ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/DUFF.tex
Revision: 716
Committed: Sun Aug 24 04:00:44 2003 UTC (21 years ago) by mmeineke
Content type: application/x-tex
File size: 5116 byte(s)
Log Message:
added the lipid figure, and did some work on DUFF.

File Contents

# User Rev Content
1 mmeineke 664
2 mmeineke 713 \section{\label{sec:DUFF}The DUFF Force Field}
3 mmeineke 664
4 mmeineke 713 The DUFF (\underline{D}ipolar \underline{U}nified-atom
5     \underline{F}orce \underline{F}ield) force field was developed to
6     simulate lipid bilayer formation and equilibrium dynamics. We needed a
7     model capable of forming bilaers, while still being sufficiently
8     computationally efficient allowing simulations of large systems
9     (\~100's of phospholipids, \~1000's of waters) for long times (\~10's
10     of nanoseconds).
11 mmeineke 710
12 mmeineke 713 With this goal in mind, we decided to eliminate all charged
13     interactions within the force field. Charge distributions were
14     replaced with dipolar entities, and charge neutral distributions were
15     reduced to Lennard-Jones interaction sites. This simplification cuts
16     the length scale of long range interactions from $\frac{1}{r}$ to
17 mmeineke 716 $\frac{1}{r^3}$ (Eq.~\ref{eq:dipole} vs.~ Eq.~\ref{eq:coloumb}),
18     allowing us to avoid the computationally expensive Ewald-Sum. Instead,
19     we can use neighbor-lists and cutoff radii for the dipolar
20     interactions.
21 mmeineke 710
22 mmeineke 713 \begin{align}
23     V^{\text{dipole}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
24     \boldsymbol{\Omega}_{j}) &=
25     \frac{1}{4\pi\epsilon_{0}} \biggl[
26     \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
27     -
28     \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
29     (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
30     {r^{5}_{ij}} \biggr]\label{eq:dipole} \\
31     V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) &= \frac{q_{i}q_{j}}%
32     {4\pi\epsilon_{0} r_{ij}} \label{eq:coloumb}
33     \end{align}
34    
35 mmeineke 716 Applying this standard to the lipid model, we decided to represent the
36     lipid model as a point dipole interaction site. Lipid head groups are
37     typically zwitterionic in nature, with sometimes full integer charges
38     seperated by only 5 to 6~$\mbox{\AA}$. By placing a dipole of
39     20.6~Debye at the head groups center of mass, our model mimics the
40     dipole of DMPC.\cite{Cevc87} Then, to account for the steric henderanc
41     of the head group, a Lennard-Jones interaction site is also oacted at
42     the psuedoatom's center of mass. The model is illustrated in
43     Fig.~\ref{fig:lipidModel}.
44 mmeineke 713
45 mmeineke 716 \begin{figure}
46     \includegraphics[angle=-90,width=\linewidth]{lipidModel.epsi}
47     \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
48     is the bend angle, $\mu$ is the dipole moment of the head group, and n is the chain length.}
49     \label{fig:lipidModel}
50     \end{figure}
51    
52     Turning to the tail chains of the phospholipids, we needed a set of
53     scalable parameters to model the alkyl groups as Lennard-Jones
54     interaction sites. For this, we used the TraPPE force field of
55     Siepmann \emph{et al}.\cite{Siepmann1998} The force field is a
56     unified-atom representation of n-alkanes. It is parametrized against
57     phase equilibria using Gibbs Monte Carlo simulation techniques. One of
58     the advantages of TraPPE is that is generalizes the types of atoms in
59     an alkyl chain to keep the number of pseudoatoms to a minimum.
60     %( $ \mbox{CH_3} $ %-$\mathbf{\mbox{CH_2}}$-$\mbox{CH_3}$ is the same as
61    
62     Another advantage of using TraPPE is the constraining of all bonds to
63     be of fixed length. Typically, bond vibrations are the motions in a
64     molecular dynamic simulation. This neccesitates a small time step
65     between force evaluations be used to ensure adequate sampling of the
66     bond potential. Failure to do so will result in loss of energy
67     conservation within the microcanonical ensemble. By constraining this
68     degree of freedom, time steps larger than were previously allowable
69     are able to be used when integrating the equations of motion.
70    
71     The main energy function in OOPSE is DUFF (the Dipolar Unified-atom
72     Force Field). DUFF is a collection of parameters taken from Seipmann
73     and Ichiye \emph{et
74 mmeineke 664 al.}\cite{liu96:new_model} The total energy of interaction is given by
75 mmeineke 666 Eq.~\ref{eq:totalPotential}:
76 mmeineke 698 \begin{equation}
77     V_{\text{Total}} =
78     \overbrace{V_{\theta} + V_{\phi}}^{\text{bonded}} +
79     \underbrace{V_{\text{LJ}} + V_{\text{Dp}} + %
80     V_{\text{SSD}}}_{\text{non-bonded}} \label{eq:totalPotential}
81     \end{equation}
82 mmeineke 666
83 mmeineke 698 \subsection{Bonded Interactions}
84     \label{subSec:bondedInteractions}
85 mmeineke 664
86 mmeineke 698 The bonded interactions in the DUFF functional set are limited to the
87     bend potential and the torsional potential. Bond potentials are not
88     calculated, instead all bond lengths are fixed to allow for large time
89     steps to be taken between force evaluations.
90 mmeineke 666
91 mmeineke 698 The bend functional is of the form:
92     \begin{equation}
93     V_{\theta} = \sum k_{\theta}( \theta - \theta_0 )^2 \label{eq:bendPot}
94     \end{equation}
95     $k_{\theta}$, the force constant, and $\theta_0$, the equilibrium bend
96     angle, were taken from the TraPPE forcefield of Siepmann.
97    
98     The torsion functional has the form:
99     \begin{equation}
100 mmeineke 709 V_{\phi} = \sum ( k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0)
101 mmeineke 698 \label{eq:torsionPot}
102     \end{equation}
103     Here, the authors decided to use a potential in terms of a power
104     expansion in $\cos \phi$ rather than the typical expansion in
105     $\phi$. This prevents the need for repeated trigonemtric
106     evaluations. Again, all $k_n$ constants were based on those in TraPPE.
107    
108     \subsection{Non-Bonded Interactions}
109     \label{subSec:nonBondedInteractions}
110    
111     \begin{equation}
112     V_{\text{LJ}} = \text{internal + external}
113     \end{equation}
114    
115