ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/DUFF.tex
Revision: 818
Committed: Fri Oct 24 21:27:59 2003 UTC (20 years, 8 months ago) by gezelter
Content type: application/x-tex
File size: 7696 byte(s)
Log Message:
Formatting changes to get out of RevTex nonsense

File Contents

# User Rev Content
1 mmeineke 664
2 mmeineke 737 \section{\label{sec:DUFF}Dipolar Unified-Atom Force Field}
3 mmeineke 664
4 mmeineke 737 The \underline{D}ipolar \underline{U}nified-Atom
5 gezelter 818 \underline{F}orce \underline{F}ield ({\sc duff}) was developed to
6 mmeineke 737 simulate lipid bilayers. We needed a model capable of forming
7     bilayers, while still being sufficiently computationally efficient to
8     allow simulations of large systems ($\approx$100's of phospholipids,
9     $\approx$1000's of waters) for long times ($\approx$10's of
10     nanoseconds).
11 mmeineke 710
12 mmeineke 737 With this goal in mind, we have eliminated all point charges. Charge
13     distributions were replaced with dipoles, and charge-neutral
14     distributions were reduced to Lennard-Jones interaction sites. This
15     simplification cuts the length scale of long range interactions from
16     $\frac{1}{r}$ to $\frac{1}{r^3}$, allowing us to avoid the
17     computationally expensive Ewald-Sum. Instead, we can use
18     neighbor-lists and cutoff radii for the dipolar interactions.
19 mmeineke 710
20 gezelter 818 As an example, lipid head groups in {\sc duff} are represented as point
21 mmeineke 737 dipole interaction sites.PC and PE Lipid head groups are typically
22     zwitterionic in nature, with charges separated by as much as
23     6~$\mbox{\AA}$. By placing a dipole of 20.6~Debye at the head group
24     center of mass, our model mimics the head group of PC.\cite{Cevc87}
25     Additionally, a Lennard-Jones site is located at the
26     pseudoatom's center of mass. The model is illustrated by the dark grey
27     atom in Fig.~\ref{fig:lipidModel}.
28 mmeineke 713
29 mmeineke 716 \begin{figure}
30 gezelter 818 \epsfxsize=6in
31     \epsfbox{lipidModel.epsi}
32 mmeineke 716 \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
33     is the bend angle, $\mu$ is the dipole moment of the head group, and n is the chain length.}
34     \label{fig:lipidModel}
35     \end{figure}
36    
37 mmeineke 740 The water model we use to complement the dipoles of the lipids is
38     the soft sticky dipole (SSD) model of Ichiye \emph{et
39     al.}\cite{liu96:new_model} This model is discussed in greater detail
40     in Sec.~\ref{sec:SSD}. In all cases we reduce water to a single
41     Lennard-Jones interaction site. The site also contains a dipole to
42     mimic the partial charges on the hydrogens and the oxygen. However,
43     what makes the SSD model unique is the inclusion of a tetrahedral
44     short range potential to recover the hydrogen bonding of water, an
45     important factor when modeling bilayers, as it has been shown that
46     hydrogen bond network formation is a leading contribution to the
47     entropic driving force towards lipid bilayer formation.\cite{Cevc87}
48    
49    
50 mmeineke 737 Turning to the tails of the phospholipids, we have used a set of
51     scalable parameters to model the alkyl groups with Lennard-Jones
52     sites. For this, we have used the TraPPE force field of Siepmann
53     \emph{et al}.\cite{Siepmann1998} TraPPE is a unified-atom
54     representation of n-alkanes, which is parametrized against phase
55     equilibria using Gibbs Monte Carlo simulation
56     techniques.\cite{Siepmann1998} One of the advantages of TraPPE is that
57     it generalizes the types of atoms in an alkyl chain to keep the number
58     of pseudoatoms to a minimum; the parameters for an atom such as
59     $\text{CH}_2$ do not change depending on what species are bonded to
60     it.
61 mmeineke 716
62 mmeineke 737 TraPPE also constrains of all bonds to be of fixed length. Typically,
63     bond vibrations are the fastest motions in a molecular dynamic
64     simulation. Small time steps between force evaluations must be used to
65     ensure adequate sampling of the bond potential conservation of
66     energy. By constraining the bond lengths, larger time steps may be
67     used when integrating the equations of motion.
68 mmeineke 716
69 mmeineke 717
70 gezelter 818 \subsection{\label{subSec:energyFunctions}{\sc duff} Energy Functions}
71 mmeineke 717
72 gezelter 818 The total energy of function in {\sc duff} is given by the following:
73 mmeineke 737 \begin{equation}
74     V_{\text{Total}} = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
75     + \sum^{N}_{I=1} \sum^{N}_{J=1} V^{IJ}_{\text{Cross}}
76     \label{eq:totalPotential}
77     \end{equation}
78 mmeineke 740 Where $V^{I}_{\text{Internal}}$ is the internal potential of a molecule:
79 mmeineke 737 \begin{equation}
80     V^{I}_{\text{Internal}} =
81     \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
82     + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\theta_{ijkl})
83     + \sum_{i \in I} \sum_{(j>i+4) \in I}
84     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
85     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
86     \biggr]
87     \label{eq:internalPotential}
88     \end{equation}
89 mmeineke 740 Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
90     within in the molecule. $V_{\text{torsion}}$ is the torsion The
91     pairwise portions of the internal potential are excluded for pairs
92     that ar closer than three bonds, i.e.~atom pairs farther away than a
93     torsion are included in the pair-wise loop.
94 mmeineke 717
95 mmeineke 740 The cross portion of the total potential, $V^{IJ}_{\text{Cross}}$, is
96     as follows:
97 mmeineke 737 \begin{equation}
98     V^{IJ}_{\text{Cross}} =
99     \sum_{i \in I} \sum_{j \in J}
100     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
101     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
102     + V_{\text{sticky}}
103     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
104     \biggr]
105     \label{eq:crossPotentail}
106     \end{equation}
107 mmeineke 740 Where $V_{\text{LJ}}$ is the Lennard Jones potential,
108     $V_{\text{dipole}}$ is the dipole dipole potential, and
109     $V_{\text{sticky}}$ is the sticky potential defined by the SSD model.
110 mmeineke 717
111 mmeineke 740 The bend potential of a molecule is represented by the following function:
112 mmeineke 737 \begin{equation}
113     V_{\theta_{ijk}} = k_{\theta}( \theta_{ijk} - \theta_0 )^2 \label{eq:bendPot}
114     \end{equation}
115 mmeineke 740 Where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
116     (see Fig.~\ref{fig:lipidModel}), and $\theta_0$ is the equilibrium
117     bond angle. $k_{\theta}$ is the force constant which determines the
118     strength of the harmonic bend. The parameters for $k_{\theta}$ and
119     $\theta_0$ are based off of those in TraPPE.\cite{Siepmann1998}
120 mmeineke 717
121 mmeineke 740 The torsion potential and parameters are also taken from TraPPE. It is
122     of the form:
123 mmeineke 698 \begin{equation}
124 mmeineke 740 V_{\text{torsion}}(\phi_{ijkl}) = c_1[1 + \cos \phi]
125     + c_2[1 + \cos(2\phi)]
126     + c_3[1 + \cos(3\phi)]
127     \label{eq:origTorsionPot}
128     \end{equation}
129     Here $\phi_{ijkl}$ is the angle defined by four bonded neighbors $i$,
130     $j$, $k$, and $l$ (again, see Fig.~\ref{fig:lipidModel}). However,
131     for computaional efficency, the torsion potentail has been recast
132     after the method of CHARMM\cite{charmm1983} whereby the angle series
133     is converted to a power series of the form:
134     \begin{equation}
135     V_{\text{torsion}}(\phi_{ijkl}) =
136     k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0
137 mmeineke 737 \label{eq:torsionPot}
138 mmeineke 698 \end{equation}
139 mmeineke 740 Where:
140     \begin{align*}
141     k_0 &= c_1 + c_3 \\
142     k_1 &= c_1 - 3c_3 \\
143     k_2 &= 2 c_2 \\
144     k_3 &= 4c_3
145     \end{align*}
146     By recasting the equation to a power series, repeated trigonometric
147     evaluations are avoided during the calculation of the potential.
148 mmeineke 666
149 mmeineke 740 The Lennard-Jones potential is given by:
150     \begin{equation}
151     V_{\text{LJ}}(r_{ij}) =
152     4\epsilon_{ij} \biggl[
153     \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
154     - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
155     \biggr]
156     \label{eq:lennardJonesPot}
157     \end{equation}
158     Where $r_ij$ is the distance between atoms $i$ and $j$, $\sigma_{ij}$
159     scales the length of the interaction, and $\epsilon_{ij}$ scales the
160     energy of the potential.
161 mmeineke 664
162 mmeineke 740 The dipole-dipole potential has the following form:
163 mmeineke 698 \begin{equation}
164 mmeineke 740 V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
165     \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
166     \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
167     -
168     \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
169     (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
170     {r^{5}_{ij}} \biggr]
171     \label{eq:dipolePot}
172 mmeineke 698 \end{equation}
173 mmeineke 740 Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
174     towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
175     are the Euler angles of atom $i$ and $j$
176     respectively. $\boldsymbol{\mu}_i$ is the dipole vector of atom
177     $i$ it takes its orientation from $\boldsymbol{\Omega}_i$.