ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/analysis.tex
Revision: 695
Committed: Wed Aug 13 21:22:44 2003 UTC (21 years, 1 month ago) by mmeineke
Content type: application/x-tex
File size: 3802 byte(s)
Log Message:
added text to the analysis code.

File Contents

# User Rev Content
1 mmeineke 662 \section{Analysis Code}
2    
3 mmeineke 668 \subsection{Static Property Analysis}
4     The static properties of the trajectories are analyzed with the
5     program staticProps. The code is capable of calculating the following
6 mmeineke 695 pair correlations between species A and B:
7 mmeineke 668 \begin{itemize}
8 mmeineke 691 \item $g_{\text{AB}}(r)$: Eq.~\ref{eq:gofr}
9     \item $g_{\text{AB}}(r, \cos \theta)$: Eq.~\ref{eq:gofrCosTheta}
10     \item $g_{\text{AB}}(r, \cos \omega)$: Eq.~\ref{eq:gofrCosOmega}
11     \item $g_{\text{AB}}(x, y, z)$: Eq.~\ref{eq:gofrXYZ}
12 mmeineke 668 \item $\langle \cos \omega \rangle_{\text{AB}}(r)$:
13 mmeineke 691 Eq.~\ref{eq:cosOmegaOfR}
14 mmeineke 668 \end{itemize}
15 mmeineke 662
16 mmeineke 695 The first pair correlation, $g_{\text{AB}}(r)$, is defined as follows:
17 mmeineke 691 \begin{equation}
18     g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle %%
19     \sum_{i \in \text{A}} \sum_{j \in \text{B}} %%
20     \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofr}
21 mmeineke 668 \end{equation}
22 mmeineke 695 Where $\mathbf{r}_{ij}$ is the vector
23     \begin{equation*}
24     \mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i \notag
25     \end{equation*}
26     and $\frac{V}{N_{\text{A}}N_{\text{B}}}$ normalizes the average over
27     the expected pair density at a given $r$.
28 mmeineke 662
29 mmeineke 695 The next two pair correlations, $g_{\text{AB}}(r, \cos \theta)$ and
30     $g_{\text{AB}}(r, \cos \omega)$, are similar in that they are both two
31     dimensional histograms. Both use $r$ for the primary axis then a
32     $\cos$ for the secondary axis ($\cos \theta$ for
33     Eq.~\ref{eq:gofrCosTheta} and $\cos \omega$ for
34     Eq.~\ref{eq:gofrCosOmega}). This allows for the investigator to
35     correlate alignment on directional entities. $g_{\text{AB}}(r, \cos
36     \theta)$ is defined as follows:
37 mmeineke 691 \begin{multline}
38 mmeineke 668 g_{\text{AB}}(r, \cos \theta) = \\
39     \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
40     \sum_{i \in \text{A}} \sum_{j \in \text{B}}
41     \delta( \cos \theta - \cos \theta_{ij})
42 mmeineke 695 \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosTheta}
43 mmeineke 668 \end{multline}
44 mmeineke 695 Where
45     \begin{equation*}
46     \cos \theta_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{r}}_{ij}
47     \end{equation*}
48     Here $\mathbf{\hat{i}}$ is the unit directional vector of species $i$
49     and $\mathbf{\hat{r}}_{ij}$ is the unit vector associated with vector
50     $\mathbf{r}_{ij}$.
51 mmeineke 668
52 mmeineke 695 The second two dimensional histogram is of the form:
53     \begin{multline}
54 mmeineke 668 g_{\text{AB}}(r, \cos \omega) = \\
55     \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
56     \sum_{i \in \text{A}} \sum_{j \in \text{B}}
57     \delta( \cos \omega - \cos \omega_{ij})
58 mmeineke 695 \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosOmega}
59 mmeineke 668 \end{multline}
60 mmeineke 695 Here
61     \begin{equation*}
62     \cos \omega_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{j}}
63     \end{equation*}
64     Again, $\mathbf{\hat{i}}$ and $\mathbf{\hat{j}}$ are the unit
65     directional vectors of species $i$ and $j$.
66 mmeineke 668
67 mmeineke 695 The static analysis code is also cable of calculating a three
68     dimensional pair correlation of the form:
69 mmeineke 668 \begin{multline}\label{eq:gofrXYZ}
70     g_{\text{AB}}(x, y, z) = \\
71     \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
72     \sum_{i \in \text{A}} \sum_{j \in \text{B}}
73     \delta( x - x_{ij})
74     \delta( y - y_{ij})
75     \delta( z - z_{ij}) \rangle
76     \end{multline}
77 mmeineke 695 Where $x_{ij}$, $y_{ij}$, and $z_{ij}$ are the $x$, $y$, and $z$
78     components respectively of vector $\mathbf{r}_{ij}$.
79 mmeineke 668
80 mmeineke 695 The final pair correlation is similar to
81     Eq.~\ref{eq:gofrCosOmega}. $\langle \cos \omega
82     \rangle_{\text{AB}}(r)$ is calculated in the following way:
83 mmeineke 668 \begin{equation}\label{eq:cosOmegaOfR}
84 mmeineke 695 \langle \cos \omega \rangle_{\text{AB}}(r) =
85 mmeineke 668 \langle \sum_{i \in \text{A}} \sum_{j \in \text{B}}
86     (\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle
87     \end{equation}
88 mmeineke 695 Here $\cos \omega_{ij}$ is defined in the same way as in
89     Eq.~\ref{eq:gofrCosOmega}. This equation is a single dimensional pair
90     correlation that gives the average correlation of two directional
91     entities as a function of their distance from each other.
92    
93     \subsection{Dynamic Property Analysis}
94     The dynamic properties of a trajectory are calculated with the program
95     dynamicProps.