ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/EmpericalEnergy.tex
Revision: 899
Committed: Tue Jan 6 18:53:58 2004 UTC (20 years, 6 months ago) by mmeineke
Content type: application/x-tex
File size: 12889 byte(s)
Log Message:
reworked the directory structure to reflect the Outline of the paper. All major sections now have their
own tex file

File Contents

# User Rev Content
1 mmeineke 806
2 mmeineke 899 \section{\label{sec:empericalEnergy}The Emperical Energy Functions}
3 mmeineke 806
4 mmeineke 899 \subsection{\label{sec:atomsMolecules}Atoms and Molecules}
5 mmeineke 806
6 gezelter 818 The basic unit of an {\sc oopse} simulation is the atom. The parameters
7 mmeineke 806 describing the atom are generalized to make the atom as flexible a
8     representation as possible. They may represent specific atoms of an
9     element, or be used for collections of atoms such as a methyl
10     group. The atoms are also capable of having a directional component
11     associated with them, often in the form of a dipole. Charges on atoms
12 gezelter 818 are not currently suporrted by {\sc oopse}.
13 mmeineke 806
14     The second most basic building block of a simulation is the
15 gezelter 818 molecule. The molecule is a way for {\sc oopse} to keep track of the atoms
16 mmeineke 806 in a simulation in logical manner. This particular unit will store the
17     identities of all the atoms associated with itself and is responsible
18     for the evaluation of its own bonded interaction (i.e.~bonds, bends,
19     and torsions).
20 mmeineke 899
21     \subsection{\label{sec:DUFF}Dipolar Unified-Atom Force Field}
22    
23     The \underline{D}ipolar \underline{U}nified-Atom
24     \underline{F}orce \underline{F}ield ({\sc duff}) was developed to
25     simulate lipid bilayers. We needed a model capable of forming
26     bilayers, while still being sufficiently computationally efficient to
27     allow simulations of large systems ($\approx$100's of phospholipids,
28     $\approx$1000's of waters) for long times ($\approx$10's of
29     nanoseconds).
30    
31     With this goal in mind, we have eliminated all point charges. Charge
32     distributions were replaced with dipoles, and charge-neutral
33     distributions were reduced to Lennard-Jones interaction sites. This
34     simplification cuts the length scale of long range interactions from
35     $\frac{1}{r}$ to $\frac{1}{r^3}$, allowing us to avoid the
36     computationally expensive Ewald-Sum. Instead, we can use
37     neighbor-lists and cutoff radii for the dipolar interactions.
38    
39     As an example, lipid head groups in {\sc duff} are represented as point
40     dipole interaction sites.PC and PE Lipid head groups are typically
41     zwitterionic in nature, with charges separated by as much as
42     6~$\mbox{\AA}$. By placing a dipole of 20.6~Debye at the head group
43     center of mass, our model mimics the head group of PC.\cite{Cevc87}
44     Additionally, a Lennard-Jones site is located at the
45     pseudoatom's center of mass. The model is illustrated by the dark grey
46     atom in Fig.~\ref{fig:lipidModel}.
47    
48     \begin{figure}
49     \epsfxsize=6in
50     \epsfbox{lipidModel.epsi}
51     \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
52     is the bend angle, $\mu$ is the dipole moment of the head group, and n is the chain length.}
53     \label{fig:lipidModel}
54     \end{figure}
55    
56     The water model we use to complement the dipoles of the lipids is
57     the soft sticky dipole (SSD) model of Ichiye \emph{et
58     al.}\cite{liu96:new_model} This model is discussed in greater detail
59     in Sec.~\ref{sec:SSD}. In all cases we reduce water to a single
60     Lennard-Jones interaction site. The site also contains a dipole to
61     mimic the partial charges on the hydrogens and the oxygen. However,
62     what makes the SSD model unique is the inclusion of a tetrahedral
63     short range potential to recover the hydrogen bonding of water, an
64     important factor when modeling bilayers, as it has been shown that
65     hydrogen bond network formation is a leading contribution to the
66     entropic driving force towards lipid bilayer formation.\cite{Cevc87}
67    
68    
69     Turning to the tails of the phospholipids, we have used a set of
70     scalable parameters to model the alkyl groups with Lennard-Jones
71     sites. For this, we have used the TraPPE force field of Siepmann
72     \emph{et al}.\cite{Siepmann1998} TraPPE is a unified-atom
73     representation of n-alkanes, which is parametrized against phase
74     equilibria using Gibbs Monte Carlo simulation
75     techniques.\cite{Siepmann1998} One of the advantages of TraPPE is that
76     it generalizes the types of atoms in an alkyl chain to keep the number
77     of pseudoatoms to a minimum; the parameters for an atom such as
78     $\text{CH}_2$ do not change depending on what species are bonded to
79     it.
80    
81     TraPPE also constrains of all bonds to be of fixed length. Typically,
82     bond vibrations are the fastest motions in a molecular dynamic
83     simulation. Small time steps between force evaluations must be used to
84     ensure adequate sampling of the bond potential conservation of
85     energy. By constraining the bond lengths, larger time steps may be
86     used when integrating the equations of motion.
87    
88    
89     \subsubsection{\label{subSec:energyFunctions}{\sc duff} Energy Functions}
90    
91     The total energy of function in {\sc duff} is given by the following:
92     \begin{equation}
93     V_{\text{Total}} = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
94     + \sum^{N}_{I=1} \sum^{N}_{J=1} V^{IJ}_{\text{Cross}}
95     \label{eq:totalPotential}
96     \end{equation}
97     Where $V^{I}_{\text{Internal}}$ is the internal potential of a molecule:
98     \begin{equation}
99     V^{I}_{\text{Internal}} =
100     \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
101     + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\theta_{ijkl})
102     + \sum_{i \in I} \sum_{(j>i+4) \in I}
103     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
104     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
105     \biggr]
106     \label{eq:internalPotential}
107     \end{equation}
108     Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
109     within in the molecule. $V_{\text{torsion}}$ is the torsion The
110     pairwise portions of the internal potential are excluded for pairs
111     that ar closer than three bonds, i.e.~atom pairs farther away than a
112     torsion are included in the pair-wise loop.
113    
114     The cross portion of the total potential, $V^{IJ}_{\text{Cross}}$, is
115     as follows:
116     \begin{equation}
117     V^{IJ}_{\text{Cross}} =
118     \sum_{i \in I} \sum_{j \in J}
119     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
120     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
121     + V_{\text{sticky}}
122     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
123     \biggr]
124     \label{eq:crossPotentail}
125     \end{equation}
126     Where $V_{\text{LJ}}$ is the Lennard Jones potential,
127     $V_{\text{dipole}}$ is the dipole dipole potential, and
128     $V_{\text{sticky}}$ is the sticky potential defined by the SSD model.
129    
130     The bend potential of a molecule is represented by the following function:
131     \begin{equation}
132     V_{\theta_{ijk}} = k_{\theta}( \theta_{ijk} - \theta_0 )^2 \label{eq:bendPot}
133     \end{equation}
134     Where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
135     (see Fig.~\ref{fig:lipidModel}), and $\theta_0$ is the equilibrium
136     bond angle. $k_{\theta}$ is the force constant which determines the
137     strength of the harmonic bend. The parameters for $k_{\theta}$ and
138     $\theta_0$ are based off of those in TraPPE.\cite{Siepmann1998}
139    
140     The torsion potential and parameters are also taken from TraPPE. It is
141     of the form:
142     \begin{equation}
143     V_{\text{torsion}}(\phi_{ijkl}) = c_1[1 + \cos \phi]
144     + c_2[1 + \cos(2\phi)]
145     + c_3[1 + \cos(3\phi)]
146     \label{eq:origTorsionPot}
147     \end{equation}
148     Here $\phi_{ijkl}$ is the angle defined by four bonded neighbors $i$,
149     $j$, $k$, and $l$ (again, see Fig.~\ref{fig:lipidModel}). However,
150     for computaional efficency, the torsion potentail has been recast
151     after the method of CHARMM\cite{charmm1983} whereby the angle series
152     is converted to a power series of the form:
153     \begin{equation}
154     V_{\text{torsion}}(\phi_{ijkl}) =
155     k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0
156     \label{eq:torsionPot}
157     \end{equation}
158     Where:
159     \begin{align*}
160     k_0 &= c_1 + c_3 \\
161     k_1 &= c_1 - 3c_3 \\
162     k_2 &= 2 c_2 \\
163     k_3 &= 4c_3
164     \end{align*}
165     By recasting the equation to a power series, repeated trigonometric
166     evaluations are avoided during the calculation of the potential.
167    
168     The Lennard-Jones potential is given by:
169     \begin{equation}
170     V_{\text{LJ}}(r_{ij}) =
171     4\epsilon_{ij} \biggl[
172     \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
173     - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
174     \biggr]
175     \label{eq:lennardJonesPot}
176     \end{equation}
177     Where $r_ij$ is the distance between atoms $i$ and $j$, $\sigma_{ij}$
178     scales the length of the interaction, and $\epsilon_{ij}$ scales the
179     energy of the potential.
180    
181     The dipole-dipole potential has the following form:
182     \begin{equation}
183     V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
184     \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
185     \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
186     -
187     \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
188     (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
189     {r^{5}_{ij}} \biggr]
190     \label{eq:dipolePot}
191     \end{equation}
192     Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
193     towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
194     are the Euler angles of atom $i$ and $j$
195     respectively. $\boldsymbol{\mu}_i$ is the dipole vector of atom
196     $i$ it takes its orientation from $\boldsymbol{\Omega}_i$.
197    
198    
199     \subsection{\label{sec:SSD}Water Model: SSD and Derivatives}
200    
201     In the interest of computational efficiency, the native solvent used
202     in {\sc oopse} is the Soft Sticky Dipole (SSD) water model. SSD was
203     developed by Ichiye \emph{et al.} as a modified form of the
204     hard-sphere water model proposed by Bratko, Blum, and
205     Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
206     with a Lennard-Jones core and a sticky potential that directs the
207     particles to assume the proper hydrogen bond orientation in the first
208     solvation shell. Thus, the interaction between two SSD water molecules
209     \emph{i} and \emph{j} is given by the potential
210     \begin{equation}
211     u_{ij} = u_{ij}^{LJ} (r_{ij})\ + u_{ij}^{dp}
212     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)\ +
213     u_{ij}^{sp}
214     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j),
215     \end{equation}
216     where the $\mathbf{r}_{ij}$ is the position vector between molecules
217     \emph{i} and \emph{j} with magnitude equal to the distance $r_ij$, and
218     $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ represent the
219     orientations of the respective molecules. The Lennard-Jones, dipole,
220     and sticky parts of the potential are giving by the following
221     equations,
222     \begin{equation}
223     u_{ij}^{LJ}(r_{ij}) = 4\epsilon \left[\left(\frac{\sigma}{r_{ij}}\right)^{12}-\left(\frac{\sigma}{r_{ij}}\right)^{6}\right],
224     \end{equation}
225     \begin{equation}
226     u_{ij}^{dp} = \frac{\boldsymbol{\mu}_i\cdot\boldsymbol{\mu}_j}{r_{ij}^3}-\frac{3(\boldsymbol{\mu}_i\cdot\mathbf{r}_{ij})(\boldsymbol{\mu}_j\cdot\mathbf{r}_{ij})}{r_{ij}^5}\ ,
227     \end{equation}
228     \begin{equation}
229     \begin{split}
230     u_{ij}^{sp}
231     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)
232     &=
233     \frac{\nu_0}{2}[s(r_{ij})w(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)\\
234     & \quad \ +
235     s^\prime(r_{ij})w^\prime(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)]\ ,
236     \end{split}
237     \end{equation}
238     where $\boldsymbol{\mu}_i$ and $\boldsymbol{\mu}_j$ are the dipole
239     unit vectors of particles \emph{i} and \emph{j} with magnitude 2.35 D,
240     $\nu_0$ scales the strength of the overall sticky potential, $s$ and
241     $s^\prime$ are cubic switching functions. The $w$ and $w^\prime$
242     functions take the following forms,
243     \begin{equation}
244     w(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)=\sin\theta_{ij}\sin2\theta_{ij}\cos2\phi_{ij},
245     \end{equation}
246     \begin{equation}
247     w^\prime(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j) = (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij}+0.8)^2-w^0,
248     \end{equation}
249     where $w^0 = 0.07715$. The $w$ function is the tetrahedral attractive
250     term that promotes hydrogen bonding orientations within the first
251     solvation shell, and $w^\prime$ is a dipolar repulsion term that
252     repels unrealistic dipolar arrangements within the first solvation
253     shell. A more detailed description of the functional parts and
254     variables in this potential can be found in other
255     articles.\cite{liu96:new_model,chandra99:ssd_md}
256    
257     Since SSD is a one-site point dipole model, the force calculations are
258     simplified significantly from a computational standpoint, in that the
259     number of long-range interactions is dramatically reduced. In the
260     original Monte Carlo simulations using this model, Ichiye \emph{et
261     al.} reported a calculation speed up of up to an order of magnitude
262     over other comparable models while maintaining the structural behavior
263     of water.\cite{liu96:new_model} In the original molecular dynamics studies of
264     SSD, it was shown that it actually improves upon the prediction of
265     water's dynamical properties over TIP3P and SPC/E.\cite{chandra99:ssd_md}
266    
267     Recent constant pressure simulations revealed issues in the original
268     SSD model that led to lower than expected densities at all target
269     pressures.\cite{Ichiye03,Gezelter04} Reparameterizations of the
270     original SSD have resulted in improved density behavior, as well as
271     alterations in the water structure and transport behavior. {\sc oopse} is
272     easily modified to impliment these new potential parameter sets for
273     the derivative water models: SSD1, SSD/E, and SSD/RF. All of the
274     variable parameters are listed in the accompanying BASS file, and
275     these parameters simply need to be changed to the updated values.
276    
277    
278     \subsection{\label{sec:eam}Embedded Atom Model}
279    
280     here there be Monsters