ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopse-1.0/libmdtools/SimInfo.hpp
Revision: 1447
Committed: Fri Jul 30 21:01:35 2004 UTC (19 years, 11 months ago) by gezelter
File size: 6984 byte(s)
Log Message:
Initial import of OOPSE sources into cvs tree

File Contents

# Content
1 #ifndef __SIMINFO_H__
2 #define __SIMINFO_H__
3
4 #include <map>
5 #include <string>
6 #include <vector>
7
8 #include "Atom.hpp"
9 #include "RigidBody.hpp"
10 #include "Molecule.hpp"
11 #include "Exclude.hpp"
12 #include "SkipList.hpp"
13 #include "AbstractClasses.hpp"
14 #include "MakeStamps.hpp"
15 #include "SimState.hpp"
16 #include "Restraints.hpp"
17
18 #define __C
19 #include "fSimulation.h"
20 #include "fortranWrapDefines.hpp"
21 #include "GenericData.hpp"
22
23
24 //#include "Minimizer.hpp"
25 //#include "OOPSEMinimizer.hpp"
26
27
28 double roundMe( double x );
29 class OOPSEMinimizer;
30 class SimInfo{
31
32 public:
33
34 SimInfo();
35 ~SimInfo();
36
37 int n_atoms; // the number of atoms
38 Atom **atoms; // the array of atom objects
39
40 vector<RigidBody*> rigidBodies; // A vector of rigid bodies
41 vector<StuntDouble*> integrableObjects;
42
43 double tau[9]; // the stress tensor
44
45 int n_bonds; // number of bends
46 int n_bends; // number of bends
47 int n_torsions; // number of torsions
48 int n_oriented; // number of of atoms with orientation
49 int ndf; // number of actual degrees of freedom
50 int ndfRaw; // number of settable degrees of freedom
51 int ndfTrans; // number of translational degrees of freedom
52 int nZconstraints; // the number of zConstraints
53
54 int setTemp; // boolean to set the temperature at each sampleTime
55 int resetIntegrator; // boolean to reset the integrator
56
57 int n_dipoles; // number of dipoles
58
59 int n_exclude;
60 Exclude* excludes; // the exclude list for ignoring pairs in fortran
61 int nGlobalExcludes;
62 int* globalExcludes; // same as above, but these guys participate in
63 // no long range forces.
64
65 int* identArray; // array of unique identifiers for the atoms
66 int* molMembershipArray; // map of atom numbers onto molecule numbers
67
68 int n_constraints; // the number of constraints on the system
69
70 int n_SRI; // the number of short range interactions
71
72 double lrPot; // the potential energy from the long range calculations.
73
74 double Hmat[3][3]; // the periodic boundry conditions. The Hmat is the
75 // column vectors of the x, y, and z box vectors.
76 // h1 h2 h3
77 // [ Xx Yx Zx ]
78 // [ Xy Yy Zy ]
79 // [ Xz Yz Zz ]
80 //
81 double HmatInv[3][3];
82
83 double boxL[3]; // The Lengths of the 3 column vectors of Hmat
84 double boxVol;
85 int orthoRhombic;
86
87
88 double dielectric; // the dielectric of the medium for reaction field
89
90
91 int usePBC; // whether we use periodic boundry conditions.
92 int useLJ;
93 int useSticky;
94 int useCharges;
95 int useDipoles;
96 int useReactionField;
97 int useGB;
98 int useEAM;
99 bool haveCutoffGroups;
100 bool useInitXSstate;
101 double orthoTolerance;
102
103 double dt, run_time; // the time step and total time
104 double sampleTime, statusTime; // the position and energy dump frequencies
105 double target_temp; // the target temperature of the system
106 double thermalTime; // the temp kick interval
107 double currentTime; // Used primarily for correlation Functions
108 double resetTime; // Use to reset the integrator periodically
109 short int have_target_temp;
110
111 int n_mol; // n_molecules;
112 Molecule* molecules; // the array of molecules
113
114 int nComponents; // the number of components in the system
115 int* componentsNmol; // the number of molecules of each component
116 MoleculeStamp** compStamps;// the stamps matching the components
117 LinkedMolStamp* headStamp; // list of stamps used in the simulation
118
119
120 char ensemble[100]; // the enesemble of the simulation (NVT, NVE, etc. )
121 char mixingRule[100]; // the mixing rules for Lennard jones/van der walls
122 BaseIntegrator *the_integrator; // the integrator of the simulation
123
124 OOPSEMinimizer* the_minimizer; // the energy minimizer
125 Restraints* restraint;
126 bool has_minimizer;
127
128 string finalName; // the name of the eor file to be written
129 string sampleName; // the name of the dump file to be written
130 string statusName; // the name of the stat file to be written
131
132 int seed; //seed for random number generator
133
134 int useSolidThermInt; // is solid-state thermodynamic integration being used
135 int useLiquidThermInt; // is liquid thermodynamic integration being used
136 double thermIntLambda; // lambda for TI
137 double thermIntK; // power of lambda for TI
138 double vRaw; // unperturbed potential for TI
139 double vHarm; // harmonic potential for TI
140 int i; // just an int
141
142 vector<double> mfact;
143 vector<int> FglobalGroupMembership;
144 int ngroup;
145 int* globalGroupMembership;
146
147 // refreshes the sim if things get changed (load balanceing, volume
148 // adjustment, etc.)
149
150 void refreshSim( void );
151
152
153 // sets the internal function pointer to fortran.
154
155 void setInternal( setFortranSim_TD fSetup,
156 setFortranBox_TD fBox,
157 notifyFortranCutOff_TD fCut){
158 setFsimulation = fSetup;
159 setFortranBoxSize = fBox;
160 notifyFortranCutOffs = fCut;
161 }
162
163 int getNDF();
164 int getNDFraw();
165 int getNDFtranslational();
166 int getTotIntegrableObjects();
167 void setBox( double newBox[3] );
168 void setBoxM( double newBox[3][3] );
169 void getBoxM( double theBox[3][3] );
170 void scaleBox( double scale );
171
172 void setDefaultRcut( double theRcut );
173 void setDefaultRcut( double theRcut, double theRsw );
174 void checkCutOffs( void );
175
176 double getRcut( void ) { return rCut; }
177 double getRlist( void ) { return rList; }
178 double getRsw( void ) { return rSw; }
179 double getMaxCutoff( void ) { return maxCutoff; }
180
181 void setTime( double theTime ) { currentTime = theTime; }
182 void incrTime( double the_dt ) { currentTime += the_dt; }
183 void decrTime( double the_dt ) { currentTime -= the_dt; }
184 double getTime( void ) { return currentTime; }
185
186 void wrapVector( double thePos[3] );
187
188 SimState* getConfiguration( void ) { return myConfiguration; }
189
190 void addProperty(GenericData* prop);
191 GenericData* getProperty(const string& propName);
192 //vector<GenericData*>& getProperties() {return properties;}
193
194 int getSeed(void) { return seed; }
195 void setSeed(int theSeed) { seed = theSeed;}
196
197 private:
198
199 SimState* myConfiguration;
200
201 int boxIsInit, haveRcut, haveRsw;
202
203 double rList, rCut; // variables for the neighborlist
204 double rSw; // the switching radius
205
206 double maxCutoff;
207
208 double distXY;
209 double distYZ;
210 double distZX;
211
212 void calcHmatInv( void );
213 void calcBoxL();
214 double calcMaxCutOff();
215
216 // private function to initialize the fortran side of the simulation
217 setFortranSim_TD setFsimulation;
218
219 setFortranBox_TD setFortranBoxSize;
220
221 notifyFortranCutOff_TD notifyFortranCutOffs;
222
223 //Addtional Properties of SimInfo
224 map<string, GenericData*> properties;
225 void getFortranGroupArrays(SimInfo* info,
226 vector<int>& FglobalGroupMembership,
227 vector<double>& mfact);
228
229
230 };
231
232
233 #endif