| 1 |
|
|
| 2 |
+ |
\documentclass[prb,aps,twocolumn]{revtex4} |
| 3 |
|
|
| 4 |
+ |
\usepackage{amsmath} |
| 5 |
+ |
\usepackage{berkeley} |
| 6 |
+ |
\usepackage{graphicx} |
| 7 |
+ |
\usepackage{tabularx} |
| 8 |
|
|
| 9 |
< |
\section{The DUFF Energy Functionals} |
| 9 |
> |
\begin{document} |
| 10 |
> |
|
| 11 |
> |
\section{The DUFF Energy Function} |
| 12 |
|
\label{sec:energyFunctionals} |
| 13 |
|
|
| 14 |
< |
The main energy functional set in OOPSE is DUFF (the Dipolar |
| 14 |
> |
|
| 15 |
> |
|
| 16 |
> |
The main energy function in OOPSE is DUFF (the Dipolar |
| 17 |
|
Unified-atom Force Field). DUFF is a collection of parameters taken |
| 18 |
|
from Seipmann \emph{et al.}\cite{Siepmann1998} and Ichiye \emph{et |
| 19 |
|
al.}\cite{liu96:new_model} The total energy of interaction is given by |
| 42 |
|
|
| 43 |
|
The torsion functional has the form: |
| 44 |
|
\begin{equation} |
| 45 |
< |
V_{\phi} = \sum ( k_1 \cos^3 \phi + k_2 \cos^2 \phi + k_3 \cos \phi + k_4) |
| 45 |
> |
V_{\phi} = \sum ( k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0) |
| 46 |
|
\label{eq:torsionPot} |
| 47 |
|
\end{equation} |
| 48 |
|
Here, the authors decided to use a potential in terms of a power |
| 58 |
|
\end{equation} |
| 59 |
|
|
| 60 |
|
|
| 61 |
+ |
|
| 62 |
+ |
\bibliography{oopse} |
| 63 |
+ |
|
| 64 |
+ |
\end{document} |