ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopse-1.0/libmdtools/Integrator.cpp
Revision: 1447
Committed: Fri Jul 30 21:01:35 2004 UTC (19 years, 11 months ago) by gezelter
File size: 18702 byte(s)
Log Message:
Initial import of OOPSE sources into cvs tree

File Contents

# User Rev Content
1 gezelter 1447 #include <iostream>
2     #include <stdlib.h>
3     #include <math.h>
4     #ifdef IS_MPI
5     #include "mpiSimulation.hpp"
6     #include <unistd.h>
7     #endif //is_mpi
8    
9     #ifdef PROFILE
10     #include "mdProfile.hpp"
11     #endif // profile
12    
13     #include "Integrator.hpp"
14     #include "simError.h"
15    
16    
17     template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
18     ForceFields* the_ff){
19     info = theInfo;
20     myFF = the_ff;
21     isFirst = 1;
22    
23     molecules = info->molecules;
24     nMols = info->n_mol;
25    
26     // give a little love back to the SimInfo object
27    
28     if (info->the_integrator != NULL){
29     delete info->the_integrator;
30     }
31    
32     nAtoms = info->n_atoms;
33     integrableObjects = info->integrableObjects;
34    
35    
36     // check for constraints
37    
38     constrainedA = NULL;
39     constrainedB = NULL;
40     constrainedDsqr = NULL;
41     moving = NULL;
42     moved = NULL;
43     oldPos = NULL;
44    
45     nConstrained = 0;
46    
47     checkConstraints();
48    
49     }
50    
51     template<typename T> Integrator<T>::~Integrator(){
52    
53     if (nConstrained){
54     delete[] constrainedA;
55     delete[] constrainedB;
56     delete[] constrainedDsqr;
57     delete[] moving;
58     delete[] moved;
59     delete[] oldPos;
60     }
61    
62     }
63    
64    
65     template<typename T> void Integrator<T>::checkConstraints(void){
66     isConstrained = 0;
67    
68     Constraint* temp_con;
69     Constraint* dummy_plug;
70     temp_con = new Constraint[info->n_SRI];
71     nConstrained = 0;
72     int constrained = 0;
73    
74     SRI** theArray;
75     for (int i = 0; i < nMols; i++){
76    
77     theArray = (SRI * *) molecules[i].getMyBonds();
78     for (int j = 0; j < molecules[i].getNBonds(); j++){
79     constrained = theArray[j]->is_constrained();
80    
81     if (constrained){
82     dummy_plug = theArray[j]->get_constraint();
83     temp_con[nConstrained].set_a(dummy_plug->get_a());
84     temp_con[nConstrained].set_b(dummy_plug->get_b());
85     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
86    
87     nConstrained++;
88     constrained = 0;
89     }
90     }
91    
92     theArray = (SRI * *) molecules[i].getMyBends();
93     for (int j = 0; j < molecules[i].getNBends(); j++){
94     constrained = theArray[j]->is_constrained();
95    
96     if (constrained){
97     dummy_plug = theArray[j]->get_constraint();
98     temp_con[nConstrained].set_a(dummy_plug->get_a());
99     temp_con[nConstrained].set_b(dummy_plug->get_b());
100     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
101    
102     nConstrained++;
103     constrained = 0;
104     }
105     }
106    
107     theArray = (SRI * *) molecules[i].getMyTorsions();
108     for (int j = 0; j < molecules[i].getNTorsions(); j++){
109     constrained = theArray[j]->is_constrained();
110    
111     if (constrained){
112     dummy_plug = theArray[j]->get_constraint();
113     temp_con[nConstrained].set_a(dummy_plug->get_a());
114     temp_con[nConstrained].set_b(dummy_plug->get_b());
115     temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
116    
117     nConstrained++;
118     constrained = 0;
119     }
120     }
121     }
122    
123    
124     if (nConstrained > 0){
125     isConstrained = 1;
126    
127     if (constrainedA != NULL)
128     delete[] constrainedA;
129     if (constrainedB != NULL)
130     delete[] constrainedB;
131     if (constrainedDsqr != NULL)
132     delete[] constrainedDsqr;
133    
134     constrainedA = new int[nConstrained];
135     constrainedB = new int[nConstrained];
136     constrainedDsqr = new double[nConstrained];
137    
138     for (int i = 0; i < nConstrained; i++){
139     constrainedA[i] = temp_con[i].get_a();
140     constrainedB[i] = temp_con[i].get_b();
141     constrainedDsqr[i] = temp_con[i].get_dsqr();
142     }
143    
144    
145     // save oldAtoms to check for lode balancing later on.
146    
147     oldAtoms = nAtoms;
148    
149     moving = new int[nAtoms];
150     moved = new int[nAtoms];
151    
152     oldPos = new double[nAtoms * 3];
153     }
154    
155     delete[] temp_con;
156     }
157    
158    
159     template<typename T> void Integrator<T>::integrate(void){
160    
161     double runTime = info->run_time;
162     double sampleTime = info->sampleTime;
163     double statusTime = info->statusTime;
164     double thermalTime = info->thermalTime;
165     double resetTime = info->resetTime;
166    
167     double difference;
168     double currSample;
169     double currThermal;
170     double currStatus;
171     double currReset;
172    
173     int calcPot, calcStress;
174    
175     tStats = new Thermo(info);
176     statOut = new StatWriter(info);
177     dumpOut = new DumpWriter(info);
178    
179     atoms = info->atoms;
180    
181     dt = info->dt;
182     dt2 = 0.5 * dt;
183    
184     readyCheck();
185    
186     // remove center of mass drift velocity (in case we passed in a configuration
187     // that was drifting
188     tStats->removeCOMdrift();
189    
190     // initialize the retraints if necessary
191     if (info->useSolidThermInt && !info->useLiquidThermInt) {
192     myFF->initRestraints();
193     }
194    
195     // initialize the forces before the first step
196    
197     calcForce(1, 1);
198    
199     //execute constraint algorithm to make sure at the very beginning the system is constrained
200     if(nConstrained){
201     preMove();
202     constrainA();
203     calcForce(1, 1);
204     constrainB();
205     }
206    
207     if (info->setTemp){
208     thermalize();
209     }
210    
211     calcPot = 0;
212     calcStress = 0;
213     currSample = sampleTime + info->getTime();
214     currThermal = thermalTime+ info->getTime();
215     currStatus = statusTime + info->getTime();
216     currReset = resetTime + info->getTime();
217    
218     dumpOut->writeDump(info->getTime());
219     statOut->writeStat(info->getTime());
220    
221    
222     #ifdef IS_MPI
223     strcpy(checkPointMsg, "The integrator is ready to go.");
224     MPIcheckPoint();
225     #endif // is_mpi
226    
227     while (info->getTime() < runTime && !stopIntegrator()){
228     difference = info->getTime() + dt - currStatus;
229     if (difference > 0 || fabs(difference) < 1e-4 ){
230     calcPot = 1;
231     calcStress = 1;
232     }
233    
234     #ifdef PROFILE
235     startProfile( pro1 );
236     #endif
237    
238     integrateStep(calcPot, calcStress);
239    
240     #ifdef PROFILE
241     endProfile( pro1 );
242    
243     startProfile( pro2 );
244     #endif // profile
245    
246     info->incrTime(dt);
247    
248     if (info->setTemp){
249     if (info->getTime() >= currThermal){
250     thermalize();
251     currThermal += thermalTime;
252     }
253     }
254    
255     if (info->getTime() >= currSample){
256     dumpOut->writeDump(info->getTime());
257     currSample += sampleTime;
258     }
259    
260     if (info->getTime() >= currStatus){
261     statOut->writeStat(info->getTime());
262     calcPot = 0;
263     calcStress = 0;
264     currStatus += statusTime;
265     }
266    
267     if (info->resetIntegrator){
268     if (info->getTime() >= currReset){
269     this->resetIntegrator();
270     currReset += resetTime;
271     }
272     }
273    
274     #ifdef PROFILE
275     endProfile( pro2 );
276     #endif //profile
277    
278     #ifdef IS_MPI
279     strcpy(checkPointMsg, "successfully took a time step.");
280     MPIcheckPoint();
281     #endif // is_mpi
282     }
283    
284     dumpOut->writeFinal(info->getTime());
285    
286     // dump out a file containing the omega values for the final configuration
287     if (info->useSolidThermInt && !info->useLiquidThermInt)
288     myFF->dumpzAngle();
289    
290    
291     delete dumpOut;
292     delete statOut;
293     }
294    
295     template<typename T> void Integrator<T>::integrateStep(int calcPot,
296     int calcStress){
297     // Position full step, and velocity half step
298    
299     #ifdef PROFILE
300     startProfile(pro3);
301     #endif //profile
302    
303     //save old state (position, velocity etc)
304     preMove();
305     #ifdef PROFILE
306     endProfile(pro3);
307    
308     startProfile(pro4);
309     #endif // profile
310    
311     moveA();
312    
313     #ifdef PROFILE
314     endProfile(pro4);
315    
316     startProfile(pro5);
317     #endif//profile
318    
319    
320     #ifdef IS_MPI
321     strcpy(checkPointMsg, "Succesful moveA\n");
322     MPIcheckPoint();
323     #endif // is_mpi
324    
325     // calc forces
326     calcForce(calcPot, calcStress);
327    
328     #ifdef IS_MPI
329     strcpy(checkPointMsg, "Succesful doForces\n");
330     MPIcheckPoint();
331     #endif // is_mpi
332    
333     #ifdef PROFILE
334     endProfile( pro5 );
335    
336     startProfile( pro6 );
337     #endif //profile
338    
339     // finish the velocity half step
340    
341     moveB();
342    
343     #ifdef PROFILE
344     endProfile(pro6);
345     #endif // profile
346    
347     #ifdef IS_MPI
348     strcpy(checkPointMsg, "Succesful moveB\n");
349     MPIcheckPoint();
350     #endif // is_mpi
351     }
352    
353    
354     template<typename T> void Integrator<T>::moveA(void){
355     size_t i, j;
356     DirectionalAtom* dAtom;
357     double Tb[3], ji[3];
358     double vel[3], pos[3], frc[3];
359     double mass;
360     double omega;
361    
362     for (i = 0; i < integrableObjects.size() ; i++){
363     integrableObjects[i]->getVel(vel);
364     integrableObjects[i]->getPos(pos);
365     integrableObjects[i]->getFrc(frc);
366    
367     mass = integrableObjects[i]->getMass();
368    
369     for (j = 0; j < 3; j++){
370     // velocity half step
371     vel[j] += (dt2 * frc[j] / mass) * eConvert;
372     // position whole step
373     pos[j] += dt * vel[j];
374     }
375    
376     integrableObjects[i]->setVel(vel);
377     integrableObjects[i]->setPos(pos);
378    
379     if (integrableObjects[i]->isDirectional()){
380    
381     // get and convert the torque to body frame
382    
383     integrableObjects[i]->getTrq(Tb);
384     integrableObjects[i]->lab2Body(Tb);
385    
386     // get the angular momentum, and propagate a half step
387    
388     integrableObjects[i]->getJ(ji);
389    
390     for (j = 0; j < 3; j++)
391     ji[j] += (dt2 * Tb[j]) * eConvert;
392    
393     this->rotationPropagation( integrableObjects[i], ji );
394    
395     integrableObjects[i]->setJ(ji);
396     }
397     }
398    
399     if(nConstrained)
400     constrainA();
401     }
402    
403    
404     template<typename T> void Integrator<T>::moveB(void){
405     int i, j;
406     double Tb[3], ji[3];
407     double vel[3], frc[3];
408     double mass;
409    
410     for (i = 0; i < integrableObjects.size(); i++){
411     integrableObjects[i]->getVel(vel);
412     integrableObjects[i]->getFrc(frc);
413    
414     mass = integrableObjects[i]->getMass();
415    
416     // velocity half step
417     for (j = 0; j < 3; j++)
418     vel[j] += (dt2 * frc[j] / mass) * eConvert;
419    
420     integrableObjects[i]->setVel(vel);
421    
422     if (integrableObjects[i]->isDirectional()){
423    
424     // get and convert the torque to body frame
425    
426     integrableObjects[i]->getTrq(Tb);
427     integrableObjects[i]->lab2Body(Tb);
428    
429     // get the angular momentum, and propagate a half step
430    
431     integrableObjects[i]->getJ(ji);
432    
433     for (j = 0; j < 3; j++)
434     ji[j] += (dt2 * Tb[j]) * eConvert;
435    
436    
437     integrableObjects[i]->setJ(ji);
438     }
439     }
440    
441     if(nConstrained)
442     constrainB();
443     }
444    
445    
446     template<typename T> void Integrator<T>::preMove(void){
447     int i, j;
448     double pos[3];
449    
450     if (nConstrained){
451     for (i = 0; i < nAtoms; i++){
452     atoms[i]->getPos(pos);
453    
454     for (j = 0; j < 3; j++){
455     oldPos[3 * i + j] = pos[j];
456     }
457     }
458     }
459     }
460    
461     template<typename T> void Integrator<T>::constrainA(){
462     int i, j;
463     int done;
464     double posA[3], posB[3];
465     double velA[3], velB[3];
466     double pab[3];
467     double rab[3];
468     int a, b, ax, ay, az, bx, by, bz;
469     double rma, rmb;
470     double dx, dy, dz;
471     double rpab;
472     double rabsq, pabsq, rpabsq;
473     double diffsq;
474     double gab;
475     int iteration;
476    
477     for (i = 0; i < nAtoms; i++){
478     moving[i] = 0;
479     moved[i] = 1;
480     }
481    
482     iteration = 0;
483     done = 0;
484     while (!done && (iteration < maxIteration)){
485     done = 1;
486     for (i = 0; i < nConstrained; i++){
487     a = constrainedA[i];
488     b = constrainedB[i];
489    
490     ax = (a * 3) + 0;
491     ay = (a * 3) + 1;
492     az = (a * 3) + 2;
493    
494     bx = (b * 3) + 0;
495     by = (b * 3) + 1;
496     bz = (b * 3) + 2;
497    
498     if (moved[a] || moved[b]){
499     atoms[a]->getPos(posA);
500     atoms[b]->getPos(posB);
501    
502     for (j = 0; j < 3; j++)
503     pab[j] = posA[j] - posB[j];
504    
505     //periodic boundary condition
506    
507     info->wrapVector(pab);
508    
509     pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
510    
511     rabsq = constrainedDsqr[i];
512     diffsq = rabsq - pabsq;
513    
514     // the original rattle code from alan tidesley
515     if (fabs(diffsq) > (tol * rabsq * 2)){
516     rab[0] = oldPos[ax] - oldPos[bx];
517     rab[1] = oldPos[ay] - oldPos[by];
518     rab[2] = oldPos[az] - oldPos[bz];
519    
520     info->wrapVector(rab);
521    
522     rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
523    
524     rpabsq = rpab * rpab;
525    
526    
527     if (rpabsq < (rabsq * -diffsq)){
528     #ifdef IS_MPI
529     a = atoms[a]->getGlobalIndex();
530     b = atoms[b]->getGlobalIndex();
531     #endif //is_mpi
532     sprintf(painCave.errMsg,
533     "Constraint failure in constrainA at atom %d and %d.\n", a,
534     b);
535     painCave.isFatal = 1;
536     simError();
537     }
538    
539     rma = 1.0 / atoms[a]->getMass();
540     rmb = 1.0 / atoms[b]->getMass();
541    
542     gab = diffsq / (2.0 * (rma + rmb) * rpab);
543    
544     dx = rab[0] * gab;
545     dy = rab[1] * gab;
546     dz = rab[2] * gab;
547    
548     posA[0] += rma * dx;
549     posA[1] += rma * dy;
550     posA[2] += rma * dz;
551    
552     atoms[a]->setPos(posA);
553    
554     posB[0] -= rmb * dx;
555     posB[1] -= rmb * dy;
556     posB[2] -= rmb * dz;
557    
558     atoms[b]->setPos(posB);
559    
560     dx = dx / dt;
561     dy = dy / dt;
562     dz = dz / dt;
563    
564     atoms[a]->getVel(velA);
565    
566     velA[0] += rma * dx;
567     velA[1] += rma * dy;
568     velA[2] += rma * dz;
569    
570     atoms[a]->setVel(velA);
571    
572     atoms[b]->getVel(velB);
573    
574     velB[0] -= rmb * dx;
575     velB[1] -= rmb * dy;
576     velB[2] -= rmb * dz;
577    
578     atoms[b]->setVel(velB);
579    
580     moving[a] = 1;
581     moving[b] = 1;
582     done = 0;
583     }
584     }
585     }
586    
587     for (i = 0; i < nAtoms; i++){
588     moved[i] = moving[i];
589     moving[i] = 0;
590     }
591    
592     iteration++;
593     }
594    
595     if (!done){
596     sprintf(painCave.errMsg,
597     "Constraint failure in constrainA, too many iterations: %d\n",
598     iteration);
599     painCave.isFatal = 1;
600     simError();
601     }
602    
603     }
604    
605     template<typename T> void Integrator<T>::constrainB(void){
606     int i, j;
607     int done;
608     double posA[3], posB[3];
609     double velA[3], velB[3];
610     double vxab, vyab, vzab;
611     double rab[3];
612     int a, b, ax, ay, az, bx, by, bz;
613     double rma, rmb;
614     double dx, dy, dz;
615     double rvab;
616     double gab;
617     int iteration;
618    
619     for (i = 0; i < nAtoms; i++){
620     moving[i] = 0;
621     moved[i] = 1;
622     }
623    
624     done = 0;
625     iteration = 0;
626     while (!done && (iteration < maxIteration)){
627     done = 1;
628    
629     for (i = 0; i < nConstrained; i++){
630     a = constrainedA[i];
631     b = constrainedB[i];
632    
633     ax = (a * 3) + 0;
634     ay = (a * 3) + 1;
635     az = (a * 3) + 2;
636    
637     bx = (b * 3) + 0;
638     by = (b * 3) + 1;
639     bz = (b * 3) + 2;
640    
641     if (moved[a] || moved[b]){
642     atoms[a]->getVel(velA);
643     atoms[b]->getVel(velB);
644    
645     vxab = velA[0] - velB[0];
646     vyab = velA[1] - velB[1];
647     vzab = velA[2] - velB[2];
648    
649     atoms[a]->getPos(posA);
650     atoms[b]->getPos(posB);
651    
652     for (j = 0; j < 3; j++)
653     rab[j] = posA[j] - posB[j];
654    
655     info->wrapVector(rab);
656    
657     rma = 1.0 / atoms[a]->getMass();
658     rmb = 1.0 / atoms[b]->getMass();
659    
660     rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
661    
662     gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
663    
664     if (fabs(gab) > tol){
665     dx = rab[0] * gab;
666     dy = rab[1] * gab;
667     dz = rab[2] * gab;
668    
669     velA[0] += rma * dx;
670     velA[1] += rma * dy;
671     velA[2] += rma * dz;
672    
673     atoms[a]->setVel(velA);
674    
675     velB[0] -= rmb * dx;
676     velB[1] -= rmb * dy;
677     velB[2] -= rmb * dz;
678    
679     atoms[b]->setVel(velB);
680    
681     moving[a] = 1;
682     moving[b] = 1;
683     done = 0;
684     }
685     }
686     }
687    
688     for (i = 0; i < nAtoms; i++){
689     moved[i] = moving[i];
690     moving[i] = 0;
691     }
692    
693     iteration++;
694     }
695    
696     if (!done){
697     sprintf(painCave.errMsg,
698     "Constraint failure in constrainB, too many iterations: %d\n",
699     iteration);
700     painCave.isFatal = 1;
701     simError();
702     }
703     }
704    
705     template<typename T> void Integrator<T>::rotationPropagation
706     ( StuntDouble* sd, double ji[3] ){
707    
708     double angle;
709     double A[3][3], I[3][3];
710     int i, j, k;
711    
712     // use the angular velocities to propagate the rotation matrix a
713     // full time step
714    
715     sd->getA(A);
716     sd->getI(I);
717    
718     if (sd->isLinear()) {
719     i = sd->linearAxis();
720     j = (i+1)%3;
721     k = (i+2)%3;
722    
723     angle = dt2 * ji[j] / I[j][j];
724     this->rotate( k, i, angle, ji, A );
725    
726     angle = dt * ji[k] / I[k][k];
727     this->rotate( i, j, angle, ji, A);
728    
729     angle = dt2 * ji[j] / I[j][j];
730     this->rotate( k, i, angle, ji, A );
731    
732     } else {
733     // rotate about the x-axis
734     angle = dt2 * ji[0] / I[0][0];
735     this->rotate( 1, 2, angle, ji, A );
736    
737     // rotate about the y-axis
738     angle = dt2 * ji[1] / I[1][1];
739     this->rotate( 2, 0, angle, ji, A );
740    
741     // rotate about the z-axis
742     angle = dt * ji[2] / I[2][2];
743     sd->addZangle(angle);
744     this->rotate( 0, 1, angle, ji, A);
745    
746     // rotate about the y-axis
747     angle = dt2 * ji[1] / I[1][1];
748     this->rotate( 2, 0, angle, ji, A );
749    
750     // rotate about the x-axis
751     angle = dt2 * ji[0] / I[0][0];
752     this->rotate( 1, 2, angle, ji, A );
753    
754     }
755     sd->setA( A );
756     }
757    
758     template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
759     double angle, double ji[3],
760     double A[3][3]){
761     int i, j, k;
762     double sinAngle;
763     double cosAngle;
764     double angleSqr;
765     double angleSqrOver4;
766     double top, bottom;
767     double rot[3][3];
768     double tempA[3][3];
769     double tempJ[3];
770    
771     // initialize the tempA
772    
773     for (i = 0; i < 3; i++){
774     for (j = 0; j < 3; j++){
775     tempA[j][i] = A[i][j];
776     }
777     }
778    
779     // initialize the tempJ
780    
781     for (i = 0; i < 3; i++)
782     tempJ[i] = ji[i];
783    
784     // initalize rot as a unit matrix
785    
786     rot[0][0] = 1.0;
787     rot[0][1] = 0.0;
788     rot[0][2] = 0.0;
789    
790     rot[1][0] = 0.0;
791     rot[1][1] = 1.0;
792     rot[1][2] = 0.0;
793    
794     rot[2][0] = 0.0;
795     rot[2][1] = 0.0;
796     rot[2][2] = 1.0;
797    
798     // use a small angle aproximation for sin and cosine
799    
800     angleSqr = angle * angle;
801     angleSqrOver4 = angleSqr / 4.0;
802     top = 1.0 - angleSqrOver4;
803     bottom = 1.0 + angleSqrOver4;
804    
805     cosAngle = top / bottom;
806     sinAngle = angle / bottom;
807    
808     rot[axes1][axes1] = cosAngle;
809     rot[axes2][axes2] = cosAngle;
810    
811     rot[axes1][axes2] = sinAngle;
812     rot[axes2][axes1] = -sinAngle;
813    
814     // rotate the momentum acoording to: ji[] = rot[][] * ji[]
815    
816     for (i = 0; i < 3; i++){
817     ji[i] = 0.0;
818     for (k = 0; k < 3; k++){
819     ji[i] += rot[i][k] * tempJ[k];
820     }
821     }
822    
823     // rotate the Rotation matrix acording to:
824     // A[][] = A[][] * transpose(rot[][])
825    
826    
827     // NOte for as yet unknown reason, we are performing the
828     // calculation as:
829     // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
830    
831     for (i = 0; i < 3; i++){
832     for (j = 0; j < 3; j++){
833     A[j][i] = 0.0;
834     for (k = 0; k < 3; k++){
835     A[j][i] += tempA[i][k] * rot[j][k];
836     }
837     }
838     }
839     }
840    
841     template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
842     myFF->doForces(calcPot, calcStress);
843     }
844    
845     template<typename T> void Integrator<T>::thermalize(){
846     tStats->velocitize();
847     }
848    
849     template<typename T> double Integrator<T>::getConservedQuantity(void){
850     return tStats->getTotalE();
851     }
852     template<typename T> string Integrator<T>::getAdditionalParameters(void){
853     //By default, return a null string
854     //The reason we use string instead of char* is that if we use char*, we will
855     //return a pointer point to local variable which might cause problem
856     return string();
857     }