ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopse-1.0/libmdtools/Integrator.cpp
Revision: 1447
Committed: Fri Jul 30 21:01:35 2004 UTC (19 years, 11 months ago) by gezelter
File size: 18702 byte(s)
Log Message:
Initial import of OOPSE sources into cvs tree

File Contents

# Content
1 #include <iostream>
2 #include <stdlib.h>
3 #include <math.h>
4 #ifdef IS_MPI
5 #include "mpiSimulation.hpp"
6 #include <unistd.h>
7 #endif //is_mpi
8
9 #ifdef PROFILE
10 #include "mdProfile.hpp"
11 #endif // profile
12
13 #include "Integrator.hpp"
14 #include "simError.h"
15
16
17 template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
18 ForceFields* the_ff){
19 info = theInfo;
20 myFF = the_ff;
21 isFirst = 1;
22
23 molecules = info->molecules;
24 nMols = info->n_mol;
25
26 // give a little love back to the SimInfo object
27
28 if (info->the_integrator != NULL){
29 delete info->the_integrator;
30 }
31
32 nAtoms = info->n_atoms;
33 integrableObjects = info->integrableObjects;
34
35
36 // check for constraints
37
38 constrainedA = NULL;
39 constrainedB = NULL;
40 constrainedDsqr = NULL;
41 moving = NULL;
42 moved = NULL;
43 oldPos = NULL;
44
45 nConstrained = 0;
46
47 checkConstraints();
48
49 }
50
51 template<typename T> Integrator<T>::~Integrator(){
52
53 if (nConstrained){
54 delete[] constrainedA;
55 delete[] constrainedB;
56 delete[] constrainedDsqr;
57 delete[] moving;
58 delete[] moved;
59 delete[] oldPos;
60 }
61
62 }
63
64
65 template<typename T> void Integrator<T>::checkConstraints(void){
66 isConstrained = 0;
67
68 Constraint* temp_con;
69 Constraint* dummy_plug;
70 temp_con = new Constraint[info->n_SRI];
71 nConstrained = 0;
72 int constrained = 0;
73
74 SRI** theArray;
75 for (int i = 0; i < nMols; i++){
76
77 theArray = (SRI * *) molecules[i].getMyBonds();
78 for (int j = 0; j < molecules[i].getNBonds(); j++){
79 constrained = theArray[j]->is_constrained();
80
81 if (constrained){
82 dummy_plug = theArray[j]->get_constraint();
83 temp_con[nConstrained].set_a(dummy_plug->get_a());
84 temp_con[nConstrained].set_b(dummy_plug->get_b());
85 temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
86
87 nConstrained++;
88 constrained = 0;
89 }
90 }
91
92 theArray = (SRI * *) molecules[i].getMyBends();
93 for (int j = 0; j < molecules[i].getNBends(); j++){
94 constrained = theArray[j]->is_constrained();
95
96 if (constrained){
97 dummy_plug = theArray[j]->get_constraint();
98 temp_con[nConstrained].set_a(dummy_plug->get_a());
99 temp_con[nConstrained].set_b(dummy_plug->get_b());
100 temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
101
102 nConstrained++;
103 constrained = 0;
104 }
105 }
106
107 theArray = (SRI * *) molecules[i].getMyTorsions();
108 for (int j = 0; j < molecules[i].getNTorsions(); j++){
109 constrained = theArray[j]->is_constrained();
110
111 if (constrained){
112 dummy_plug = theArray[j]->get_constraint();
113 temp_con[nConstrained].set_a(dummy_plug->get_a());
114 temp_con[nConstrained].set_b(dummy_plug->get_b());
115 temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
116
117 nConstrained++;
118 constrained = 0;
119 }
120 }
121 }
122
123
124 if (nConstrained > 0){
125 isConstrained = 1;
126
127 if (constrainedA != NULL)
128 delete[] constrainedA;
129 if (constrainedB != NULL)
130 delete[] constrainedB;
131 if (constrainedDsqr != NULL)
132 delete[] constrainedDsqr;
133
134 constrainedA = new int[nConstrained];
135 constrainedB = new int[nConstrained];
136 constrainedDsqr = new double[nConstrained];
137
138 for (int i = 0; i < nConstrained; i++){
139 constrainedA[i] = temp_con[i].get_a();
140 constrainedB[i] = temp_con[i].get_b();
141 constrainedDsqr[i] = temp_con[i].get_dsqr();
142 }
143
144
145 // save oldAtoms to check for lode balancing later on.
146
147 oldAtoms = nAtoms;
148
149 moving = new int[nAtoms];
150 moved = new int[nAtoms];
151
152 oldPos = new double[nAtoms * 3];
153 }
154
155 delete[] temp_con;
156 }
157
158
159 template<typename T> void Integrator<T>::integrate(void){
160
161 double runTime = info->run_time;
162 double sampleTime = info->sampleTime;
163 double statusTime = info->statusTime;
164 double thermalTime = info->thermalTime;
165 double resetTime = info->resetTime;
166
167 double difference;
168 double currSample;
169 double currThermal;
170 double currStatus;
171 double currReset;
172
173 int calcPot, calcStress;
174
175 tStats = new Thermo(info);
176 statOut = new StatWriter(info);
177 dumpOut = new DumpWriter(info);
178
179 atoms = info->atoms;
180
181 dt = info->dt;
182 dt2 = 0.5 * dt;
183
184 readyCheck();
185
186 // remove center of mass drift velocity (in case we passed in a configuration
187 // that was drifting
188 tStats->removeCOMdrift();
189
190 // initialize the retraints if necessary
191 if (info->useSolidThermInt && !info->useLiquidThermInt) {
192 myFF->initRestraints();
193 }
194
195 // initialize the forces before the first step
196
197 calcForce(1, 1);
198
199 //execute constraint algorithm to make sure at the very beginning the system is constrained
200 if(nConstrained){
201 preMove();
202 constrainA();
203 calcForce(1, 1);
204 constrainB();
205 }
206
207 if (info->setTemp){
208 thermalize();
209 }
210
211 calcPot = 0;
212 calcStress = 0;
213 currSample = sampleTime + info->getTime();
214 currThermal = thermalTime+ info->getTime();
215 currStatus = statusTime + info->getTime();
216 currReset = resetTime + info->getTime();
217
218 dumpOut->writeDump(info->getTime());
219 statOut->writeStat(info->getTime());
220
221
222 #ifdef IS_MPI
223 strcpy(checkPointMsg, "The integrator is ready to go.");
224 MPIcheckPoint();
225 #endif // is_mpi
226
227 while (info->getTime() < runTime && !stopIntegrator()){
228 difference = info->getTime() + dt - currStatus;
229 if (difference > 0 || fabs(difference) < 1e-4 ){
230 calcPot = 1;
231 calcStress = 1;
232 }
233
234 #ifdef PROFILE
235 startProfile( pro1 );
236 #endif
237
238 integrateStep(calcPot, calcStress);
239
240 #ifdef PROFILE
241 endProfile( pro1 );
242
243 startProfile( pro2 );
244 #endif // profile
245
246 info->incrTime(dt);
247
248 if (info->setTemp){
249 if (info->getTime() >= currThermal){
250 thermalize();
251 currThermal += thermalTime;
252 }
253 }
254
255 if (info->getTime() >= currSample){
256 dumpOut->writeDump(info->getTime());
257 currSample += sampleTime;
258 }
259
260 if (info->getTime() >= currStatus){
261 statOut->writeStat(info->getTime());
262 calcPot = 0;
263 calcStress = 0;
264 currStatus += statusTime;
265 }
266
267 if (info->resetIntegrator){
268 if (info->getTime() >= currReset){
269 this->resetIntegrator();
270 currReset += resetTime;
271 }
272 }
273
274 #ifdef PROFILE
275 endProfile( pro2 );
276 #endif //profile
277
278 #ifdef IS_MPI
279 strcpy(checkPointMsg, "successfully took a time step.");
280 MPIcheckPoint();
281 #endif // is_mpi
282 }
283
284 dumpOut->writeFinal(info->getTime());
285
286 // dump out a file containing the omega values for the final configuration
287 if (info->useSolidThermInt && !info->useLiquidThermInt)
288 myFF->dumpzAngle();
289
290
291 delete dumpOut;
292 delete statOut;
293 }
294
295 template<typename T> void Integrator<T>::integrateStep(int calcPot,
296 int calcStress){
297 // Position full step, and velocity half step
298
299 #ifdef PROFILE
300 startProfile(pro3);
301 #endif //profile
302
303 //save old state (position, velocity etc)
304 preMove();
305 #ifdef PROFILE
306 endProfile(pro3);
307
308 startProfile(pro4);
309 #endif // profile
310
311 moveA();
312
313 #ifdef PROFILE
314 endProfile(pro4);
315
316 startProfile(pro5);
317 #endif//profile
318
319
320 #ifdef IS_MPI
321 strcpy(checkPointMsg, "Succesful moveA\n");
322 MPIcheckPoint();
323 #endif // is_mpi
324
325 // calc forces
326 calcForce(calcPot, calcStress);
327
328 #ifdef IS_MPI
329 strcpy(checkPointMsg, "Succesful doForces\n");
330 MPIcheckPoint();
331 #endif // is_mpi
332
333 #ifdef PROFILE
334 endProfile( pro5 );
335
336 startProfile( pro6 );
337 #endif //profile
338
339 // finish the velocity half step
340
341 moveB();
342
343 #ifdef PROFILE
344 endProfile(pro6);
345 #endif // profile
346
347 #ifdef IS_MPI
348 strcpy(checkPointMsg, "Succesful moveB\n");
349 MPIcheckPoint();
350 #endif // is_mpi
351 }
352
353
354 template<typename T> void Integrator<T>::moveA(void){
355 size_t i, j;
356 DirectionalAtom* dAtom;
357 double Tb[3], ji[3];
358 double vel[3], pos[3], frc[3];
359 double mass;
360 double omega;
361
362 for (i = 0; i < integrableObjects.size() ; i++){
363 integrableObjects[i]->getVel(vel);
364 integrableObjects[i]->getPos(pos);
365 integrableObjects[i]->getFrc(frc);
366
367 mass = integrableObjects[i]->getMass();
368
369 for (j = 0; j < 3; j++){
370 // velocity half step
371 vel[j] += (dt2 * frc[j] / mass) * eConvert;
372 // position whole step
373 pos[j] += dt * vel[j];
374 }
375
376 integrableObjects[i]->setVel(vel);
377 integrableObjects[i]->setPos(pos);
378
379 if (integrableObjects[i]->isDirectional()){
380
381 // get and convert the torque to body frame
382
383 integrableObjects[i]->getTrq(Tb);
384 integrableObjects[i]->lab2Body(Tb);
385
386 // get the angular momentum, and propagate a half step
387
388 integrableObjects[i]->getJ(ji);
389
390 for (j = 0; j < 3; j++)
391 ji[j] += (dt2 * Tb[j]) * eConvert;
392
393 this->rotationPropagation( integrableObjects[i], ji );
394
395 integrableObjects[i]->setJ(ji);
396 }
397 }
398
399 if(nConstrained)
400 constrainA();
401 }
402
403
404 template<typename T> void Integrator<T>::moveB(void){
405 int i, j;
406 double Tb[3], ji[3];
407 double vel[3], frc[3];
408 double mass;
409
410 for (i = 0; i < integrableObjects.size(); i++){
411 integrableObjects[i]->getVel(vel);
412 integrableObjects[i]->getFrc(frc);
413
414 mass = integrableObjects[i]->getMass();
415
416 // velocity half step
417 for (j = 0; j < 3; j++)
418 vel[j] += (dt2 * frc[j] / mass) * eConvert;
419
420 integrableObjects[i]->setVel(vel);
421
422 if (integrableObjects[i]->isDirectional()){
423
424 // get and convert the torque to body frame
425
426 integrableObjects[i]->getTrq(Tb);
427 integrableObjects[i]->lab2Body(Tb);
428
429 // get the angular momentum, and propagate a half step
430
431 integrableObjects[i]->getJ(ji);
432
433 for (j = 0; j < 3; j++)
434 ji[j] += (dt2 * Tb[j]) * eConvert;
435
436
437 integrableObjects[i]->setJ(ji);
438 }
439 }
440
441 if(nConstrained)
442 constrainB();
443 }
444
445
446 template<typename T> void Integrator<T>::preMove(void){
447 int i, j;
448 double pos[3];
449
450 if (nConstrained){
451 for (i = 0; i < nAtoms; i++){
452 atoms[i]->getPos(pos);
453
454 for (j = 0; j < 3; j++){
455 oldPos[3 * i + j] = pos[j];
456 }
457 }
458 }
459 }
460
461 template<typename T> void Integrator<T>::constrainA(){
462 int i, j;
463 int done;
464 double posA[3], posB[3];
465 double velA[3], velB[3];
466 double pab[3];
467 double rab[3];
468 int a, b, ax, ay, az, bx, by, bz;
469 double rma, rmb;
470 double dx, dy, dz;
471 double rpab;
472 double rabsq, pabsq, rpabsq;
473 double diffsq;
474 double gab;
475 int iteration;
476
477 for (i = 0; i < nAtoms; i++){
478 moving[i] = 0;
479 moved[i] = 1;
480 }
481
482 iteration = 0;
483 done = 0;
484 while (!done && (iteration < maxIteration)){
485 done = 1;
486 for (i = 0; i < nConstrained; i++){
487 a = constrainedA[i];
488 b = constrainedB[i];
489
490 ax = (a * 3) + 0;
491 ay = (a * 3) + 1;
492 az = (a * 3) + 2;
493
494 bx = (b * 3) + 0;
495 by = (b * 3) + 1;
496 bz = (b * 3) + 2;
497
498 if (moved[a] || moved[b]){
499 atoms[a]->getPos(posA);
500 atoms[b]->getPos(posB);
501
502 for (j = 0; j < 3; j++)
503 pab[j] = posA[j] - posB[j];
504
505 //periodic boundary condition
506
507 info->wrapVector(pab);
508
509 pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
510
511 rabsq = constrainedDsqr[i];
512 diffsq = rabsq - pabsq;
513
514 // the original rattle code from alan tidesley
515 if (fabs(diffsq) > (tol * rabsq * 2)){
516 rab[0] = oldPos[ax] - oldPos[bx];
517 rab[1] = oldPos[ay] - oldPos[by];
518 rab[2] = oldPos[az] - oldPos[bz];
519
520 info->wrapVector(rab);
521
522 rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
523
524 rpabsq = rpab * rpab;
525
526
527 if (rpabsq < (rabsq * -diffsq)){
528 #ifdef IS_MPI
529 a = atoms[a]->getGlobalIndex();
530 b = atoms[b]->getGlobalIndex();
531 #endif //is_mpi
532 sprintf(painCave.errMsg,
533 "Constraint failure in constrainA at atom %d and %d.\n", a,
534 b);
535 painCave.isFatal = 1;
536 simError();
537 }
538
539 rma = 1.0 / atoms[a]->getMass();
540 rmb = 1.0 / atoms[b]->getMass();
541
542 gab = diffsq / (2.0 * (rma + rmb) * rpab);
543
544 dx = rab[0] * gab;
545 dy = rab[1] * gab;
546 dz = rab[2] * gab;
547
548 posA[0] += rma * dx;
549 posA[1] += rma * dy;
550 posA[2] += rma * dz;
551
552 atoms[a]->setPos(posA);
553
554 posB[0] -= rmb * dx;
555 posB[1] -= rmb * dy;
556 posB[2] -= rmb * dz;
557
558 atoms[b]->setPos(posB);
559
560 dx = dx / dt;
561 dy = dy / dt;
562 dz = dz / dt;
563
564 atoms[a]->getVel(velA);
565
566 velA[0] += rma * dx;
567 velA[1] += rma * dy;
568 velA[2] += rma * dz;
569
570 atoms[a]->setVel(velA);
571
572 atoms[b]->getVel(velB);
573
574 velB[0] -= rmb * dx;
575 velB[1] -= rmb * dy;
576 velB[2] -= rmb * dz;
577
578 atoms[b]->setVel(velB);
579
580 moving[a] = 1;
581 moving[b] = 1;
582 done = 0;
583 }
584 }
585 }
586
587 for (i = 0; i < nAtoms; i++){
588 moved[i] = moving[i];
589 moving[i] = 0;
590 }
591
592 iteration++;
593 }
594
595 if (!done){
596 sprintf(painCave.errMsg,
597 "Constraint failure in constrainA, too many iterations: %d\n",
598 iteration);
599 painCave.isFatal = 1;
600 simError();
601 }
602
603 }
604
605 template<typename T> void Integrator<T>::constrainB(void){
606 int i, j;
607 int done;
608 double posA[3], posB[3];
609 double velA[3], velB[3];
610 double vxab, vyab, vzab;
611 double rab[3];
612 int a, b, ax, ay, az, bx, by, bz;
613 double rma, rmb;
614 double dx, dy, dz;
615 double rvab;
616 double gab;
617 int iteration;
618
619 for (i = 0; i < nAtoms; i++){
620 moving[i] = 0;
621 moved[i] = 1;
622 }
623
624 done = 0;
625 iteration = 0;
626 while (!done && (iteration < maxIteration)){
627 done = 1;
628
629 for (i = 0; i < nConstrained; i++){
630 a = constrainedA[i];
631 b = constrainedB[i];
632
633 ax = (a * 3) + 0;
634 ay = (a * 3) + 1;
635 az = (a * 3) + 2;
636
637 bx = (b * 3) + 0;
638 by = (b * 3) + 1;
639 bz = (b * 3) + 2;
640
641 if (moved[a] || moved[b]){
642 atoms[a]->getVel(velA);
643 atoms[b]->getVel(velB);
644
645 vxab = velA[0] - velB[0];
646 vyab = velA[1] - velB[1];
647 vzab = velA[2] - velB[2];
648
649 atoms[a]->getPos(posA);
650 atoms[b]->getPos(posB);
651
652 for (j = 0; j < 3; j++)
653 rab[j] = posA[j] - posB[j];
654
655 info->wrapVector(rab);
656
657 rma = 1.0 / atoms[a]->getMass();
658 rmb = 1.0 / atoms[b]->getMass();
659
660 rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
661
662 gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
663
664 if (fabs(gab) > tol){
665 dx = rab[0] * gab;
666 dy = rab[1] * gab;
667 dz = rab[2] * gab;
668
669 velA[0] += rma * dx;
670 velA[1] += rma * dy;
671 velA[2] += rma * dz;
672
673 atoms[a]->setVel(velA);
674
675 velB[0] -= rmb * dx;
676 velB[1] -= rmb * dy;
677 velB[2] -= rmb * dz;
678
679 atoms[b]->setVel(velB);
680
681 moving[a] = 1;
682 moving[b] = 1;
683 done = 0;
684 }
685 }
686 }
687
688 for (i = 0; i < nAtoms; i++){
689 moved[i] = moving[i];
690 moving[i] = 0;
691 }
692
693 iteration++;
694 }
695
696 if (!done){
697 sprintf(painCave.errMsg,
698 "Constraint failure in constrainB, too many iterations: %d\n",
699 iteration);
700 painCave.isFatal = 1;
701 simError();
702 }
703 }
704
705 template<typename T> void Integrator<T>::rotationPropagation
706 ( StuntDouble* sd, double ji[3] ){
707
708 double angle;
709 double A[3][3], I[3][3];
710 int i, j, k;
711
712 // use the angular velocities to propagate the rotation matrix a
713 // full time step
714
715 sd->getA(A);
716 sd->getI(I);
717
718 if (sd->isLinear()) {
719 i = sd->linearAxis();
720 j = (i+1)%3;
721 k = (i+2)%3;
722
723 angle = dt2 * ji[j] / I[j][j];
724 this->rotate( k, i, angle, ji, A );
725
726 angle = dt * ji[k] / I[k][k];
727 this->rotate( i, j, angle, ji, A);
728
729 angle = dt2 * ji[j] / I[j][j];
730 this->rotate( k, i, angle, ji, A );
731
732 } else {
733 // rotate about the x-axis
734 angle = dt2 * ji[0] / I[0][0];
735 this->rotate( 1, 2, angle, ji, A );
736
737 // rotate about the y-axis
738 angle = dt2 * ji[1] / I[1][1];
739 this->rotate( 2, 0, angle, ji, A );
740
741 // rotate about the z-axis
742 angle = dt * ji[2] / I[2][2];
743 sd->addZangle(angle);
744 this->rotate( 0, 1, angle, ji, A);
745
746 // rotate about the y-axis
747 angle = dt2 * ji[1] / I[1][1];
748 this->rotate( 2, 0, angle, ji, A );
749
750 // rotate about the x-axis
751 angle = dt2 * ji[0] / I[0][0];
752 this->rotate( 1, 2, angle, ji, A );
753
754 }
755 sd->setA( A );
756 }
757
758 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
759 double angle, double ji[3],
760 double A[3][3]){
761 int i, j, k;
762 double sinAngle;
763 double cosAngle;
764 double angleSqr;
765 double angleSqrOver4;
766 double top, bottom;
767 double rot[3][3];
768 double tempA[3][3];
769 double tempJ[3];
770
771 // initialize the tempA
772
773 for (i = 0; i < 3; i++){
774 for (j = 0; j < 3; j++){
775 tempA[j][i] = A[i][j];
776 }
777 }
778
779 // initialize the tempJ
780
781 for (i = 0; i < 3; i++)
782 tempJ[i] = ji[i];
783
784 // initalize rot as a unit matrix
785
786 rot[0][0] = 1.0;
787 rot[0][1] = 0.0;
788 rot[0][2] = 0.0;
789
790 rot[1][0] = 0.0;
791 rot[1][1] = 1.0;
792 rot[1][2] = 0.0;
793
794 rot[2][0] = 0.0;
795 rot[2][1] = 0.0;
796 rot[2][2] = 1.0;
797
798 // use a small angle aproximation for sin and cosine
799
800 angleSqr = angle * angle;
801 angleSqrOver4 = angleSqr / 4.0;
802 top = 1.0 - angleSqrOver4;
803 bottom = 1.0 + angleSqrOver4;
804
805 cosAngle = top / bottom;
806 sinAngle = angle / bottom;
807
808 rot[axes1][axes1] = cosAngle;
809 rot[axes2][axes2] = cosAngle;
810
811 rot[axes1][axes2] = sinAngle;
812 rot[axes2][axes1] = -sinAngle;
813
814 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
815
816 for (i = 0; i < 3; i++){
817 ji[i] = 0.0;
818 for (k = 0; k < 3; k++){
819 ji[i] += rot[i][k] * tempJ[k];
820 }
821 }
822
823 // rotate the Rotation matrix acording to:
824 // A[][] = A[][] * transpose(rot[][])
825
826
827 // NOte for as yet unknown reason, we are performing the
828 // calculation as:
829 // transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
830
831 for (i = 0; i < 3; i++){
832 for (j = 0; j < 3; j++){
833 A[j][i] = 0.0;
834 for (k = 0; k < 3; k++){
835 A[j][i] += tempA[i][k] * rot[j][k];
836 }
837 }
838 }
839 }
840
841 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
842 myFF->doForces(calcPot, calcStress);
843 }
844
845 template<typename T> void Integrator<T>::thermalize(){
846 tStats->velocitize();
847 }
848
849 template<typename T> double Integrator<T>::getConservedQuantity(void){
850 return tStats->getTotalE();
851 }
852 template<typename T> string Integrator<T>::getAdditionalParameters(void){
853 //By default, return a null string
854 //The reason we use string instead of char* is that if we use char*, we will
855 //return a pointer point to local variable which might cause problem
856 return string();
857 }