ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/DUFF.tex
Revision: 740
Committed: Tue Sep 2 18:40:47 2003 UTC (21 years ago) by mmeineke
Content type: application/x-tex
File size: 7693 byte(s)
Log Message:
added a charmm citation to the bib file.

finished adding all of the equations into DUFF.

File Contents

# User Rev Content
1 mmeineke 664
2 mmeineke 737 \section{\label{sec:DUFF}Dipolar Unified-Atom Force Field}
3 mmeineke 664
4 mmeineke 737 The \underline{D}ipolar \underline{U}nified-Atom
5     \underline{F}orce \underline{F}ield (DUFF) was developed to
6     simulate lipid bilayers. We needed a model capable of forming
7     bilayers, while still being sufficiently computationally efficient to
8     allow simulations of large systems ($\approx$100's of phospholipids,
9     $\approx$1000's of waters) for long times ($\approx$10's of
10     nanoseconds).
11 mmeineke 710
12 mmeineke 737 With this goal in mind, we have eliminated all point charges. Charge
13     distributions were replaced with dipoles, and charge-neutral
14     distributions were reduced to Lennard-Jones interaction sites. This
15     simplification cuts the length scale of long range interactions from
16     $\frac{1}{r}$ to $\frac{1}{r^3}$, allowing us to avoid the
17     computationally expensive Ewald-Sum. Instead, we can use
18     neighbor-lists and cutoff radii for the dipolar interactions.
19 mmeineke 710
20 mmeineke 737 As an example, lipid head groups in DUFF are represented as point
21     dipole interaction sites.PC and PE Lipid head groups are typically
22     zwitterionic in nature, with charges separated by as much as
23     6~$\mbox{\AA}$. By placing a dipole of 20.6~Debye at the head group
24     center of mass, our model mimics the head group of PC.\cite{Cevc87}
25     Additionally, a Lennard-Jones site is located at the
26     pseudoatom's center of mass. The model is illustrated by the dark grey
27     atom in Fig.~\ref{fig:lipidModel}.
28 mmeineke 713
29 mmeineke 716 \begin{figure}
30     \includegraphics[angle=-90,width=\linewidth]{lipidModel.epsi}
31     \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
32     is the bend angle, $\mu$ is the dipole moment of the head group, and n is the chain length.}
33     \label{fig:lipidModel}
34     \end{figure}
35    
36 mmeineke 740 The water model we use to complement the dipoles of the lipids is
37     the soft sticky dipole (SSD) model of Ichiye \emph{et
38     al.}\cite{liu96:new_model} This model is discussed in greater detail
39     in Sec.~\ref{sec:SSD}. In all cases we reduce water to a single
40     Lennard-Jones interaction site. The site also contains a dipole to
41     mimic the partial charges on the hydrogens and the oxygen. However,
42     what makes the SSD model unique is the inclusion of a tetrahedral
43     short range potential to recover the hydrogen bonding of water, an
44     important factor when modeling bilayers, as it has been shown that
45     hydrogen bond network formation is a leading contribution to the
46     entropic driving force towards lipid bilayer formation.\cite{Cevc87}
47    
48    
49 mmeineke 737 Turning to the tails of the phospholipids, we have used a set of
50     scalable parameters to model the alkyl groups with Lennard-Jones
51     sites. For this, we have used the TraPPE force field of Siepmann
52     \emph{et al}.\cite{Siepmann1998} TraPPE is a unified-atom
53     representation of n-alkanes, which is parametrized against phase
54     equilibria using Gibbs Monte Carlo simulation
55     techniques.\cite{Siepmann1998} One of the advantages of TraPPE is that
56     it generalizes the types of atoms in an alkyl chain to keep the number
57     of pseudoatoms to a minimum; the parameters for an atom such as
58     $\text{CH}_2$ do not change depending on what species are bonded to
59     it.
60 mmeineke 716
61 mmeineke 737 TraPPE also constrains of all bonds to be of fixed length. Typically,
62     bond vibrations are the fastest motions in a molecular dynamic
63     simulation. Small time steps between force evaluations must be used to
64     ensure adequate sampling of the bond potential conservation of
65     energy. By constraining the bond lengths, larger time steps may be
66     used when integrating the equations of motion.
67 mmeineke 716
68 mmeineke 717
69 mmeineke 740 \subsection{\label{subSec:energyFunctions}DUFF Energy Functions}
70 mmeineke 717
71 mmeineke 740 The total energy of function in DUFF is given by the following:
72 mmeineke 737 \begin{equation}
73     V_{\text{Total}} = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
74     + \sum^{N}_{I=1} \sum^{N}_{J=1} V^{IJ}_{\text{Cross}}
75     \label{eq:totalPotential}
76     \end{equation}
77 mmeineke 740 Where $V^{I}_{\text{Internal}}$ is the internal potential of a molecule:
78 mmeineke 737 \begin{equation}
79     V^{I}_{\text{Internal}} =
80     \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
81     + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\theta_{ijkl})
82     + \sum_{i \in I} \sum_{(j>i+4) \in I}
83     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
84     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
85     \biggr]
86     \label{eq:internalPotential}
87     \end{equation}
88 mmeineke 740 Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
89     within in the molecule. $V_{\text{torsion}}$ is the torsion The
90     pairwise portions of the internal potential are excluded for pairs
91     that ar closer than three bonds, i.e.~atom pairs farther away than a
92     torsion are included in the pair-wise loop.
93 mmeineke 717
94 mmeineke 740 The cross portion of the total potential, $V^{IJ}_{\text{Cross}}$, is
95     as follows:
96 mmeineke 737 \begin{equation}
97     V^{IJ}_{\text{Cross}} =
98     \sum_{i \in I} \sum_{j \in J}
99     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
100     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
101     + V_{\text{sticky}}
102     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
103     \biggr]
104     \label{eq:crossPotentail}
105     \end{equation}
106 mmeineke 740 Where $V_{\text{LJ}}$ is the Lennard Jones potential,
107     $V_{\text{dipole}}$ is the dipole dipole potential, and
108     $V_{\text{sticky}}$ is the sticky potential defined by the SSD model.
109 mmeineke 717
110 mmeineke 740 The bend potential of a molecule is represented by the following function:
111 mmeineke 737 \begin{equation}
112     V_{\theta_{ijk}} = k_{\theta}( \theta_{ijk} - \theta_0 )^2 \label{eq:bendPot}
113     \end{equation}
114 mmeineke 740 Where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
115     (see Fig.~\ref{fig:lipidModel}), and $\theta_0$ is the equilibrium
116     bond angle. $k_{\theta}$ is the force constant which determines the
117     strength of the harmonic bend. The parameters for $k_{\theta}$ and
118     $\theta_0$ are based off of those in TraPPE.\cite{Siepmann1998}
119 mmeineke 717
120 mmeineke 740 The torsion potential and parameters are also taken from TraPPE. It is
121     of the form:
122 mmeineke 698 \begin{equation}
123 mmeineke 740 V_{\text{torsion}}(\phi_{ijkl}) = c_1[1 + \cos \phi]
124     + c_2[1 + \cos(2\phi)]
125     + c_3[1 + \cos(3\phi)]
126     \label{eq:origTorsionPot}
127     \end{equation}
128     Here $\phi_{ijkl}$ is the angle defined by four bonded neighbors $i$,
129     $j$, $k$, and $l$ (again, see Fig.~\ref{fig:lipidModel}). However,
130     for computaional efficency, the torsion potentail has been recast
131     after the method of CHARMM\cite{charmm1983} whereby the angle series
132     is converted to a power series of the form:
133     \begin{equation}
134     V_{\text{torsion}}(\phi_{ijkl}) =
135     k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0
136 mmeineke 737 \label{eq:torsionPot}
137 mmeineke 698 \end{equation}
138 mmeineke 740 Where:
139     \begin{align*}
140     k_0 &= c_1 + c_3 \\
141     k_1 &= c_1 - 3c_3 \\
142     k_2 &= 2 c_2 \\
143     k_3 &= 4c_3
144     \end{align*}
145     By recasting the equation to a power series, repeated trigonometric
146     evaluations are avoided during the calculation of the potential.
147 mmeineke 666
148 mmeineke 740 The Lennard-Jones potential is given by:
149     \begin{equation}
150     V_{\text{LJ}}(r_{ij}) =
151     4\epsilon_{ij} \biggl[
152     \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
153     - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
154     \biggr]
155     \label{eq:lennardJonesPot}
156     \end{equation}
157     Where $r_ij$ is the distance between atoms $i$ and $j$, $\sigma_{ij}$
158     scales the length of the interaction, and $\epsilon_{ij}$ scales the
159     energy of the potential.
160 mmeineke 664
161 mmeineke 740 The dipole-dipole potential has the following form:
162 mmeineke 698 \begin{equation}
163 mmeineke 740 V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
164     \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
165     \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
166     -
167     \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
168     (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
169     {r^{5}_{ij}} \biggr]
170     \label{eq:dipolePot}
171 mmeineke 698 \end{equation}
172 mmeineke 740 Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
173     towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
174     are the Euler angles of atom $i$ and $j$
175     respectively. $\boldsymbol{\mu}_i$ is the dipole vector of atom
176     $i$ it takes its orientation from $\boldsymbol{\Omega}_i$.