ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/DUFF.tex
(Generate patch)

Comparing trunk/oopsePaper/DUFF.tex (file contents):
Revision 712 by mmeineke, Sat Aug 23 12:07:27 2003 UTC vs.
Revision 740 by mmeineke, Tue Sep 2 18:40:47 2003 UTC

# Line 1 | Line 1
1  
2 < \section{The DUFF Energy Function}
3 < \label{sec:energyFunctionals}
2 > \section{\label{sec:DUFF}Dipolar Unified-Atom Force Field}
3  
4 + The \underline{D}ipolar \underline{U}nified-Atom
5 + \underline{F}orce \underline{F}ield (DUFF) was developed to
6 + simulate lipid bilayers. We needed a model capable of forming
7 + bilayers, while still being sufficiently computationally efficient to
8 + allow simulations of large systems ($\approx$100's of phospholipids,
9 + $\approx$1000's of waters) for long times ($\approx$10's of
10 + nanoseconds).
11  
12 + With this goal in mind, we have eliminated all point charges. Charge
13 + distributions were replaced with dipoles, and charge-neutral
14 + distributions were reduced to Lennard-Jones interaction sites. This
15 + simplification cuts the length scale of long range interactions from
16 + $\frac{1}{r}$ to $\frac{1}{r^3}$, allowing us to avoid the
17 + computationally expensive Ewald-Sum. Instead, we can use
18 + neighbor-lists and cutoff radii for the dipolar interactions.
19  
20 < The main energy function in OOPSE is DUFF (the Dipolar
21 < Unified-atom Force Field). DUFF is a collection of parameters taken
22 < from Seipmann \emph{et al.}\cite{Siepmann1998} and Ichiye \emph{et
23 < al.}\cite{liu96:new_model} The total energy of interaction is given by
24 < Eq.~\ref{eq:totalPotential}:
20 > As an example, lipid head groups in DUFF are represented as point
21 > dipole interaction sites.PC and PE Lipid head groups are typically
22 > zwitterionic in nature, with charges separated by as much as
23 > 6~$\mbox{\AA}$. By placing a dipole of 20.6~Debye at the head group
24 > center of mass, our model mimics the head group of PC.\cite{Cevc87}
25 > Additionally, a Lennard-Jones site is located at the
26 > pseudoatom's center of mass. The model is illustrated by the dark grey
27 > atom in Fig.~\ref{fig:lipidModel}.
28 >
29 > \begin{figure}
30 > \includegraphics[angle=-90,width=\linewidth]{lipidModel.epsi}
31 > \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
32 > is the bend angle, $\mu$ is the dipole moment of the head group, and n is the chain length.}
33 > \label{fig:lipidModel}
34 > \end{figure}
35 >
36 > The water model we use to complement the dipoles of the lipids is
37 > the soft sticky dipole (SSD) model of Ichiye \emph{et
38 > al.}\cite{liu96:new_model} This model is discussed in greater detail
39 > in Sec.~\ref{sec:SSD}. In all cases we reduce water to a single
40 > Lennard-Jones interaction site. The site also contains a dipole to
41 > mimic the partial charges on the hydrogens and the oxygen. However,
42 > what makes the SSD model unique is the inclusion of a tetrahedral
43 > short range potential to recover the hydrogen bonding of water, an
44 > important factor when modeling bilayers, as it has been shown that
45 > hydrogen bond network formation is a leading contribution to the
46 > entropic driving force towards lipid bilayer formation.\cite{Cevc87}
47 >
48 >
49 > Turning to the tails of the phospholipids, we have used a set of
50 > scalable parameters to model the alkyl groups with Lennard-Jones
51 > sites. For this, we have used the TraPPE force field of Siepmann
52 > \emph{et al}.\cite{Siepmann1998} TraPPE is a unified-atom
53 > representation of n-alkanes, which is parametrized against phase
54 > equilibria using Gibbs Monte Carlo simulation
55 > techniques.\cite{Siepmann1998} One of the advantages of TraPPE is that
56 > it generalizes the types of atoms in an alkyl chain to keep the number
57 > of pseudoatoms to a minimum; the parameters for an atom such as
58 > $\text{CH}_2$ do not change depending on what species are bonded to
59 > it.
60 >
61 > TraPPE also constrains of all bonds to be of fixed length. Typically,
62 > bond vibrations are the fastest motions in a molecular dynamic
63 > simulation. Small time steps between force evaluations must be used to
64 > ensure adequate sampling of the bond potential conservation of
65 > energy. By constraining the bond lengths, larger time steps may be
66 > used when integrating the equations of motion.
67 >
68 >
69 > \subsection{\label{subSec:energyFunctions}DUFF Energy Functions}
70 >
71 > The total energy of function in DUFF is given by the following:
72   \begin{equation}
73 < V_{\text{Total}} =
74 <        \overbrace{V_{\theta} + V_{\phi}}^{\text{bonded}} +
75 <        \underbrace{V_{\text{LJ}} + V_{\text{Dp}} + %
16 <        V_{\text{SSD}}}_{\text{non-bonded}} \label{eq:totalPotential}
73 > V_{\text{Total}} = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
74 >        + \sum^{N}_{I=1} \sum^{N}_{J=1} V^{IJ}_{\text{Cross}}
75 > \label{eq:totalPotential}
76   \end{equation}
77 + Where $V^{I}_{\text{Internal}}$ is the internal potential of a molecule:
78 + \begin{equation}
79 + V^{I}_{\text{Internal}} =
80 +        \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
81 +        + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\theta_{ijkl})
82 +        + \sum_{i \in I} \sum_{(j>i+4) \in I}
83 +        \biggl[ V_{\text{LJ}}(r_{ij}) +  V_{\text{dipole}}
84 +        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
85 +        \biggr]
86 + \label{eq:internalPotential}
87 + \end{equation}
88 + Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
89 + within in the molecule. $V_{\text{torsion}}$ is the torsion The
90 + pairwise portions of the internal potential are excluded for pairs
91 + that ar closer than three bonds, i.e.~atom pairs farther away than a
92 + torsion are included in the pair-wise loop.
93  
94 < \subsection{Bonded Interactions}
95 < \label{subSec:bondedInteractions}
94 > The cross portion of the total potential, $V^{IJ}_{\text{Cross}}$, is
95 > as follows:
96 > \begin{equation}
97 > V^{IJ}_{\text{Cross}} =
98 >        \sum_{i \in I} \sum_{j \in J}
99 >        \biggl[ V_{\text{LJ}}(r_{ij}) +  V_{\text{dipole}}
100 >        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
101 >        + V_{\text{sticky}}
102 >        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
103 >        \biggr]
104 > \label{eq:crossPotentail}
105 > \end{equation}
106 > Where $V_{\text{LJ}}$ is the Lennard Jones potential,
107 > $V_{\text{dipole}}$ is the dipole dipole potential, and
108 > $V_{\text{sticky}}$ is the sticky potential defined by the SSD model.
109  
110 < The bonded interactions in the DUFF functional set are limited to the
23 < bend potential and the torsional potential. Bond potentials are not
24 < calculated, instead all bond lengths are fixed to allow for large time
25 < steps to be taken between force evaluations.
26 <
27 < The bend functional is of the form:
110 > The bend potential of a molecule is represented by the following function:
111   \begin{equation}
112 < V_{\theta} = \sum k_{\theta}( \theta - \theta_0 )^2 \label{eq:bendPot}
112 > V_{\theta_{ijk}} = k_{\theta}( \theta_{ijk} - \theta_0 )^2 \label{eq:bendPot}
113   \end{equation}
114 < $k_{\theta}$, the force constant, and $\theta_0$, the equilibrium bend
115 < angle, were taken from the TraPPE forcefield of Siepmann.
114 > Where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
115 > (see Fig.~\ref{fig:lipidModel}), and $\theta_0$ is the equilibrium
116 > bond angle. $k_{\theta}$ is the force constant which determines the
117 > strength of the harmonic bend. The parameters for $k_{\theta}$ and
118 > $\theta_0$ are based off of those in TraPPE.\cite{Siepmann1998}
119  
120 < The torsion functional has the form:
120 > The torsion potential and parameters are also taken from TraPPE. It is
121 > of the form:
122   \begin{equation}
123 < V_{\phi} =  \sum ( k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0)
123 > V_{\text{torsion}}(\phi_{ijkl}) = c_1[1 + \cos \phi]
124 >        + c_2[1 + \cos(2\phi)]
125 >        + c_3[1 + \cos(3\phi)]
126 > \label{eq:origTorsionPot}
127 > \end{equation}
128 > Here $\phi_{ijkl}$ is the angle defined by four bonded neighbors $i$,
129 > $j$, $k$, and $l$ (again, see Fig.~\ref{fig:lipidModel}).  However,
130 > for computaional efficency, the torsion potentail has been recast
131 > after the method of CHARMM\cite{charmm1983} whereby the angle series
132 > is converted to a power series of the form:
133 > \begin{equation}
134 > V_{\text{torsion}}(\phi_{ijkl}) =  
135 >        k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0
136   \label{eq:torsionPot}
137   \end{equation}
138 < Here, the authors decided to use a potential in terms of a power
139 < expansion in $\cos \phi$ rather than the typical expansion in
140 < $\phi$. This prevents the need for repeated trigonemtric
141 < evaluations. Again, all $k_n$ constants were based on those in TraPPE.
138 > Where:
139 > \begin{align*}
140 > k_0 &= c_1 + c_3 \\
141 > k_1 &= c_1 - 3c_3 \\
142 > k_2 &= 2 c_2 \\
143 > k_3 &= 4c_3
144 > \end{align*}
145 > By recasting the equation to a power series, repeated trigonometric
146 > evaluations are avoided during the calculation of the potential.
147  
148 < \subsection{Non-Bonded Interactions}
45 < \label{subSec:nonBondedInteractions}
46 <
148 > The Lennard-Jones potential is given by:
149   \begin{equation}
150 < V_{\text{LJ}} = \text{internal + external}
150 > V_{\text{LJ}}(r_{ij}) =
151 >        4\epsilon_{ij} \biggl[
152 >        \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
153 >        - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
154 >        \biggr]
155 > \label{eq:lennardJonesPot}
156   \end{equation}
157 + Where $r_ij$ is the distance between atoms $i$ and $j$, $\sigma_{ij}$
158 + scales the length of the interaction, and $\epsilon_{ij}$ scales the
159 + energy of the potential.
160  
161 <
161 > The dipole-dipole potential has the following form:
162 > \begin{equation}
163 > V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
164 >        \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
165 >        \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
166 >        -
167 >        \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
168 >                (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
169 >                {r^{5}_{ij}} \biggr]
170 > \label{eq:dipolePot}
171 > \end{equation}
172 > Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
173 > towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
174 > are the Euler angles of atom $i$ and $j$
175 > respectively. $\boldsymbol{\mu}_i$ is the dipole vector of atom
176 > $i$ it takes its orientation from $\boldsymbol{\Omega}_i$.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines