ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/analysis.tex
Revision: 668
Committed: Wed Aug 6 18:35:50 2003 UTC (21 years, 9 months ago) by mmeineke
Content type: application/x-tex
File size: 1724 byte(s)
Log Message:
added the main equations to the analysis section

File Contents

# Content
1 \section{Analysis Code}
2
3 \subsection{Static Property Analysis}
4 The static properties of the trajectories are analyzed with the
5 program staticProps. The code is capable of calculating the following
6 properties:
7 \begin{itemize}
8 \item $g_{\text{AB}}(r)$: Eq. \ref{eq:gofr}
9 \item $g_{\text{AB}}(r, \cos \theta)$: Eq. \ref{eq:gofrCosTheta}
10 \item $g_{\text{AB}}(r, \cos \omega)$: Eq. \ref{eq:gofrCosOmega}
11 \item $g_{\text{AB}}(x, y, z)$: Eq. \ref{eq:gofrXYZ}
12 \item $\langle \cos \omega \rangle_{\text{AB}}(r)$:
13 Eq. \ref{eq:cosOmegaOfR}
14 \end{itemize}
15
16 \begin{equation}\label{eq:gofr}
17 g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
18 \sum_{i \in \text{A}} \sum_{j \in \text{B}}
19 \delta( r - |\mathbf{r}_{ij}|) \rangle
20 \end{equation}
21
22 \begin{multline}\label{eq:gofrCosTheta}
23 g_{\text{AB}}(r, \cos \theta) = \\
24 \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
25 \sum_{i \in \text{A}} \sum_{j \in \text{B}}
26 \delta( \cos \theta - \cos \theta_{ij})
27 \delta( r - |\mathbf{r}_{ij}|) \rangle
28 \end{multline}
29
30 \begin{multline}\label{eq:gofrCosOmega}
31 g_{\text{AB}}(r, \cos \omega) = \\
32 \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
33 \sum_{i \in \text{A}} \sum_{j \in \text{B}}
34 \delta( \cos \omega - \cos \omega_{ij})
35 \delta( r - |\mathbf{r}_{ij}|) \rangle
36 \end{multline}
37
38 \begin{multline}\label{eq:gofrXYZ}
39 g_{\text{AB}}(x, y, z) = \\
40 \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
41 \sum_{i \in \text{A}} \sum_{j \in \text{B}}
42 \delta( x - x_{ij})
43 \delta( y - y_{ij})
44 \delta( z - z_{ij}) \rangle
45 \end{multline}
46
47 \begin{equation}\label{eq:cosOmegaOfR}
48 \langle \cos \omega \rangle_{\text{AB}}(r) =
49 \langle \sum_{i \in \text{A}} \sum_{j \in \text{B}}
50 (\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle
51 \end{equation}