ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/DUFF.tex
Revision: 710
Committed: Fri Aug 22 19:37:54 2003 UTC (21 years ago) by mmeineke
Content type: application/x-tex
File size: 1929 byte(s)
Log Message:
played a little with the headers in DUFF

File Contents

# User Rev Content
1 mmeineke 664
2 mmeineke 710 \documentclass[prb,aps,twocolumn]{revtex4}
3 mmeineke 664
4 mmeineke 710 \usepackage{amsmath}
5     \usepackage{berkeley}
6     \usepackage{graphicx}
7     \usepackage{tabularx}
8 mmeineke 666
9 mmeineke 710 \begin{document}
10    
11 mmeineke 709 \section{The DUFF Energy Function}
12 mmeineke 666 \label{sec:energyFunctionals}
13 mmeineke 664
14 mmeineke 710
15    
16 mmeineke 709 The main energy function in OOPSE is DUFF (the Dipolar
17 mmeineke 664 Unified-atom Force Field). DUFF is a collection of parameters taken
18 mmeineke 698 from Seipmann \emph{et al.}\cite{Siepmann1998} and Ichiye \emph{et
19 mmeineke 664 al.}\cite{liu96:new_model} The total energy of interaction is given by
20 mmeineke 666 Eq.~\ref{eq:totalPotential}:
21 mmeineke 698 \begin{equation}
22     V_{\text{Total}} =
23     \overbrace{V_{\theta} + V_{\phi}}^{\text{bonded}} +
24     \underbrace{V_{\text{LJ}} + V_{\text{Dp}} + %
25     V_{\text{SSD}}}_{\text{non-bonded}} \label{eq:totalPotential}
26     \end{equation}
27 mmeineke 666
28 mmeineke 698 \subsection{Bonded Interactions}
29     \label{subSec:bondedInteractions}
30 mmeineke 664
31 mmeineke 698 The bonded interactions in the DUFF functional set are limited to the
32     bend potential and the torsional potential. Bond potentials are not
33     calculated, instead all bond lengths are fixed to allow for large time
34     steps to be taken between force evaluations.
35 mmeineke 666
36 mmeineke 698 The bend functional is of the form:
37     \begin{equation}
38     V_{\theta} = \sum k_{\theta}( \theta - \theta_0 )^2 \label{eq:bendPot}
39     \end{equation}
40     $k_{\theta}$, the force constant, and $\theta_0$, the equilibrium bend
41     angle, were taken from the TraPPE forcefield of Siepmann.
42    
43     The torsion functional has the form:
44     \begin{equation}
45 mmeineke 709 V_{\phi} = \sum ( k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0)
46 mmeineke 698 \label{eq:torsionPot}
47     \end{equation}
48     Here, the authors decided to use a potential in terms of a power
49     expansion in $\cos \phi$ rather than the typical expansion in
50     $\phi$. This prevents the need for repeated trigonemtric
51     evaluations. Again, all $k_n$ constants were based on those in TraPPE.
52    
53     \subsection{Non-Bonded Interactions}
54     \label{subSec:nonBondedInteractions}
55    
56     \begin{equation}
57     V_{\text{LJ}} = \text{internal + external}
58     \end{equation}
59    
60    
61 mmeineke 710
62     \bibliography{oopse}
63    
64     \end{document}