484     method. Simulations are specified using a very
1485     simple C-based meta-data language. A number of
1486     advanced integrators are included, and the basic
1487     integrator for orientational dynamics provides
1488     substantial improvements over older quaternion-based
1489     schemes.},
1490     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1491     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1492     Date-Added = {2011-12-07 13:33:04 -0500},
1493     Date-Modified = {2011-12-07 13:33:04 -0500},
1494     Doi = {DOI 10.1002/jcc.20161},
1495     Isi = {000226558200006},
1496     Isi-Recid = {142688207},
1497     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1498     Journal = {J. Comput. Chem.},
1499     Keywords = {OOPSE; molecular dynamics},
1500     Month = feb,
1501     Number = {3},
1502     Pages = {252-271},
1503     Publisher = {JOHN WILEY \& SONS INC},
1504     Times-Cited = {9},
1505     Title = {OOPSE: An Object-Oriented Parallel Simulation Engine for Molecular Dynamics},
1506     Volume = {26},
1507     Year = {2005},
1508     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1509     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1510    
1511     @article{hoover85,
1512     Author = {W.~G. Hoover},
1513     Date-Added = {2011-12-06 14:23:41 -0500},
1514     Date-Modified = {2011-12-06 14:23:41 -0500},
1515     Journal = {Phys. Rev. A},
1516     Pages = 1695,
1517     Title = {Canonical Dynamics: Equilibrium Phase-Space Distributions},
1518     Volume = 31,
1519     Year = 1985}
1520    
1521 gezelter 4063 @article{Tenney:2010rp,
1522 kstocke1 4059 Abstract = {The reverse nonequilibrium molecular dynamics
1523     (RNEMD) method calculates the shear viscosity of a
1524     fluid by imposing a nonphysical exchange of momentum
1525     and measuring the resulting shear velocity
1526     gradient. In this study we investigate the range of
1527     momentum flux values over which RNEMD yields usable
1528     (linear) velocity gradients. We find that nonlinear
1529     velocity profiles result primarily from gradients in
1530     fluid temperature and density. The temperature
1531     gradient results from conversion of heat into bulk
1532     kinetic energy, which is transformed back into heat
1533     elsewhere via viscous heating. An expression is
1534     derived to predict the temperature profile resulting
1535     from a specified momentum flux for a given fluid and
1536     simulation cell. Although primarily bounded above,
1537     we also describe milder low-flux limitations. RNEMD
1538     results for a Lennard-Jones fluid agree with
1539     equilibrium molecular dynamics and conventional
1540     nonequilibrium molecular dynamics calculations at
1541     low shear, but RNEMD underpredicts viscosity
1542     relative to conventional NEMD at high shear.},
1543     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1544     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1545     Article-Number = {014103},
1546     Author = {Tenney, Craig M. and Maginn, Edward J.},
1547     Author-Email = {ed@nd.edu},
1548     Date-Added = {2011-12-05 18:29:08 -0500},
1549 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1550 kstocke1 4059 Doc-Delivery-Number = {542DQ},
1551     Doi = {10.1063/1.3276454},
1552     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1553     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1554     Issn = {0021-9606},
1555     Journal = {J. Chem. Phys.},
1556     Journal-Iso = {J. Chem. Phys.},
1557     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1558     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1559     Language = {English},
1560     Month = {JAN 7},
1561     Number = {1},
1562     Number-Of-Cited-References = {20},
1563     Pages = {014103},
1564     Publisher = {AMER INST PHYSICS},
1565     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1566     Times-Cited = {0},
1567     Title = {Limitations and Recommendations for the Calculation of Shear Viscosity using Reverse Nonequilibrium Molecular Dynamics},
1568     Type = {Article},
1569     Unique-Id = {ISI:000273472300004},
1570     Volume = {132},
1571     Year = {2010},
1572     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1573    
1574 gezelter 4063 @article{Muller-Plathe:1999ao,
1575 kstocke1 4059 Abstract = {A nonequilibrium method for calculating the shear
1576     viscosity is presented. It reverses the
1577     cause-and-effect picture customarily used in
1578     nonequilibrium molecular dynamics: the effect, the
1579     momentum flux or stress, is imposed, whereas the
1580     cause, the velocity gradient or shear rate, is
1581     obtained from the simulation. It differs from other
1582     Norton-ensemble methods by the way in which the
1583     steady-state momentum flux is maintained. This
1584     method involves a simple exchange of particle
1585     momenta, which is easy to implement. Moreover, it
1586     can be made to conserve the total energy as well as
1587     the total linear momentum, so no coupling to an
1588     external temperature bath is needed. The resulting
1589     raw data, the velocity profile, is a robust and
1590     rapidly converging property. The method is tested on
1591     the Lennard-Jones fluid near its triple point. It
1592     yields a viscosity of 3.2-3.3, in Lennard-Jones
1593     reduced units, in agreement with literature
1594     results. {[}S1063-651X(99)03105-0].},
1595     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1596     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1597     Author = {M\"{u}ller-Plathe, F},
1598     Date-Added = {2011-12-05 18:18:37 -0500},
1599 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1600 kstocke1 4059 Doc-Delivery-Number = {197TX},
1601     Issn = {1063-651X},
1602     Journal = {Phys. Rev. E},
1603     Journal-Iso = {Phys. Rev. E},
1604     Language = {English},
1605     Month = {MAY},
1606     Number = {5, Part A},
1607     Number-Of-Cited-References = {17},
1608     Pages = {4894-4898},
1609     Publisher = {AMERICAN PHYSICAL SOC},
1610     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1611     Times-Cited = {57},
1612     Title = {Reversing the Perturbation in Nonequilibrium Molecular Dynamics: An Easy Way to Calculate the Shear Viscosity of Fluids},
1613     Type = {Article},
1614     Unique-Id = {ISI:000080382700030},
1615     Volume = {59},
1616     Year = {1999}}
1617    
1618 gezelter 4063 @article{Muller-Plathe:1997wq,
1619 kstocke1 4059 Abstract = {A nonequilibrium molecular dynamics method for
1620     calculating the thermal conductivity is
1621     presented. It reverses the usual cause and effect
1622     picture. The ''effect,'' the heat flux, is imposed
1623     on the system and the ''cause,'' the temperature
1624     gradient is obtained from the simulation. Besides
1625     being very simple to implement, the scheme offers
1626     several advantages such as compatibility with
1627     periodic boundary conditions, conservation of total
1628     energy and total linear momentum, and the sampling
1629     of a rapidly converging quantity (temperature
1630     gradient) rather than a slowly converging one (heat
1631     flux). The scheme is tested on the Lennard-Jones
1632     fluid. (C) 1997 American Institute of Physics.},
1633     Address = {WOODBURY},
1634     Author = {M\"{u}ller-Plathe, F.},
1635     Cited-Reference-Count = {13},
1636     Date = {APR 8},
1637     Date-Added = {2011-12-05 18:18:37 -0500},
1638 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1639 kstocke1 4059 Document-Type = {Article},
1640     Isi = {ISI:A1997WR62000032},
1641     Isi-Document-Delivery-Number = {WR620},
1642     Iso-Source-Abbreviation = {J. Chem. Phys.},
1643     Issn = {0021-9606},
1644     Journal = {J. Chem. Phys.},
1645     Language = {English},
1646     Month = {Apr},
1647     Number = {14},
1648     Page-Count = {4},
1649     Pages = {6082--6085},
1650     Publication-Type = {J},
1651     Publisher = {AMER INST PHYSICS},
1652     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1653     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1654     Source = {J CHEM PHYS},
1655     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1656     Times-Cited = {106},
1657     Title = {A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity},
1658     Volume = {106},
1659     Year = {1997}}
1660    
1661     @article{priezjev:204704,
1662     Author = {Nikolai V. Priezjev},
1663     Date-Added = {2011-11-28 14:39:18 -0500},
1664     Date-Modified = {2011-11-28 14:39:18 -0500},
1665     Doi = {10.1063/1.3663384},
1666     Eid = {204704},
1667     Journal = {J. Chem. Phys.},
1668     Keywords = {channel flow; diffusion; flow simulation; hydrodynamics; molecular dynamics method; pattern formation; random processes; shear flow; slip flow; wetting},
1669     Number = {20},
1670     Numpages = {9},
1671     Pages = {204704},
1672     Publisher = {AIP},
1673     Title = {Molecular Diffusion and Slip Boundary Conditions at Smooth Surfaces with Periodic and Random Nanoscale Textures},
1674     Url = {http://link.aip.org/link/?JCP/135/204704/1},
1675     Volume = {135},
1676     Year = {2011},
1677     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/135/204704/1},
1678     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3663384}}
1679    
1680     @article{bryk:10258,
1681     Author = {Taras Bryk and A. D. J. Haymet},
1682     Date-Added = {2011-11-22 17:06:35 -0500},
1683     Date-Modified = {2011-11-22 17:06:35 -0500},
1684     Doi = {10.1063/1.1519538},
1685     Journal = {J. Chem. Phys.},
1686     Keywords = {liquid structure; molecular dynamics method; water; ice; interface structure},
1687     Number = {22},
1688     Pages = {10258-10268},
1689     Publisher = {AIP},
1690     Title = {Ice 1h/Water Interface of the SPC/E Model: Molecular Dynamics Simulations of the Equilibrium Basal and Prism Interfaces},
1691     Url = {http://link.aip.org/link/?JCP/117/10258/1},
1692     Volume = {117},
1693     Year = {2002},
1694     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/117/10258/1},
1695     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1519538}}
1696    
1697     @misc{openmd,
1698     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
1699     Date-Added = {2011-11-18 15:32:23 -0500},
1700 gezelter 4064 Date-Modified = {2014-03-13 20:42:36 +0000},
1701     Howpublished = {Available at {\tt http://openmd.org}},
1702 kstocke1 4059 Title = {{OpenMD, an Open Source Engine for Molecular Dynamics}}}
1703    
1704 gezelter 4063 @article{Kuang:2011ef,
1705 kstocke1 4059 Author = {Kuang, Shenyu and Gezelter, J. Daniel},
1706     Date-Added = {2011-11-18 13:03:06 -0500},
1707 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1708 kstocke1 4059 Doi = {10.1021/jp2073478},
1709     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp2073478},
1710     Journal = {J. Phys. Chem. C},
1711     Number = {45},
1712     Pages = {22475-22483},
1713     Title = {Simulating Interfacial Thermal Conductance at Metal-Solvent Interfaces: The Role of Chemical Capping Agents},
1714     Url = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1715     Volume = {115},
1716     Year = {2011},
1717     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1718     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp2073478}}
1719    
1720     @article{10.1063/1.2772547,
1721     Author = {Hideo Kaburaki and Ju Li and Sidney Yip and Hajime Kimizuka},
1722     Coden = {JAPIAU},
1723     Date-Added = {2011-11-01 16:46:32 -0400},
1724     Date-Modified = {2011-11-01 16:46:32 -0400},
1725     Doi = {DOI:10.1063/1.2772547},
1726     Eissn = {10897550},
1727     Issn = {00218979},
1728     Keywords = {argon; Lennard-Jones potential; phonons; thermal conductivity;},
1729     Number = {4},
1730     Pages = {043514},
1731     Publisher = {AIP},
1732     Title = {Dynamical Thermal Conductivity of Argon Crystal},
1733     Url = {http://dx.doi.org/10.1063/1.2772547},
1734     Volume = {102},
1735     Year = {2007},
1736     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2772547}}
1737    
1738     @article{PhysRevLett.82.4671,
1739     Author = {Barrat, Jean-Louis and Bocquet, Lyd\'eric},
1740     Date-Added = {2011-11-01 16:44:29 -0400},
1741     Date-Modified = {2011-11-01 16:44:29 -0400},
1742     Doi = {10.1103/PhysRevLett.82.4671},
1743     Issue = {23},
1744     Journal = {Phys. Rev. Lett.},
1745     Month = {Jun},
1746     Pages = {4671--4674},
1747     Publisher = {American Physical Society},
1748     Title = {Large Slip Effect at a Nonwetting Fluid-Solid Interface},
1749     Url = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1750     Volume = {82},
1751     Year = {1999},
1752     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1753     Bdsk-Url-2 = {http://dx.doi.org/10.1103/PhysRevLett.82.4671}}
1754    
1755     @article{10.1063/1.1610442,
1756     Author = {J. R. Schmidt and J. L. Skinner},
1757     Coden = {JCPSA6},
1758     Date-Added = {2011-10-13 16:28:43 -0400},
1759     Date-Modified = {2011-12-15 13:11:53 -0500},
1760     Doi = {DOI:10.1063/1.1610442},
1761     Eissn = {10897690},
1762     Issn = {00219606},
1763     Journal = {J. Chem. Phys.},
1764     Keywords = {hydrodynamics; Brownian motion; molecular dynamics method; diffusion;},
1765     Number = {15},
1766     Pages = {8062-8068},
1767     Publisher = {AIP},
1768     Title = {Hydrodynamic Boundary Conditions, the Stokes?Einstein Law, and Long-Time Tails in the Brownian Limit},
1769     Url = {http://dx.doi.org/10.1063/1.1610442},
1770     Volume = {119},
1771     Year = {2003},
1772     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1610442}}
1773    
1774     @article{10.1063/1.3274802,
1775     Author = {Ting Chen and Berend Smit and Alexis T. Bell},
1776     Coden = {JCPSA6},
1777     Doi = {DOI:10.1063/1.3274802},
1778     Eissn = {10897690},
1779     Issn = {00219606},
1780     Keywords = {fluctuations; molecular dynamics method; viscosity;},
1781     Number = {24},
1782     Pages = {246101},
1783     Publisher = {AIP},
1784     Title = {Are Pressure Fluctuation-Based Equilibrium Methods Really Worse than Nonequilibrium Methods for Calculating Viscosities?},
1785     Url = {http://dx.doi.org/doi/10.1063/1.3274802},
1786     Volume = {131},
1787     Year = {2009},
1788     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3274802},
1789     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3274802}}
1790 gezelter 4063
1791     @comment{BibDesk Static Groups{
1792     <?xml version="1.0" encoding="UTF-8"?>
1793     <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
1794     <plist version="1.0">
1795     <array>
1796     <dict>
1797     <key>group name</key>
1798     <string>NEMD</string>
1799     <key>keys</key>
1800 gezelter 4064 <string>Ashurst:1975eu,Hess:2002nr,Evans:2002tg,Picalek:2009rz,Backer:2005sf,Erpenbeck:1984qe,Schelling:2002dp,Maginn:1993kl,Berthier:2002ai,Evans:1986nx,Jiang:2008hc,Vasquez:2004ty,Evans:1982oq</string>
1801 gezelter 4063 </dict>
1802     <dict>
1803     <key>group name</key>
1804     <string>RNEMD</string>
1805     <key>keys</key>
1806 kstocke1 4078 <string>Kuang:2012fe,Tenney:2010rp,Kuang:2011ef,Muller-Plathe:1997wq,Muller-Plathe:1999ao,Shenogina:2009ix,Patel:2005zm,Stocker:2013cl,Kuang:2010if</string>
1807 gezelter 4063 </dict>
1808     </array>
1809     </plist>
1810     }}

Properties

Name Value
svn:executable *