ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nonperiodicVSS/nonperiodicVSS.tex
(Generate patch)

Comparing trunk/nonperiodicVSS/nonperiodicVSS.tex (file contents):
Revision 3932 by kstocke1, Tue Aug 6 21:44:34 2013 UTC vs.
Revision 3943 by kstocke1, Mon Sep 2 20:34:55 2013 UTC

# Line 166 | Line 166 | Calculated values for the thermal conductivity of a 40
166  
167   Calculated values for the thermal conductivity of a 40 \AA$~$ radius gold nanoparticle (15707 atoms) at different kinetic energy flux values are shown in Table \ref{table:goldconductivity}. For these calculations, the hot and cold slabs were excluded from the linear regression of the thermal gradient. The measured linear slope $\langle dT / dr \rangle$ is linearly dependent on the applied kinetic energy flux $J_r$. Calculated thermal conductivity values compare well with previous bulk QSC values of 1.08 - 1.26 W m$^{-1}$ K$^{-1}$ [cite NIVS paper], though still significantly lower than the experimental value of 320 W m$^{-1}$ K$^{-1}$, as the QSC force field neglects significant electronic contributions to heat conduction. The small increase relative to previous simulated bulk values is due to a slight increase in gold density -- as expected, an increase in density results in higher thermal conductivity values. The increased density is a result of nanoparticle curvature relative to an infinite bulk slab, which introduces surface tension that increases ambient density.
168  
169 < \begin{longtable}{p{2.7cm} p{2.5cm} p{2.5cm}}
170 <        \caption{Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \AA. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}
171 <        \\ \hline \hline
172 <                \centering {$J_r$} & \centering\arraybackslash {$\langle dT / dr \rangle$} & \centering\arraybackslash {$\boldsymbol \lambda$}\\
173 <        \centering {\small(kcal fs$^{-1}$ \AA$^{-2}$)} & \centering\arraybackslash {\small(K \AA$^{-1}$)} & \centering\arraybackslash {\small(W m$^{-1}$ K$^{-1}$)}\\ \hline
174 < \endhead
175 < \hline
176 < % \endfoot
177 < \centering3.25$\times 10^{-6}$ & \centering\arraybackslash 0.11435 & \centering\arraybackslash 1.9753 \\
178 < \centering6.50$\times 10^{-6}$ & \centering\arraybackslash 0.2324 & \centering\arraybackslash 1.9438 \\
179 < \centering1.30$\times 10^{-5}$ & \centering\arraybackslash 0.44922 & \centering\arraybackslash 2.0113 \\
180 < \centering3.25$\times 10^{-5}$ & \centering\arraybackslash 1.1802 & \centering\arraybackslash 1.9139 \\
181 < \centering6.50$\times 10^{-5}$ & \centering\arraybackslash 2.339 & \centering\arraybackslash 1.9314
169 > \begin{longtable}{ccc}
170 > \caption{Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \AA. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}
171   \\ \hline \hline
172 + {$J_r$} & {$\langle dT / dr \rangle$} & {$\boldsymbol \lambda$}\\
173 + {\small(kcal fs$^{-1}$ \AA$^{-2}$)} & {\small(K \AA$^{-1}$)} & {\small(W m$^{-1}$ K$^{-1}$)}\\ \hline
174 + 3.25$\times 10^{-6}$ & 0.11435 & 1.9753 \\
175 + 6.50$\times 10^{-6}$ & 0.2324 & 1.9438 \\
176 + 1.30$\times 10^{-5}$ & 0.44922 & 2.0113 \\
177 + 3.25$\times 10^{-5}$ & 1.1802 & 1.9139 \\
178 + 6.50$\times 10^{-5}$ & 2.339 & 1.9314
179 + \\ \hline \hline
180   \label{table:goldconductivity}
181   \end{longtable}
182          
183   SPC/E Water Cluster:
184  
185 < \begin{longtable}{p{2.7cm} p{2.5cm} p{2.5cm}}
186 <        \caption{Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and ambient density.}
190 <        \\ \hline \hline
191 <                \centering {$J_r$} & \centering\arraybackslash {$\langle dT / dr \rangle$} & \centering\arraybackslash {$\boldsymbol \lambda$}\\
192 <        \centering {\small(kcal fs$^{-1}$ \AA$^{-2}$)} & \centering\arraybackslash {\small(K \AA$^{-1}$)} & \centering\arraybackslash {\small(W m$^{-1}$ K$^{-1}$)}\\ \hline
193 < \endhead
194 < \hline
195 < % \endfoot
196 <
185 > \begin{longtable}{ccc}
186 > \caption{Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and ambient density.}
187   \\ \hline \hline
188 + {$J_r$} & {$\langle dT / dr \rangle$} & {$\boldsymbol \lambda$}\\
189 + {\small(kcal fs$^{-1}$ \AA$^{-2}$)} & {\small(K \AA$^{-1}$)} & {\small(W m$^{-1}$ K$^{-1}$)}\\ \hline
190 + \\ \hline \hline
191   \label{table:waterconductivity}
192   \end{longtable}
193  
# Line 210 | Line 203 | Gold Nanoparticle in Hexane:
203   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
204   \subsection{Interfacial thermal conductance}
205  
206 < Gold Nanoparticle in Hexane:
206 > The interfacial thermal conductance, $G$, is calculated by defining a temperature difference $\Delta T$ across a given interface.
207  
208   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
209   % INTERFACIAL FRICTION
210   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
211   \subsection{Interfacial friction}
212  
213 < Table \ref{table:interfacialfriction} gives the calculated interfacial friction coefficients $\kappa$ for a spherical gold nanoparticle and prolate ellipsoidal gold nanorod in TraPPE-UA hexane. An angular momentum flux was applied between the A and B regions defined as the gold structure and hexane molecules included in the convex hull, respectively. The resulting angular velocity gradient resulted in the gold structure rotating about the prescribed axis within the solvent.
213 > The interfacial friction coefficient, $\kappa$, can be calculated from the solvent dynamic viscosity, $\eta$, and the slip length, $\delta$. The slip length is measured from a radial angular momentum profile generated from a nonperiodic VSS-RNEMD simulation, as shown in Figure X.
214  
215 + Table \ref{table:interfacialfriction} shows the calculated interfacial friction coefficients $\kappa$ for a spherical gold nanoparticle and prolate ellipsoidal gold nanorod in TraPPE-UA hexane. An angular momentum flux was applied between the A and B regions defined as the gold structure and hexane molecules included in the convex hull, respectively. The resulting angular velocity gradient resulted in the gold structure rotating about the prescribed axis within the solvent.
216 +
217   Analytical solutions for the rotational friction coefficients for a solvated spherical body of radius $r$ under ``stick'' boundary conditions can be estimated using Stokes' law
218  
219   \begin{equation}
220 <        f_r = 8 \pi \eta r^3 \label{eq:fr}.
220 >        \Xi = 8 \pi \eta r^3 \label{eq:Xi}.
221   \end{equation}
222  
223 < For general ellipsoids with semiaxes $a$, $b$, and $c$, Perrin's extension of Stokes' law provides exact solutions for prolate $(a \geq b = c)$ and oblate $(a < b = c)$ ellipsoids. For a prolate ellipsoidal rod, demonstrated here,
223 > where $\eta$ is the dynamic viscosity of the surrounding solvent and was determined for TraPPE-UA hexane under these condition by applying a traditional VSS-RNEMD linear momentum flux to a periodic box of solvent.
224  
225 + For general ellipsoids with semiaxes $a$, $b$, and $c$, Perrin's extension of Stokes' law provides exact solutions for symmetric prolate $(a \geq b = c)$ and oblate $(a < b = c)$ ellipsoids. For simplicity, we define a Perrin Factor, $S$,
226 +
227 + \begin{equation}
228 +        S = \frac{2}{\sqrt{a^2 - b^2}} ln \left[ \frac{a + \sqrt{a^2 - b^2}}{b} \right]. \label{eq:S}
229 + \end{equation}
230 +
231 + For a prolate ellipsoidal rod, demonstrated here, the rotational resistance tensor $\Xi$ is a $3 \times 3$ diagonal matrix with elements
232 +
233   \begin{eqnarray}
234 <        f_a = \label{eq:fa}\\
235 <        f_b = f_c = \label{eq:fb}
234 >        \Xi^{rr}_a = \frac{32 \pi}{2} \eta \frac{ \left( a^2 - b^2 \right) b^2}{2a - b^2 S} \label{eq:Xia}\\
235 >        \Xi^{rr}_{b,c} = \frac{32 \pi}{2} \eta \frac{ \left( a^4 - b^4 \right)}{ \left( 2a^2 - b^2 \right)S - 2a}. \label{eq:Xibc}
236   \end{eqnarray}
237  
238 < The dynamic viscosity of the solvent, $\eta$, was calculated by applying a linear momentum flux to a periodic box of TraPPE-UA hexane.
238 > However, the friction between hexane solvent and gold more likely falls within ``slip'' boundary conditions. Hu and Zwanzig investigated the rotational friction coefficients for spheroids under slip boundary conditions and obtained numerial results for a scaling factor as a function of $\tau$, the ratio of the shorter semiaxes and the longer semiaxis of the spheroid. For the sphere and prolate ellipsoid shown here, the values of $\tau$ are $1$ and $0.3939$, respectively. According to the values tabulated by Hu and Zwanzig, the sphere friction coefficient approaches $0$, while the ellipsoidal friction coefficient must be scaled by a factor of $0.880$ to account for the reduced interfacial friction under ``slip'' boundary conditions.
239  
240 < \begin{longtable}{p{3.8cm} p{3cm} p{2.8cm} p{2.5cm} p{2.5cm}}
241 <        \caption{Calculated interfacial friction coefficients ($\kappa$) and slip length ($\delta$) of gold nanostructures solvated in TraPPE-UA hexane. The ellipsoid is oriented with the long axis along the $z$ direction.}
242 <        \\ \hline \hline
243 <                {Structure} & \centering{Axis of rotation} & \centering\arraybackslash {$\kappa$} & \centering\arraybackslash {$\delta$} & \centering\arraybackslash Stokes' Law $F$\\
241 <        \centering {} & {} & \centering\arraybackslash {\small($10^4$ Pa s m$^{-1}$)} & \centering\arraybackslash {\small(nm)} & \centering\arraybackslash{\small()}\\ \hline
242 < \endhead
243 < \hline
244 < % \endfoot
245 < Nanoparticle & \centering$x = y = z$ & & & \\
246 < Prolate Ellipsoidal rod & \centering$x = y$ & & & \\
247 < Prolate Ellipsoidal rod & \centering$z$ & & &
240 > Another useful quantity is the friction factor $f$, or the friction coefficient of a non-spherical shape divided by the friction coefficient of a sphere of equivalent volume. The nanoparticle and ellipsoidal nanorod dimensions used here were specifically chosen to create structures with equal volumes.
241 >        
242 > \begin{longtable}{lccccc}
243 > \caption{Calculated ``stick'' interfacial friction coefficients ($\kappa$) and friction factors ($f$) of gold nanostructures solvated in TraPPE-UA hexane. The ellipsoid is oriented with the long axis along the $z$ direction.}
244   \\ \hline \hline
245 + {Structure} & {Axis of rotation} & {$\kappa_{VSS}$} & {$\kappa_{calc}$} & {$f_{VSS}$} & {$f_{calc}$}\\
246 + {} & {} & {\small($10^{-29}$ Pa s m$^{3}$)} & {\small($10^{-29}$ Pa s m$^{3}$)} & {} & {}\\  \hline
247 + {Sphere} & {$x = y = z$} & {} & {5.37237} & {1} & {1}\\
248 + {Prolate Ellipsoid} & {$x = y$} & {} & {3.59881} & {} & {0.768726}\\
249 + {Prolate Ellipsoid} & {$z$} & {} & {9.01084} & {} & {1.92477}\\  \hline \hline
250   \label{table:interfacialfriction}
251   \end{longtable}
252  
253 + \begin{longtable}{lccc}
254 + \caption{Calculated ``slip'' interfacial friction coefficients ($\kappa$) and friction factors ($f$) of gold nanostructures solvated in TraPPE-UA hexane. The ellipsoid is oriented with the long axis along the $z$ direction.}
255 + \\ \hline \hline
256 + {Structure} & {Axis of rotation} & {$\kappa_{VSS}$} & {$\kappa_{calc}$}\\
257 + {} & {} & {\small($10^{-29}$ Pa s m$^{3}$)} & {\small($10^{-29}$ Pa s m$^{3}$)}\\  \hline
258 + {Sphere} & {$x = y = z$} & {} & {0}\\
259 + {Prolate Ellipsoid} & {$x = y$} & {} & {0}\\
260 + {Prolate Ellipsoid} & {$z$} & {} & {7.9295392}\\  \hline \hline
261 + \label{table:interfacialfriction}
262 + \end{longtable}
263  
264   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
265   % **DISCUSSION**
# Line 271 | Line 282 | Computing (CRC) at the University of Notre Dame.
282   \bibliography{nonperiodicVSS}
283  
284   \end{doublespace}
285 < \end{document}
285 > \end{document}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines