ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/DUFF.tex
Revision: 713
Committed: Sat Aug 23 17:01:50 2003 UTC (20 years, 10 months ago) by mmeineke
Content type: application/x-tex
File size: 3001 byte(s)
Log Message:
added some work to DUFF

File Contents

# Content
1
2 \section{\label{sec:DUFF}The DUFF Force Field}
3
4 The DUFF (\underline{D}ipolar \underline{U}nified-atom
5 \underline{F}orce \underline{F}ield) force field was developed to
6 simulate lipid bilayer formation and equilibrium dynamics. We needed a
7 model capable of forming bilaers, while still being sufficiently
8 computationally efficient allowing simulations of large systems
9 (\~100's of phospholipids, \~1000's of waters) for long times (\~10's
10 of nanoseconds).
11
12 With this goal in mind, we decided to eliminate all charged
13 interactions within the force field. Charge distributions were
14 replaced with dipolar entities, and charge neutral distributions were
15 reduced to Lennard-Jones interaction sites. This simplification cuts
16 the length scale of long range interactions from $\frac{1}{r}$ to
17 $\frac{1}{r^3}$ (Eq.~\ref{eq:dipole} vs.~ Eq.~\ref{eq:coloumb}).
18
19 \begin{align}
20 V^{\text{dipole}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
21 \boldsymbol{\Omega}_{j}) &=
22 \frac{1}{4\pi\epsilon_{0}} \biggl[
23 \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
24 -
25 \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
26 (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
27 {r^{5}_{ij}} \biggr]\label{eq:dipole} \\
28 V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) &= \frac{q_{i}q_{j}}%
29 {4\pi\epsilon_{0} r_{ij}} \label{eq:coloumb}
30 \end{align}
31
32
33 The main energy function in OOPSE is DUFF (the Dipolar
34 Unified-atom Force Field). DUFF is a collection of parameters taken
35 from Seipmann \emph{et al.}\cite{Siepmann1998} and Ichiye \emph{et
36 al.}\cite{liu96:new_model} The total energy of interaction is given by
37 Eq.~\ref{eq:totalPotential}:
38 \begin{equation}
39 V_{\text{Total}} =
40 \overbrace{V_{\theta} + V_{\phi}}^{\text{bonded}} +
41 \underbrace{V_{\text{LJ}} + V_{\text{Dp}} + %
42 V_{\text{SSD}}}_{\text{non-bonded}} \label{eq:totalPotential}
43 \end{equation}
44
45 \subsection{Bonded Interactions}
46 \label{subSec:bondedInteractions}
47
48 The bonded interactions in the DUFF functional set are limited to the
49 bend potential and the torsional potential. Bond potentials are not
50 calculated, instead all bond lengths are fixed to allow for large time
51 steps to be taken between force evaluations.
52
53 The bend functional is of the form:
54 \begin{equation}
55 V_{\theta} = \sum k_{\theta}( \theta - \theta_0 )^2 \label{eq:bendPot}
56 \end{equation}
57 $k_{\theta}$, the force constant, and $\theta_0$, the equilibrium bend
58 angle, were taken from the TraPPE forcefield of Siepmann.
59
60 The torsion functional has the form:
61 \begin{equation}
62 V_{\phi} = \sum ( k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0)
63 \label{eq:torsionPot}
64 \end{equation}
65 Here, the authors decided to use a potential in terms of a power
66 expansion in $\cos \phi$ rather than the typical expansion in
67 $\phi$. This prevents the need for repeated trigonemtric
68 evaluations. Again, all $k_n$ constants were based on those in TraPPE.
69
70 \subsection{Non-Bonded Interactions}
71 \label{subSec:nonBondedInteractions}
72
73 \begin{equation}
74 V_{\text{LJ}} = \text{internal + external}
75 \end{equation}
76
77