ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/analysis.tex
Revision: 697
Committed: Thu Aug 14 17:24:38 2003 UTC (21 years, 8 months ago) by mmeineke
Content type: application/x-tex
File size: 6131 byte(s)
Log Message:
finished a rough draft of the dynamicProps section. added calculation sheme to the staticProps

File Contents

# Content
1 \section{Analysis Code}
2
3 \subsection{Static Property Analysis}
4 The static properties of the trajectories are analyzed with the
5 program \texttt{staticProps}. The code is capable of calculating the following
6 pair correlations between species A and B:
7 \begin{itemize}
8 \item $g_{\text{AB}}(r)$: Eq.~\ref{eq:gofr}
9 \item $g_{\text{AB}}(r, \cos \theta)$: Eq.~\ref{eq:gofrCosTheta}
10 \item $g_{\text{AB}}(r, \cos \omega)$: Eq.~\ref{eq:gofrCosOmega}
11 \item $g_{\text{AB}}(x, y, z)$: Eq.~\ref{eq:gofrXYZ}
12 \item $\langle \cos \omega \rangle_{\text{AB}}(r)$:
13 Eq.~\ref{eq:cosOmegaOfR}
14 \end{itemize}
15
16 The first pair correlation, $g_{\text{AB}}(r)$, is defined as follows:
17 \begin{equation}
18 g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle %%
19 \sum_{i \in \text{A}} \sum_{j \in \text{B}} %%
20 \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofr}
21 \end{equation}
22 Where $\mathbf{r}_{ij}$ is the vector
23 \begin{equation*}
24 \mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i \notag
25 \end{equation*}
26 and $\frac{V}{N_{\text{A}}N_{\text{B}}}$ normalizes the average over
27 the expected pair density at a given $r$.
28
29 The next two pair correlations, $g_{\text{AB}}(r, \cos \theta)$ and
30 $g_{\text{AB}}(r, \cos \omega)$, are similar in that they are both two
31 dimensional histograms. Both use $r$ for the primary axis then a
32 $\cos$ for the secondary axis ($\cos \theta$ for
33 Eq.~\ref{eq:gofrCosTheta} and $\cos \omega$ for
34 Eq.~\ref{eq:gofrCosOmega}). This allows for the investigator to
35 correlate alignment on directional entities. $g_{\text{AB}}(r, \cos
36 \theta)$ is defined as follows:
37 \begin{multline}
38 g_{\text{AB}}(r, \cos \theta) = \\
39 \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
40 \sum_{i \in \text{A}} \sum_{j \in \text{B}}
41 \delta( \cos \theta - \cos \theta_{ij})
42 \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosTheta}
43 \end{multline}
44 Where
45 \begin{equation*}
46 \cos \theta_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{r}}_{ij}
47 \end{equation*}
48 Here $\mathbf{\hat{i}}$ is the unit directional vector of species $i$
49 and $\mathbf{\hat{r}}_{ij}$ is the unit vector associated with vector
50 $\mathbf{r}_{ij}$.
51
52 The second two dimensional histogram is of the form:
53 \begin{multline}
54 g_{\text{AB}}(r, \cos \omega) = \\
55 \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
56 \sum_{i \in \text{A}} \sum_{j \in \text{B}}
57 \delta( \cos \omega - \cos \omega_{ij})
58 \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosOmega}
59 \end{multline}
60 Here
61 \begin{equation*}
62 \cos \omega_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{j}}
63 \end{equation*}
64 Again, $\mathbf{\hat{i}}$ and $\mathbf{\hat{j}}$ are the unit
65 directional vectors of species $i$ and $j$.
66
67 The static analysis code is also cable of calculating a three
68 dimensional pair correlation of the form:
69 \begin{multline}\label{eq:gofrXYZ}
70 g_{\text{AB}}(x, y, z) = \\
71 \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
72 \sum_{i \in \text{A}} \sum_{j \in \text{B}}
73 \delta( x - x_{ij})
74 \delta( y - y_{ij})
75 \delta( z - z_{ij}) \rangle
76 \end{multline}
77 Where $x_{ij}$, $y_{ij}$, and $z_{ij}$ are the $x$, $y$, and $z$
78 components respectively of vector $\mathbf{r}_{ij}$.
79
80 The final pair correlation is similar to
81 Eq.~\ref{eq:gofrCosOmega}. $\langle \cos \omega
82 \rangle_{\text{AB}}(r)$ is calculated in the following way:
83 \begin{equation}\label{eq:cosOmegaOfR}
84 \langle \cos \omega \rangle_{\text{AB}}(r) =
85 \langle \sum_{i \in \text{A}} \sum_{j \in \text{B}}
86 (\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle
87 \end{equation}
88 Here $\cos \omega_{ij}$ is defined in the same way as in
89 Eq.~\ref{eq:gofrCosOmega}. This equation is a single dimensional pair
90 correlation that gives the average correlation of two directional
91 entities as a function of their distance from each other.
92
93 All static properties are calculated on a frame by frame basis. The
94 trajectory is read a single frame at a time, and the appropriate
95 calculations are done on each frame. Once one frame is finished, the
96 next frame is read in, and a running average of the property being
97 calculated is accumulated in each frame. The program allows for the
98 user to specify more than one property be calculated in single run,
99 preventing the need to read a file multiple times.
100
101 \subsection{Dynamic Property Analysis}
102 The dynamic properties of a trajectory are calculated with the program
103 \texttt{dynamicProps}. The program will calculate the following properties:
104 \begin{gather}
105 \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle \label{eq:rms}\\
106 \langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle \label{eq:velCorr} \\
107 \langle \mathbf{j}(t) \cdot \mathbf{j}(0) \rangle \label{eq:angularVelCorr}
108 \end{gather}
109
110 Eq.~\ref{eq:rms} is the root mean square displacement
111 function. Eq.~\ref{eq:velCorr} and Eq.~\ref{eq:angularVelCorr} are the
112 velocity and angular velocity correlation functions respectively. The
113 latter is only applicable to directional species in the simulation.
114
115 The \texttt{dynamicProps} program handles he file in a manner different from
116 \texttt{staticProps}. As the properties calculated by this program are time
117 dependent, multiple frames must be read in simultaneously by the
118 program. For small trajectories this is no problem, and the entire
119 trajectory is read into memory. However, for long trajectories of
120 large systems, the files can be quite large. In order to accommodate
121 large files, \texttt{dynamicProps} adopts a scheme whereby two blocks of memory
122 are allocated to read in several frames each.
123
124 In this two block scheme, the correlation functions are first
125 calculated within each memory block, then the cross correlations
126 between the frames contained within the two blocks are
127 calculated. Once completed, the memory blocks are incremented, and the
128 process is repeated. A diagram illustrating the process is shown in
129 Fig.~\ref{fig:dynamicPropsMemory}. As was the case with \texttt{staticProps},
130 multiple properties may be calculated in a single run to avoid
131 multiple reads on the same file.
132
133 \begin{figure}
134 \parbox{30mm}{This is where my wonderful diagram of our memory allocation scheme will go.}
135 \caption{This diagram illustrates the dynamic memory allocation used by \texttt{dynamicProps}}
136 \label{fig:dynamicPropsMemory}
137 \end{figure}