ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/EmpericalEnergy.tex
Revision: 918
Committed: Fri Jan 9 20:57:55 2004 UTC (20 years, 5 months ago) by mmeineke
Content type: application/x-tex
File size: 20330 byte(s)
Log Message:
rotated the lipid figure

added eam to the Emperical Energy

File Contents

# User Rev Content
1 mmeineke 806
2 mmeineke 899 \section{\label{sec:empericalEnergy}The Emperical Energy Functions}
3 mmeineke 806
4 mmeineke 915 \subsection{\label{sec:atomsMolecules}Atoms, Molecules and Rigid Bodies}
5 mmeineke 806
6 gezelter 818 The basic unit of an {\sc oopse} simulation is the atom. The parameters
7 mmeineke 806 describing the atom are generalized to make the atom as flexible a
8     representation as possible. They may represent specific atoms of an
9     element, or be used for collections of atoms such as a methyl
10     group. The atoms are also capable of having a directional component
11     associated with them, often in the form of a dipole. Charges on atoms
12 gezelter 818 are not currently suporrted by {\sc oopse}.
13 mmeineke 806
14     The second most basic building block of a simulation is the
15 gezelter 818 molecule. The molecule is a way for {\sc oopse} to keep track of the atoms
16 mmeineke 806 in a simulation in logical manner. This particular unit will store the
17     identities of all the atoms associated with itself and is responsible
18     for the evaluation of its own bonded interaction (i.e.~bonds, bends,
19     and torsions).
20 mmeineke 899
21 mmeineke 915 As stated in the previously, one of the features that sets OOPSE apart
22     from most of the current molecular simulation packages is the ability
23     to handle rigid body dynamics. Rigid bodies are non-spherical
24     particles or collections of particles that have a constant internal
25     potential and move collectively.\cite{Goldstein01} They are not
26     included in many standard simulation packages because of the need to
27     consider orientational degrees of freedom and include an integrator
28     that accurately propagates these motions in time.
29    
30     Moving a rigid body involves determination of both the force and
31     torque applied by the surroundings, which directly affect the
32     translation and rotation in turn. In order to accumulate the total
33     force on a rigid body, the external forces must first be calculated
34     for all the interal particles. The total force on the rigid body is
35     simply the sum of these external forces. Accumulation of the total
36     torque on the rigid body is similar to the force in that it is a sum
37     of the torque applied on each internal particle, mapped onto the
38     center of mass of the rigid body.
39    
40     The application of the total torque is done in the body fixed axis of
41     the rigid body. In order to move between the space fixed and body
42     fixed coordinate axes, parameters describing the orientation be
43     maintained for each rigid body. At a minimum, the rotation matrix can
44     be described and propagated by the three Euler
45     angles.\cite{Goldstein01} In order to avoid rotational limitations
46     when using Euler angles, the four parameter ``quaternion'' scheme can
47     be used instead.\cite{allen87:csl} Use of quaternions also leads to
48     performance enhancements, particularly for very small
49     systems.\cite{Evans77} OOPSE utilizes a relatively new scheme that
50     propagates the entire nine parameter rotation matrix. Further
51     discussion on this choice can be found in Sec.~\ref{sec:integrate}.
52    
53     \subsection{\label{sec:LJPot}The Lennard Jones Potential}
54    
55     The most basic force field implemented in OOPSE is the Lennard-Jones
56     potential. The Lennard-Jones potential mimics the attractive forces
57     two charge neutral particles experience when spontaneous dipoles are
58     induced on each other. This is the predominant intermolecular force in
59     systems of such as noble gases and simple alkanes.
60    
61     The Lennard-Jones potential is given by:
62     \begin{equation}
63     V_{\text{LJ}}(r_{ij}) =
64     4\epsilon_{ij} \biggl[
65     \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
66     - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
67     \biggr]
68     \label{eq:lennardJonesPot}
69     \end{equation}
70     Where $r_ij$ is the distance between particle $i$ and $j$, $\sigma_{ij}$
71     scales the length of the interaction, and $\epsilon_{ij}$ scales the
72     energy well depth of the potential.
73    
74     Because the potential is calculated between all pairs, the force
75     evaluation can become computationally expensive for large systems. To
76     keep the pair evaluation to a manegable number, OOPSE employs the use
77     of a cut-off radius.\cite{allen87:csl} The cutoff radius is set to be
78     $2.5\sigma_{ii}$, where $\sigma_{ii}$ is the largest self self length
79     parameter in the system. Truncating the calculation at
80     $r_{\text{cut}}$ introduces a discontinuity into the potential
81     energy. To offset this discontinuity, the energy value at
82     $r_{\text{cut}}$ is subtracted from the entire potential. This causes
83     the equation to go to zero at the cut-off radius.
84    
85     Interactions between dissimilar particles requires the generation of
86     cross term parameters for $\sigma$ and $\epsilon$. These are
87     calculated through the Lorentz-Berthelot mixing
88     rules:\cite{allen87:csl}
89     \begin{equation}
90     \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}]
91     \label{eq:sigmaMix}
92     \end{equation}
93     and
94     \begin{equation}
95     \epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}
96     \label{eq:epsilonMix}
97     \end{equation}
98    
99    
100 mmeineke 899 \subsection{\label{sec:DUFF}Dipolar Unified-Atom Force Field}
101    
102     The \underline{D}ipolar \underline{U}nified-Atom
103     \underline{F}orce \underline{F}ield ({\sc duff}) was developed to
104     simulate lipid bilayers. We needed a model capable of forming
105     bilayers, while still being sufficiently computationally efficient to
106     allow simulations of large systems ($\approx$100's of phospholipids,
107     $\approx$1000's of waters) for long times ($\approx$10's of
108     nanoseconds).
109    
110     With this goal in mind, we have eliminated all point charges. Charge
111     distributions were replaced with dipoles, and charge-neutral
112     distributions were reduced to Lennard-Jones interaction sites. This
113     simplification cuts the length scale of long range interactions from
114     $\frac{1}{r}$ to $\frac{1}{r^3}$, allowing us to avoid the
115     computationally expensive Ewald-Sum. Instead, we can use
116     neighbor-lists and cutoff radii for the dipolar interactions.
117    
118     As an example, lipid head groups in {\sc duff} are represented as point
119     dipole interaction sites.PC and PE Lipid head groups are typically
120     zwitterionic in nature, with charges separated by as much as
121     6~$\mbox{\AA}$. By placing a dipole of 20.6~Debye at the head group
122     center of mass, our model mimics the head group of PC.\cite{Cevc87}
123     Additionally, a Lennard-Jones site is located at the
124     pseudoatom's center of mass. The model is illustrated by the dark grey
125     atom in Fig.~\ref{fig:lipidModel}.
126    
127     \begin{figure}
128 mmeineke 918 \epsfbox{lipidModel.eps}
129 mmeineke 899 \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
130     is the bend angle, $\mu$ is the dipole moment of the head group, and n is the chain length.}
131     \label{fig:lipidModel}
132     \end{figure}
133    
134     The water model we use to complement the dipoles of the lipids is
135     the soft sticky dipole (SSD) model of Ichiye \emph{et
136     al.}\cite{liu96:new_model} This model is discussed in greater detail
137     in Sec.~\ref{sec:SSD}. In all cases we reduce water to a single
138     Lennard-Jones interaction site. The site also contains a dipole to
139     mimic the partial charges on the hydrogens and the oxygen. However,
140     what makes the SSD model unique is the inclusion of a tetrahedral
141     short range potential to recover the hydrogen bonding of water, an
142     important factor when modeling bilayers, as it has been shown that
143     hydrogen bond network formation is a leading contribution to the
144     entropic driving force towards lipid bilayer formation.\cite{Cevc87}
145    
146    
147     Turning to the tails of the phospholipids, we have used a set of
148     scalable parameters to model the alkyl groups with Lennard-Jones
149     sites. For this, we have used the TraPPE force field of Siepmann
150     \emph{et al}.\cite{Siepmann1998} TraPPE is a unified-atom
151     representation of n-alkanes, which is parametrized against phase
152     equilibria using Gibbs Monte Carlo simulation
153     techniques.\cite{Siepmann1998} One of the advantages of TraPPE is that
154     it generalizes the types of atoms in an alkyl chain to keep the number
155     of pseudoatoms to a minimum; the parameters for an atom such as
156     $\text{CH}_2$ do not change depending on what species are bonded to
157     it.
158    
159     TraPPE also constrains of all bonds to be of fixed length. Typically,
160     bond vibrations are the fastest motions in a molecular dynamic
161     simulation. Small time steps between force evaluations must be used to
162     ensure adequate sampling of the bond potential conservation of
163     energy. By constraining the bond lengths, larger time steps may be
164     used when integrating the equations of motion.
165    
166    
167     \subsubsection{\label{subSec:energyFunctions}{\sc duff} Energy Functions}
168    
169     The total energy of function in {\sc duff} is given by the following:
170     \begin{equation}
171     V_{\text{Total}} = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
172     + \sum^{N}_{I=1} \sum^{N}_{J=1} V^{IJ}_{\text{Cross}}
173     \label{eq:totalPotential}
174     \end{equation}
175     Where $V^{I}_{\text{Internal}}$ is the internal potential of a molecule:
176     \begin{equation}
177     V^{I}_{\text{Internal}} =
178     \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
179     + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\theta_{ijkl})
180     + \sum_{i \in I} \sum_{(j>i+4) \in I}
181     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
182     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
183     \biggr]
184     \label{eq:internalPotential}
185     \end{equation}
186     Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
187     within in the molecule. $V_{\text{torsion}}$ is the torsion The
188     pairwise portions of the internal potential are excluded for pairs
189     that ar closer than three bonds, i.e.~atom pairs farther away than a
190     torsion are included in the pair-wise loop.
191    
192     The cross portion of the total potential, $V^{IJ}_{\text{Cross}}$, is
193     as follows:
194     \begin{equation}
195     V^{IJ}_{\text{Cross}} =
196     \sum_{i \in I} \sum_{j \in J}
197     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
198     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
199     + V_{\text{sticky}}
200     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
201     \biggr]
202     \label{eq:crossPotentail}
203     \end{equation}
204     Where $V_{\text{LJ}}$ is the Lennard Jones potential,
205     $V_{\text{dipole}}$ is the dipole dipole potential, and
206     $V_{\text{sticky}}$ is the sticky potential defined by the SSD model.
207    
208     The bend potential of a molecule is represented by the following function:
209     \begin{equation}
210     V_{\theta_{ijk}} = k_{\theta}( \theta_{ijk} - \theta_0 )^2 \label{eq:bendPot}
211     \end{equation}
212     Where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
213     (see Fig.~\ref{fig:lipidModel}), and $\theta_0$ is the equilibrium
214     bond angle. $k_{\theta}$ is the force constant which determines the
215     strength of the harmonic bend. The parameters for $k_{\theta}$ and
216     $\theta_0$ are based off of those in TraPPE.\cite{Siepmann1998}
217    
218     The torsion potential and parameters are also taken from TraPPE. It is
219     of the form:
220     \begin{equation}
221     V_{\text{torsion}}(\phi_{ijkl}) = c_1[1 + \cos \phi]
222     + c_2[1 + \cos(2\phi)]
223     + c_3[1 + \cos(3\phi)]
224     \label{eq:origTorsionPot}
225     \end{equation}
226     Here $\phi_{ijkl}$ is the angle defined by four bonded neighbors $i$,
227     $j$, $k$, and $l$ (again, see Fig.~\ref{fig:lipidModel}). However,
228     for computaional efficency, the torsion potentail has been recast
229     after the method of CHARMM\cite{charmm1983} whereby the angle series
230     is converted to a power series of the form:
231     \begin{equation}
232     V_{\text{torsion}}(\phi_{ijkl}) =
233     k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0
234     \label{eq:torsionPot}
235     \end{equation}
236     Where:
237     \begin{align*}
238     k_0 &= c_1 + c_3 \\
239     k_1 &= c_1 - 3c_3 \\
240     k_2 &= 2 c_2 \\
241     k_3 &= 4c_3
242     \end{align*}
243     By recasting the equation to a power series, repeated trigonometric
244     evaluations are avoided during the calculation of the potential.
245    
246    
247 mmeineke 915
248 mmeineke 899 The dipole-dipole potential has the following form:
249     \begin{equation}
250     V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
251     \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
252     \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
253     -
254     \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
255     (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
256     {r^{5}_{ij}} \biggr]
257     \label{eq:dipolePot}
258     \end{equation}
259     Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
260     towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
261     are the Euler angles of atom $i$ and $j$
262     respectively. $\boldsymbol{\mu}_i$ is the dipole vector of atom
263     $i$ it takes its orientation from $\boldsymbol{\Omega}_i$.
264    
265    
266     \subsection{\label{sec:SSD}Water Model: SSD and Derivatives}
267    
268     In the interest of computational efficiency, the native solvent used
269     in {\sc oopse} is the Soft Sticky Dipole (SSD) water model. SSD was
270     developed by Ichiye \emph{et al.} as a modified form of the
271     hard-sphere water model proposed by Bratko, Blum, and
272     Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
273     with a Lennard-Jones core and a sticky potential that directs the
274     particles to assume the proper hydrogen bond orientation in the first
275     solvation shell. Thus, the interaction between two SSD water molecules
276     \emph{i} and \emph{j} is given by the potential
277     \begin{equation}
278     u_{ij} = u_{ij}^{LJ} (r_{ij})\ + u_{ij}^{dp}
279     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)\ +
280     u_{ij}^{sp}
281     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j),
282     \end{equation}
283     where the $\mathbf{r}_{ij}$ is the position vector between molecules
284     \emph{i} and \emph{j} with magnitude equal to the distance $r_ij$, and
285     $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ represent the
286     orientations of the respective molecules. The Lennard-Jones, dipole,
287     and sticky parts of the potential are giving by the following
288     equations,
289     \begin{equation}
290     u_{ij}^{LJ}(r_{ij}) = 4\epsilon \left[\left(\frac{\sigma}{r_{ij}}\right)^{12}-\left(\frac{\sigma}{r_{ij}}\right)^{6}\right],
291     \end{equation}
292     \begin{equation}
293     u_{ij}^{dp} = \frac{\boldsymbol{\mu}_i\cdot\boldsymbol{\mu}_j}{r_{ij}^3}-\frac{3(\boldsymbol{\mu}_i\cdot\mathbf{r}_{ij})(\boldsymbol{\mu}_j\cdot\mathbf{r}_{ij})}{r_{ij}^5}\ ,
294     \end{equation}
295     \begin{equation}
296     \begin{split}
297     u_{ij}^{sp}
298     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)
299     &=
300     \frac{\nu_0}{2}[s(r_{ij})w(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)\\
301     & \quad \ +
302     s^\prime(r_{ij})w^\prime(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)]\ ,
303     \end{split}
304     \end{equation}
305     where $\boldsymbol{\mu}_i$ and $\boldsymbol{\mu}_j$ are the dipole
306     unit vectors of particles \emph{i} and \emph{j} with magnitude 2.35 D,
307     $\nu_0$ scales the strength of the overall sticky potential, $s$ and
308     $s^\prime$ are cubic switching functions. The $w$ and $w^\prime$
309     functions take the following forms,
310     \begin{equation}
311     w(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)=\sin\theta_{ij}\sin2\theta_{ij}\cos2\phi_{ij},
312     \end{equation}
313     \begin{equation}
314     w^\prime(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j) = (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij}+0.8)^2-w^0,
315     \end{equation}
316     where $w^0 = 0.07715$. The $w$ function is the tetrahedral attractive
317     term that promotes hydrogen bonding orientations within the first
318     solvation shell, and $w^\prime$ is a dipolar repulsion term that
319     repels unrealistic dipolar arrangements within the first solvation
320     shell. A more detailed description of the functional parts and
321     variables in this potential can be found in other
322     articles.\cite{liu96:new_model,chandra99:ssd_md}
323    
324     Since SSD is a one-site point dipole model, the force calculations are
325     simplified significantly from a computational standpoint, in that the
326     number of long-range interactions is dramatically reduced. In the
327     original Monte Carlo simulations using this model, Ichiye \emph{et
328     al.} reported a calculation speed up of up to an order of magnitude
329     over other comparable models while maintaining the structural behavior
330     of water.\cite{liu96:new_model} In the original molecular dynamics studies of
331     SSD, it was shown that it actually improves upon the prediction of
332     water's dynamical properties over TIP3P and SPC/E.\cite{chandra99:ssd_md}
333    
334     Recent constant pressure simulations revealed issues in the original
335     SSD model that led to lower than expected densities at all target
336     pressures.\cite{Ichiye03,Gezelter04} Reparameterizations of the
337     original SSD have resulted in improved density behavior, as well as
338     alterations in the water structure and transport behavior. {\sc oopse} is
339     easily modified to impliment these new potential parameter sets for
340     the derivative water models: SSD1, SSD/E, and SSD/RF. All of the
341     variable parameters are listed in the accompanying BASS file, and
342     these parameters simply need to be changed to the updated values.
343    
344    
345     \subsection{\label{sec:eam}Embedded Atom Model}
346    
347 mmeineke 918 Several molecular dynamics codes\cite{dynamo86} exist which have the
348     capacity to simulate metallic systems, including some that have
349     parallel computational abilities\cite{plimpton93}. Potentials that
350     describe bonding transition metal
351     systems\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02} have a
352     attractive interaction which models the stabilization of ``Embedding''
353     a positively charged metal ion in an electron density created by the
354     free valance ``sea'' of electrons created by the surrounding atoms in
355     the system. A mostly repulsive pairwise part of the potential
356     describes the interaction of the positively charged metal core ions
357     with one another. A particular potential description called the
358     Embedded Atom Method\cite{Daw84,FBD86,johnson89,Lu97}(EAM) that has
359     particularly wide adoption has been selected for inclusion in OOPSE. A
360     good review of EAM and other metallic potential formulations was done
361     by Voter.\cite{voter}
362 mmeineke 915
363 mmeineke 918 The {\sc eam} potential has the form:
364     \begin{eqnarray}
365     V & = & \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
366     \phi_{ij}({\bf r}_{ij}) \\
367     \rho_{i} & = & \sum_{j \neq i} f_{j}({\bf r}_{ij})
368     \end{eqnarray}
369    
370     where $\phi_{ij}$ is a primarily repulsive pairwise interaction
371     between atoms $i$ and $j$.In the origional formulation of
372     EAM\cite{Daw84}, $\phi_{ij}$ was an entirely repulsive term, however
373     in later refinements to EAM have shown that nonuniqueness between $F$
374     and $\phi$ allow for more general forms for $\phi$.\cite{Daw89} The
375     embedding function $F_{i}$ is the energy required to embedded an
376     positively-charged core ion $i$ into a linear supeposition of
377     sperically averaged atomic electron densities given by
378     $\rho_{i}$. There is a cutoff distance, $r_{cut}$, which limits the
379     summations in the {\sc eam} equation to the few dozen atoms
380     surrounding atom $i$ for both the density $\rho$ and pairwise $\phi$
381     interactions.
382    
383 mmeineke 915 \subsection{\label{Sec:pbc}Periodic Boundary Conditions}
384    
385     \textit{Periodic boundary conditions} are widely used to simulate truly
386     macroscopic systems with a relatively small number of particles. Simulation
387     box is replicated throughout space to form an infinite lattice. During the
388     simulation, when a particle moves in the primary cell, its periodic image
389     particles in other boxes move in exactly the same direction with exactly the
390     same orientation.Thus, as a particle leaves the primary cell, one of its
391     images will enter through the opposite face.If the simulation box is large
392     enough to avoid "feeling" the symmetric of the periodic lattice,the surface
393     effect could be ignored. Cubic and parallelepiped are the available periodic
394     cells. \bigskip In OOPSE, we use the matrix instead of the vector to describe
395     the property of the simulation box. Therefore, not only the size of the
396     simulation box could be changed during the simulation, but also the shape of
397     it. The transformation from box space vector $\overrightarrow{s}$ to its
398     corresponding real space vector $\overrightarrow{r}$ is defined by
399     \begin{equation}
400     \overrightarrow{r}=H\overrightarrow{s}%
401     \end{equation}
402    
403    
404     where $H=(h_{x},h_{y},h_{z})$ is a transformation matrix made up of the three
405     box axis vectors. $h_{x},h_{y}$ and $h_{z}$ represent the sides of the
406     simulation box respectively.
407    
408     To find the minimum image, we need to convert the real vector to its
409     corresponding vector in box space first, \bigskip%
410     \begin{equation}
411     \overrightarrow{s}=H^{-1}\overrightarrow{r}%
412     \end{equation}
413     And then, each element of $\overrightarrow{s}$ is casted to lie between -0.5
414     to 0.5,
415     \begin{equation}
416     s_{i}^{\prime}=s_{i}-round(s_{i})
417     \end{equation}
418     where%
419    
420     \begin{equation}
421     round(x)=\lfloor{x+0.5}\rfloor\text{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }if\text{
422     }x\geqslant0
423     \end{equation}
424     %
425    
426     \begin{equation}
427     round(x)=\lceil{x-0.5}\rceil\text{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }if\text{ }x<0
428     \end{equation}
429    
430    
431     For example, $round(3.6)=4$,$round(3.1)=3$, $round(-3.6)=-4$, $round(-3.1)=-3$.
432    
433     Finally, we could get the minimum image by transforming back to real space,%
434    
435     \begin{equation}
436     \overrightarrow{r^{\prime}}=H^{-1}\overrightarrow{s^{\prime}}%
437     \end{equation}