ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/DUFF.tex
Revision: 713
Committed: Sat Aug 23 17:01:50 2003 UTC (21 years ago) by mmeineke
Content type: application/x-tex
File size: 3001 byte(s)
Log Message:
added some work to DUFF

File Contents

# User Rev Content
1 mmeineke 664
2 mmeineke 713 \section{\label{sec:DUFF}The DUFF Force Field}
3 mmeineke 664
4 mmeineke 713 The DUFF (\underline{D}ipolar \underline{U}nified-atom
5     \underline{F}orce \underline{F}ield) force field was developed to
6     simulate lipid bilayer formation and equilibrium dynamics. We needed a
7     model capable of forming bilaers, while still being sufficiently
8     computationally efficient allowing simulations of large systems
9     (\~100's of phospholipids, \~1000's of waters) for long times (\~10's
10     of nanoseconds).
11 mmeineke 710
12 mmeineke 713 With this goal in mind, we decided to eliminate all charged
13     interactions within the force field. Charge distributions were
14     replaced with dipolar entities, and charge neutral distributions were
15     reduced to Lennard-Jones interaction sites. This simplification cuts
16     the length scale of long range interactions from $\frac{1}{r}$ to
17     $\frac{1}{r^3}$ (Eq.~\ref{eq:dipole} vs.~ Eq.~\ref{eq:coloumb}).
18 mmeineke 710
19 mmeineke 713 \begin{align}
20     V^{\text{dipole}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
21     \boldsymbol{\Omega}_{j}) &=
22     \frac{1}{4\pi\epsilon_{0}} \biggl[
23     \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
24     -
25     \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
26     (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
27     {r^{5}_{ij}} \biggr]\label{eq:dipole} \\
28     V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) &= \frac{q_{i}q_{j}}%
29     {4\pi\epsilon_{0} r_{ij}} \label{eq:coloumb}
30     \end{align}
31    
32    
33 mmeineke 709 The main energy function in OOPSE is DUFF (the Dipolar
34 mmeineke 664 Unified-atom Force Field). DUFF is a collection of parameters taken
35 mmeineke 698 from Seipmann \emph{et al.}\cite{Siepmann1998} and Ichiye \emph{et
36 mmeineke 664 al.}\cite{liu96:new_model} The total energy of interaction is given by
37 mmeineke 666 Eq.~\ref{eq:totalPotential}:
38 mmeineke 698 \begin{equation}
39     V_{\text{Total}} =
40     \overbrace{V_{\theta} + V_{\phi}}^{\text{bonded}} +
41     \underbrace{V_{\text{LJ}} + V_{\text{Dp}} + %
42     V_{\text{SSD}}}_{\text{non-bonded}} \label{eq:totalPotential}
43     \end{equation}
44 mmeineke 666
45 mmeineke 698 \subsection{Bonded Interactions}
46     \label{subSec:bondedInteractions}
47 mmeineke 664
48 mmeineke 698 The bonded interactions in the DUFF functional set are limited to the
49     bend potential and the torsional potential. Bond potentials are not
50     calculated, instead all bond lengths are fixed to allow for large time
51     steps to be taken between force evaluations.
52 mmeineke 666
53 mmeineke 698 The bend functional is of the form:
54     \begin{equation}
55     V_{\theta} = \sum k_{\theta}( \theta - \theta_0 )^2 \label{eq:bendPot}
56     \end{equation}
57     $k_{\theta}$, the force constant, and $\theta_0$, the equilibrium bend
58     angle, were taken from the TraPPE forcefield of Siepmann.
59    
60     The torsion functional has the form:
61     \begin{equation}
62 mmeineke 709 V_{\phi} = \sum ( k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0)
63 mmeineke 698 \label{eq:torsionPot}
64     \end{equation}
65     Here, the authors decided to use a potential in terms of a power
66     expansion in $\cos \phi$ rather than the typical expansion in
67     $\phi$. This prevents the need for repeated trigonemtric
68     evaluations. Again, all $k_n$ constants were based on those in TraPPE.
69    
70     \subsection{Non-Bonded Interactions}
71     \label{subSec:nonBondedInteractions}
72    
73     \begin{equation}
74     V_{\text{LJ}} = \text{internal + external}
75     \end{equation}
76    
77