ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nonperiodicVSS/nonperiodicVSS.tex
(Generate patch)

Comparing trunk/nonperiodicVSS/nonperiodicVSS.tex (file contents):
Revision 3933 by kstocke1, Tue Aug 6 21:44:34 2013 UTC vs.
Revision 3934 by kstocke1, Mon Aug 12 15:07:13 2013 UTC

# Line 166 | Line 166 | Calculated values for the thermal conductivity of a 40
166  
167   Calculated values for the thermal conductivity of a 40 \AA$~$ radius gold nanoparticle (15707 atoms) at different kinetic energy flux values are shown in Table \ref{table:goldconductivity}. For these calculations, the hot and cold slabs were excluded from the linear regression of the thermal gradient. The measured linear slope $\langle dT / dr \rangle$ is linearly dependent on the applied kinetic energy flux $J_r$. Calculated thermal conductivity values compare well with previous bulk QSC values of 1.08 - 1.26 W m$^{-1}$ K$^{-1}$ [cite NIVS paper], though still significantly lower than the experimental value of 320 W m$^{-1}$ K$^{-1}$, as the QSC force field neglects significant electronic contributions to heat conduction. The small increase relative to previous simulated bulk values is due to a slight increase in gold density -- as expected, an increase in density results in higher thermal conductivity values. The increased density is a result of nanoparticle curvature relative to an infinite bulk slab, which introduces surface tension that increases ambient density.
168  
169 < \begin{longtable}{p{2.7cm} p{2.5cm} p{2.5cm}}
170 <        \caption{Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \AA. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}
171 <        \\ \hline \hline
172 <                \centering {$J_r$} & \centering\arraybackslash {$\langle dT / dr \rangle$} & \centering\arraybackslash {$\boldsymbol \lambda$}\\
173 <        \centering {\small(kcal fs$^{-1}$ \AA$^{-2}$)} & \centering\arraybackslash {\small(K \AA$^{-1}$)} & \centering\arraybackslash {\small(W m$^{-1}$ K$^{-1}$)}\\ \hline
174 < \endhead
175 < \hline
176 < % \endfoot
177 < \centering3.25$\times 10^{-6}$ & \centering\arraybackslash 0.11435 & \centering\arraybackslash 1.9753 \\
178 < \centering6.50$\times 10^{-6}$ & \centering\arraybackslash 0.2324 & \centering\arraybackslash 1.9438 \\
179 < \centering1.30$\times 10^{-5}$ & \centering\arraybackslash 0.44922 & \centering\arraybackslash 2.0113 \\
180 < \centering3.25$\times 10^{-5}$ & \centering\arraybackslash 1.1802 & \centering\arraybackslash 1.9139 \\
181 < \centering6.50$\times 10^{-5}$ & \centering\arraybackslash 2.339 & \centering\arraybackslash 1.9314
169 > \begin{longtable}{ccc}
170 > \caption{Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \AA. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}
171   \\ \hline \hline
172 + {$J_r$} & {$\langle dT / dr \rangle$} & {$\boldsymbol \lambda$}\\
173 + {\small(kcal fs$^{-1}$ \AA$^{-2}$)} & {\small(K \AA$^{-1}$)} & {\small(W m$^{-1}$ K$^{-1}$)}\\ \hline
174 + 3.25$\times 10^{-6}$ & 0.11435 & 1.9753 \\
175 + 6.50$\times 10^{-6}$ & 0.2324 & 1.9438 \\
176 + 1.30$\times 10^{-5}$ & 0.44922 & 2.0113 \\
177 + 3.25$\times 10^{-5}$ & 1.1802 & 1.9139 \\
178 + 6.50$\times 10^{-5}$ & 2.339 & 1.9314
179 + \\ \hline \hline
180   \label{table:goldconductivity}
181   \end{longtable}
182          
183   SPC/E Water Cluster:
184  
185 < \begin{longtable}{p{2.7cm} p{2.5cm} p{2.5cm}}
186 <        \caption{Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and ambient density.}
190 <        \\ \hline \hline
191 <                \centering {$J_r$} & \centering\arraybackslash {$\langle dT / dr \rangle$} & \centering\arraybackslash {$\boldsymbol \lambda$}\\
192 <        \centering {\small(kcal fs$^{-1}$ \AA$^{-2}$)} & \centering\arraybackslash {\small(K \AA$^{-1}$)} & \centering\arraybackslash {\small(W m$^{-1}$ K$^{-1}$)}\\ \hline
193 < \endhead
194 < \hline
195 < % \endfoot
196 <
185 > \begin{longtable}{ccc}
186 > \caption{Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and ambient density.}
187   \\ \hline \hline
188 + {$J_r$} & {$\langle dT / dr \rangle$} & {$\boldsymbol \lambda$}\\
189 + {\small(kcal fs$^{-1}$ \AA$^{-2}$)} & {\small(K \AA$^{-1}$)} & {\small(W m$^{-1}$ K$^{-1}$)}\\ \hline
190 + \\ \hline \hline
191   \label{table:waterconductivity}
192   \end{longtable}
193  
# Line 222 | Line 215 | Analytical solutions for the rotational friction coeff
215   Analytical solutions for the rotational friction coefficients for a solvated spherical body of radius $r$ under ``stick'' boundary conditions can be estimated using Stokes' law
216  
217   \begin{equation}
218 <        f_r = 8 \pi \eta r^3 \label{eq:fr}.
218 >        \Xi = 8 \pi \eta r^3 \label{eq:Xi}.
219   \end{equation}
220  
221 < For general ellipsoids with semiaxes $a$, $b$, and $c$, Perrin's extension of Stokes' law provides exact solutions for prolate $(a \geq b = c)$ and oblate $(a < b = c)$ ellipsoids. For a prolate ellipsoidal rod, demonstrated here,
221 > where $\eta$ is the dynamic viscosity of the surrounding solvent.
222 >
223 > For general ellipsoids with semiaxes $a$, $b$, and $c$, Perrin's extension of Stokes' law provides exact solutions for symmetric prolate $(a \geq b = c)$ and oblate $(a < b = c)$ ellipsoids. For simplicity, we define a Perrin Factor, $S$,
224  
225 + \begin{equation}
226 +        S = \frac{2}{\sqrt{a^2 - b^2}} ln \left[ \frac{a + \sqrt{a^2 - b^2}}{b} \right]. \label{eq:S}
227 + \end{equation}
228 +
229 + For a prolate ellipsoidal rod, demonstrated here, the rotational resistance tensor $\Xi$ is a $3 \times 3$ diagonal matrix with elements
230 +
231   \begin{eqnarray}
232 <        f_a = \label{eq:fa}\\
233 <        f_b = f_c = \label{eq:fb}
232 >        \Xi^{rr}_a = \frac{32 \Pi}{2} \eta \frac{ \left( a^2 - b^2 \right) b^2}{2a - b^2 S} \label{eq:Xia}\\
233 >        \Xi^{rr}_{b,c} = \frac{32 \Pi}{2} \eta \frac{ \left( a^4 - b^4 \right)}{ \left( 2a^2 - b^2 \right)S - 2a}. \label{eq:Xibc}
234   \end{eqnarray}
235  
236 < The dynamic viscosity of the solvent, $\eta$, was calculated by applying a linear momentum flux to a periodic box of TraPPE-UA hexane.
236 > The dynamic viscosity of the solvent, $\eta$, was determined by applying a traditional VSS-RNEMD linear momentum flux to a periodic box of TraPPE-UA hexane.
237  
238 < \begin{longtable}{p{3.8cm} p{3cm} p{2.8cm} p{2.5cm} p{2.5cm}}
239 <        \caption{Calculated interfacial friction coefficients ($\kappa$) and slip length ($\delta$) of gold nanostructures solvated in TraPPE-UA hexane. The ellipsoid is oriented with the long axis along the $z$ direction.}
240 <        \\ \hline \hline
241 <                {Structure} & \centering{Axis of rotation} & \centering\arraybackslash {$\kappa$} & \centering\arraybackslash {$\delta$} & \centering\arraybackslash Stokes' Law $F$\\
241 <        \centering {} & {} & \centering\arraybackslash {\small($10^4$ Pa s m$^{-1}$)} & \centering\arraybackslash {\small(nm)} & \centering\arraybackslash{\small()}\\ \hline
242 < \endhead
243 < \hline
244 < % \endfoot
245 < Nanoparticle & \centering$x = y = z$ & & & \\
246 < Prolate Ellipsoidal rod & \centering$x = y$ & & & \\
247 < Prolate Ellipsoidal rod & \centering$z$ & & &
238 > Another useful quantity is the friction factor $f$, or the friction coefficient of a non-spherical shape divided by the friction coefficient of a sphere of equivalent volume. The nanoparticle and ellipsoidal nanorod dimensions used here were specifically chosen to create structures with equal volumes.
239 >        
240 > \begin{longtable}{lccccc}
241 > \caption{Calculated interfacial friction coefficients ($\kappa$) and friction factors ($f$) of gold nanostructures solvated in TraPPE-UA hexane. The ellipsoid is oriented with the long axis along the $z$ direction.}
242   \\ \hline \hline
243 + {Structure} & {Axis of rotation} & {$\kappa_{VSS}$} & {$\kappa_{Stokes-Perrin}$} & {$f_{VSS}$} & {$f_{Stokes-Perrin}$}\\
244 + {} & {} & {\small($10^4$ Pa s m$^{-1}$)} & {\small($10^4$ Pa s m$^{-1}$)} & {} & {}\\  \hline
245 + {Sphere} & {$x = y = z$} & {} & {} & {1} & {1}\\
246 + {Prolate Ellipsoid} & {$x = y$} & {} & {} & {} & {}\\
247 + {Prolate Ellipsoid} & {$z$} & {} & {} & {} & {}\\  \hline \hline
248   \label{table:interfacialfriction}
249   \end{longtable}
250  
252
251   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
252   % **DISCUSSION**
253   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Line 271 | Line 269 | Computing (CRC) at the University of Notre Dame.
269   \bibliography{nonperiodicVSS}
270  
271   \end{doublespace}
272 < \end{document}
272 > \end{document}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines