ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nonperiodicVSS/nonperiodicVSS.tex
(Generate patch)

Comparing trunk/nonperiodicVSS/nonperiodicVSS.tex (file contents):
Revision 3931 by kstocke1, Mon Aug 5 21:31:30 2013 UTC vs.
Revision 3934 by kstocke1, Mon Aug 12 15:07:13 2013 UTC

# Line 164 | Line 164 | Gold Nanoparticle:\\
164   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
165   \subsection{Thermal conductivities}
166  
167 < Gold Nanoparticle:\\
168 < Measured linear slope $\left( \langle dT / dr \rangle \right)$ is linearly dependent on applied kinetic energy flux. Calculated thermal conductivity compares well with previous bulk QSC values. Still $\sim$100 times lower than experiment (limitations of potential -- neglects electronic contributions to heat conduction). Increase relative to bulk may be due to slight increase in gold density. Curvature of nanoparticle introduces higher surface tension and increases density of gold.\\
167 > Calculated values for the thermal conductivity of a 40 \AA$~$ radius gold nanoparticle (15707 atoms) at different kinetic energy flux values are shown in Table \ref{table:goldconductivity}. For these calculations, the hot and cold slabs were excluded from the linear regression of the thermal gradient. The measured linear slope $\langle dT / dr \rangle$ is linearly dependent on the applied kinetic energy flux $J_r$. Calculated thermal conductivity values compare well with previous bulk QSC values of 1.08 - 1.26 W m$^{-1}$ K$^{-1}$ [cite NIVS paper], though still significantly lower than the experimental value of 320 W m$^{-1}$ K$^{-1}$, as the QSC force field neglects significant electronic contributions to heat conduction. The small increase relative to previous simulated bulk values is due to a slight increase in gold density -- as expected, an increase in density results in higher thermal conductivity values. The increased density is a result of nanoparticle curvature relative to an infinite bulk slab, which introduces surface tension that increases ambient density.
168  
169 < \begin{longtable}{p{2.7cm} p{2.5cm} p{2.5cm}}
170 <        \caption{Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \AA. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}
172 <        \\ \hline \hline
173 <                \centering {$J_r$} & \centering\arraybackslash {$\langle dT / dr \rangle$} & \centering\arraybackslash {$\boldsymbol \lambda$}\\
174 <        \centering {\small(kcal fs$^{-1}$ \AA$^{-2}$)} & \centering\arraybackslash {\small(K \AA$^{-1}$)} & \centering\arraybackslash {\small(W m$^{-1}$ K$^{-1}$)}\\ \hline
175 < \endhead
176 < \hline
177 < % \endfoot
178 < \centering3.25$\times 10^{-6}$ & \centering\arraybackslash 0.11435 & \centering\arraybackslash 1.9753 \\
179 < \centering6.50$\times 10^{-6}$ & \centering\arraybackslash 0.2324 & \centering\arraybackslash 1.9438 \\
180 < \centering1.30$\times 10^{-5}$ & \centering\arraybackslash 0.44922 & \centering\arraybackslash 2.0113 \\
181 < \centering3.25$\times 10^{-5}$ & \centering\arraybackslash 1.1802 & \centering\arraybackslash 1.9139 \\
182 < \centering6.50$\times 10^{-5}$ & \centering\arraybackslash 2.339 & \centering\arraybackslash 1.9314
169 > \begin{longtable}{ccc}
170 > \caption{Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \AA. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}
171   \\ \hline \hline
172 + {$J_r$} & {$\langle dT / dr \rangle$} & {$\boldsymbol \lambda$}\\
173 + {\small(kcal fs$^{-1}$ \AA$^{-2}$)} & {\small(K \AA$^{-1}$)} & {\small(W m$^{-1}$ K$^{-1}$)}\\ \hline
174 + 3.25$\times 10^{-6}$ & 0.11435 & 1.9753 \\
175 + 6.50$\times 10^{-6}$ & 0.2324 & 1.9438 \\
176 + 1.30$\times 10^{-5}$ & 0.44922 & 2.0113 \\
177 + 3.25$\times 10^{-5}$ & 1.1802 & 1.9139 \\
178 + 6.50$\times 10^{-5}$ & 2.339 & 1.9314
179 + \\ \hline \hline
180   \label{table:goldconductivity}
181   \end{longtable}
182          
183   SPC/E Water Cluster:
184  
185 < \begin{longtable}{p{2.7cm} p{2.5cm} p{2.5cm}}
186 <        \caption{Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and ambient density.}
191 <        \\ \hline \hline
192 <                \centering {$J_r$} & \centering\arraybackslash {$\langle dT / dr \rangle$} & \centering\arraybackslash {$\boldsymbol \lambda$}\\
193 <        \centering {\small(kcal fs$^{-1}$ \AA$^{-2}$)} & \centering\arraybackslash {\small(K \AA$^{-1}$)} & \centering\arraybackslash {\small(W m$^{-1}$ K$^{-1}$)}\\ \hline
194 < \endhead
195 < \hline
196 < % \endfoot
197 <
185 > \begin{longtable}{ccc}
186 > \caption{Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and ambient density.}
187   \\ \hline \hline
188 + {$J_r$} & {$\langle dT / dr \rangle$} & {$\boldsymbol \lambda$}\\
189 + {\small(kcal fs$^{-1}$ \AA$^{-2}$)} & {\small(K \AA$^{-1}$)} & {\small(W m$^{-1}$ K$^{-1}$)}\\ \hline
190 + \\ \hline \hline
191   \label{table:waterconductivity}
192   \end{longtable}
193  
# Line 218 | Line 210 | Gold Nanoparticle and Ellipsoid in Hexane:
210   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
211   \subsection{Interfacial friction}
212  
213 < Gold Nanoparticle and Ellipsoid in Hexane:
213 > Table \ref{table:interfacialfriction} gives the calculated interfacial friction coefficients $\kappa$ for a spherical gold nanoparticle and prolate ellipsoidal gold nanorod in TraPPE-UA hexane. An angular momentum flux was applied between the A and B regions defined as the gold structure and hexane molecules included in the convex hull, respectively. The resulting angular velocity gradient resulted in the gold structure rotating about the prescribed axis within the solvent.
214  
215 < \begin{longtable}{p{2.5cm} p{3cm} p{2.5cm} p{2.5cm} p{2.5cm}}
216 <        \caption{Calculated interfacial friction coefficients ($\kappa$) and slip length ($\delta$) of gold nanostructures solvated in TraPPE-UA hexane. The ellipsoid is oriented with the long axis along the $z$ direction.}
217 <        \\ \hline \hline
218 <                {Structure} & \centering{Axis of rotation} & \centering\arraybackslash {$\kappa$} & \centering\arraybackslash {$\delta$} & \centering\arraybackslash Stokes' Law $F$\\
219 <        \centering {} & {} & \centering\arraybackslash {\small($10^4$ Pa s m$^{-1}$)} & \centering\arraybackslash {\small(nm)} & \centering\arraybackslash{\small()}\\ \hline
220 < \endhead
221 < \hline
222 < % \endfoot
223 < Nanoparticle & \centering$x = y = z$ & & & \\
224 < Ellipsoidal rod & \centering$x = y$ & & & \\
225 < Ellipsoidal rod & \centering$z$ & & &
215 > Analytical solutions for the rotational friction coefficients for a solvated spherical body of radius $r$ under ``stick'' boundary conditions can be estimated using Stokes' law
216 >
217 > \begin{equation}
218 >        \Xi = 8 \pi \eta r^3 \label{eq:Xi}.
219 > \end{equation}
220 >
221 > where $\eta$ is the dynamic viscosity of the surrounding solvent.
222 >
223 > For general ellipsoids with semiaxes $a$, $b$, and $c$, Perrin's extension of Stokes' law provides exact solutions for symmetric prolate $(a \geq b = c)$ and oblate $(a < b = c)$ ellipsoids. For simplicity, we define a Perrin Factor, $S$,
224 >
225 > \begin{equation}
226 >        S = \frac{2}{\sqrt{a^2 - b^2}} ln \left[ \frac{a + \sqrt{a^2 - b^2}}{b} \right]. \label{eq:S}
227 > \end{equation}
228 >
229 > For a prolate ellipsoidal rod, demonstrated here, the rotational resistance tensor $\Xi$ is a $3 \times 3$ diagonal matrix with elements
230 >
231 > \begin{eqnarray}
232 >        \Xi^{rr}_a = \frac{32 \Pi}{2} \eta \frac{ \left( a^2 - b^2 \right) b^2}{2a - b^2 S} \label{eq:Xia}\\
233 >        \Xi^{rr}_{b,c} = \frac{32 \Pi}{2} \eta \frac{ \left( a^4 - b^4 \right)}{ \left( 2a^2 - b^2 \right)S - 2a}. \label{eq:Xibc}
234 > \end{eqnarray}
235 >
236 > The dynamic viscosity of the solvent, $\eta$, was determined by applying a traditional VSS-RNEMD linear momentum flux to a periodic box of TraPPE-UA hexane.
237 >
238 > Another useful quantity is the friction factor $f$, or the friction coefficient of a non-spherical shape divided by the friction coefficient of a sphere of equivalent volume. The nanoparticle and ellipsoidal nanorod dimensions used here were specifically chosen to create structures with equal volumes.
239 >        
240 > \begin{longtable}{lccccc}
241 > \caption{Calculated interfacial friction coefficients ($\kappa$) and friction factors ($f$) of gold nanostructures solvated in TraPPE-UA hexane. The ellipsoid is oriented with the long axis along the $z$ direction.}
242   \\ \hline \hline
243 + {Structure} & {Axis of rotation} & {$\kappa_{VSS}$} & {$\kappa_{Stokes-Perrin}$} & {$f_{VSS}$} & {$f_{Stokes-Perrin}$}\\
244 + {} & {} & {\small($10^4$ Pa s m$^{-1}$)} & {\small($10^4$ Pa s m$^{-1}$)} & {} & {}\\  \hline
245 + {Sphere} & {$x = y = z$} & {} & {} & {1} & {1}\\
246 + {Prolate Ellipsoid} & {$x = y$} & {} & {} & {} & {}\\
247 + {Prolate Ellipsoid} & {$z$} & {} & {} & {} & {}\\  \hline \hline
248   \label{table:interfacialfriction}
249   \end{longtable}
250  
238
251   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
252   % **DISCUSSION**
253   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Line 257 | Line 269 | Computing (CRC) at the University of Notre Dame.
269   \bibliography{nonperiodicVSS}
270  
271   \end{doublespace}
272 < \end{document}
272 > \end{document}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines