| 1 |
\section{Analysis Code} |
| 2 |
|
| 3 |
\subsection{Static Property Analysis} |
| 4 |
The static properties of the trajectories are analyzed with the |
| 5 |
program staticProps. The code is capable of calculating the following |
| 6 |
properties: |
| 7 |
\begin{itemize} |
| 8 |
\item $g_{\text{AB}}(r)$: Eq. \ref{eq:gofr} |
| 9 |
\item $g_{\text{AB}}(r, \cos \theta)$: Eq. \ref{eq:gofrCosTheta} |
| 10 |
\item $g_{\text{AB}}(r, \cos \omega)$: Eq. \ref{eq:gofrCosOmega} |
| 11 |
\item $g_{\text{AB}}(x, y, z)$: Eq. \ref{eq:gofrXYZ} |
| 12 |
\item $\langle \cos \omega \rangle_{\text{AB}}(r)$: |
| 13 |
Eq. \ref{eq:cosOmegaOfR} |
| 14 |
\end{itemize} |
| 15 |
|
| 16 |
\begin{equation}\label{eq:gofr} |
| 17 |
g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle |
| 18 |
\sum_{i \in \text{A}} \sum_{j \in \text{B}} |
| 19 |
\delta( r - |\mathbf{r}_{ij}|) \rangle |
| 20 |
\end{equation} |
| 21 |
|
| 22 |
\begin{multline}\label{eq:gofrCosTheta} |
| 23 |
g_{\text{AB}}(r, \cos \theta) = \\ |
| 24 |
\frac{V}{N_{\text{A}}N_{\text{B}}}\langle |
| 25 |
\sum_{i \in \text{A}} \sum_{j \in \text{B}} |
| 26 |
\delta( \cos \theta - \cos \theta_{ij}) |
| 27 |
\delta( r - |\mathbf{r}_{ij}|) \rangle |
| 28 |
\end{multline} |
| 29 |
|
| 30 |
\begin{multline}\label{eq:gofrCosOmega} |
| 31 |
g_{\text{AB}}(r, \cos \omega) = \\ |
| 32 |
\frac{V}{N_{\text{A}}N_{\text{B}}}\langle |
| 33 |
\sum_{i \in \text{A}} \sum_{j \in \text{B}} |
| 34 |
\delta( \cos \omega - \cos \omega_{ij}) |
| 35 |
\delta( r - |\mathbf{r}_{ij}|) \rangle |
| 36 |
\end{multline} |
| 37 |
|
| 38 |
\begin{multline}\label{eq:gofrXYZ} |
| 39 |
g_{\text{AB}}(x, y, z) = \\ |
| 40 |
\frac{V}{N_{\text{A}}N_{\text{B}}}\langle |
| 41 |
\sum_{i \in \text{A}} \sum_{j \in \text{B}} |
| 42 |
\delta( x - x_{ij}) |
| 43 |
\delta( y - y_{ij}) |
| 44 |
\delta( z - z_{ij}) \rangle |
| 45 |
\end{multline} |
| 46 |
|
| 47 |
\begin{equation}\label{eq:cosOmegaOfR} |
| 48 |
\langle \cos \omega \rangle_{\text{AB}}(r) = |
| 49 |
\langle \sum_{i \in \text{A}} \sum_{j \in \text{B}} |
| 50 |
(\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle |
| 51 |
\end{equation} |