ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/DUFF.tex
Revision: 737
Committed: Mon Sep 1 19:50:07 2003 UTC (21 years ago) by mmeineke
Content type: application/x-tex
File size: 5857 byte(s)
Log Message:
added some text to DUFF, changed the preamble from two column to preprint format.

File Contents

# User Rev Content
1 mmeineke 664
2 mmeineke 737 \section{\label{sec:DUFF}Dipolar Unified-Atom Force Field}
3 mmeineke 664
4 mmeineke 737 The \underline{D}ipolar \underline{U}nified-Atom
5     \underline{F}orce \underline{F}ield (DUFF) was developed to
6     simulate lipid bilayers. We needed a model capable of forming
7     bilayers, while still being sufficiently computationally efficient to
8     allow simulations of large systems ($\approx$100's of phospholipids,
9     $\approx$1000's of waters) for long times ($\approx$10's of
10     nanoseconds).
11 mmeineke 710
12 mmeineke 737 With this goal in mind, we have eliminated all point charges. Charge
13     distributions were replaced with dipoles, and charge-neutral
14     distributions were reduced to Lennard-Jones interaction sites. This
15     simplification cuts the length scale of long range interactions from
16     $\frac{1}{r}$ to $\frac{1}{r^3}$, allowing us to avoid the
17     computationally expensive Ewald-Sum. Instead, we can use
18     neighbor-lists and cutoff radii for the dipolar interactions.
19 mmeineke 710
20 mmeineke 737 \begin{equation}
21 mmeineke 713 V^{\text{dipole}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
22 mmeineke 737 \boldsymbol{\Omega}_{j}) =
23 mmeineke 713 \frac{1}{4\pi\epsilon_{0}} \biggl[
24     \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
25     -
26     \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
27     (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
28 mmeineke 737 {r^{5}_{ij}} \biggr]\label{eq:dipole}
29     \end{equation}
30 mmeineke 713
31 mmeineke 737 As an example, lipid head groups in DUFF are represented as point
32     dipole interaction sites.PC and PE Lipid head groups are typically
33     zwitterionic in nature, with charges separated by as much as
34     6~$\mbox{\AA}$. By placing a dipole of 20.6~Debye at the head group
35     center of mass, our model mimics the head group of PC.\cite{Cevc87}
36     Additionally, a Lennard-Jones site is located at the
37     pseudoatom's center of mass. The model is illustrated by the dark grey
38     atom in Fig.~\ref{fig:lipidModel}.
39 mmeineke 713
40 mmeineke 716 \begin{figure}
41     \includegraphics[angle=-90,width=\linewidth]{lipidModel.epsi}
42     \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
43     is the bend angle, $\mu$ is the dipole moment of the head group, and n is the chain length.}
44     \label{fig:lipidModel}
45     \end{figure}
46    
47 mmeineke 737 Turning to the tails of the phospholipids, we have used a set of
48     scalable parameters to model the alkyl groups with Lennard-Jones
49     sites. For this, we have used the TraPPE force field of Siepmann
50     \emph{et al}.\cite{Siepmann1998} TraPPE is a unified-atom
51     representation of n-alkanes, which is parametrized against phase
52     equilibria using Gibbs Monte Carlo simulation
53     techniques.\cite{Siepmann1998} One of the advantages of TraPPE is that
54     it generalizes the types of atoms in an alkyl chain to keep the number
55     of pseudoatoms to a minimum; the parameters for an atom such as
56     $\text{CH}_2$ do not change depending on what species are bonded to
57     it.
58 mmeineke 716
59 mmeineke 737 TraPPE also constrains of all bonds to be of fixed length. Typically,
60     bond vibrations are the fastest motions in a molecular dynamic
61     simulation. Small time steps between force evaluations must be used to
62     ensure adequate sampling of the bond potential conservation of
63     energy. By constraining the bond lengths, larger time steps may be
64     used when integrating the equations of motion.
65 mmeineke 716
66 mmeineke 737 The water model we use to complement this the dipoles of the lipids is
67     the soft sticky dipole (SSD) model of Ichiye \emph{et
68 mmeineke 717 al.}\cite{liu96:new_model} This model is discussed in greater detail
69 mmeineke 737 in Sec.~\ref{sec:SSD}. In all cases we reduce water to a single
70     Lennard-Jones interaction site. The site also contains a dipole to
71     mimic the partial charges on the hydrogens and the oxygen. However,
72     what makes the SSD model unique is the inclusion of a tetrahedral
73     short range potential to recover the hydrogen bonding of water, an
74     important factor when modeling bilayers, as it has been shown that
75     hydrogen bond network formation is a leading contribution to the
76     entropic driving force towards lipid bilayer formation.\cite{Cevc87}
77 mmeineke 717
78 mmeineke 737 \subsection{\label{subSec:energyFunctions}Energy Functions}
79 mmeineke 717
80 mmeineke 737 \begin{equation}
81     V_{\text{Total}} = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
82     + \sum^{N}_{I=1} \sum^{N}_{J=1} V^{IJ}_{\text{Cross}}
83     \label{eq:totalPotential}
84     \end{equation}
85 mmeineke 717
86 mmeineke 737 \begin{equation}
87     V^{I}_{\text{Internal}} =
88     \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
89     + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\theta_{ijkl})
90     + \sum_{i \in I} \sum_{(j>i+4) \in I}
91     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
92     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
93     \biggr]
94     \label{eq:internalPotential}
95     \end{equation}
96 mmeineke 717
97 mmeineke 737 \begin{equation}
98     V^{IJ}_{\text{Cross}} =
99     \sum_{i \in I} \sum_{j \in J}
100     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
101     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
102     + V_{\text{sticky}}
103     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
104     \biggr]
105     \label{eq:crossPotentail}
106     \end{equation}
107 mmeineke 717
108 mmeineke 737 \begin{equation}
109     V_{\theta_{ijk}} = k_{\theta}( \theta_{ijk} - \theta_0 )^2 \label{eq:bendPot}
110     \end{equation}
111 mmeineke 717
112 mmeineke 698 \begin{equation}
113 mmeineke 737 V_{\phi_{ijkl}} = ( k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0)
114     \label{eq:torsionPot}
115 mmeineke 698 \end{equation}
116 mmeineke 666
117 mmeineke 664
118 mmeineke 698 The bonded interactions in the DUFF functional set are limited to the
119     bend potential and the torsional potential. Bond potentials are not
120     calculated, instead all bond lengths are fixed to allow for large time
121     steps to be taken between force evaluations.
122 mmeineke 666
123 mmeineke 698 The bend functional is of the form:
124 mmeineke 737
125 mmeineke 698 $k_{\theta}$, the force constant, and $\theta_0$, the equilibrium bend
126     angle, were taken from the TraPPE forcefield of Siepmann.
127    
128     The torsion functional has the form:
129 mmeineke 737
130 mmeineke 698 Here, the authors decided to use a potential in terms of a power
131     expansion in $\cos \phi$ rather than the typical expansion in
132 mmeineke 717 $\phi$. This prevents the need for repeated trigonometric
133 mmeineke 698 evaluations. Again, all $k_n$ constants were based on those in TraPPE.
134    
135     \subsection{Non-Bonded Interactions}
136     \label{subSec:nonBondedInteractions}
137    
138     \begin{equation}
139     V_{\text{LJ}} = \text{internal + external}
140     \end{equation}
141    
142