| 5 |
|
program staticProps. The code is capable of calculating the following |
| 6 |
|
properties: |
| 7 |
|
\begin{itemize} |
| 8 |
< |
\item $g_{\text{AB}}(r)$: Eq. \ref{eq:gofr} |
| 9 |
< |
\item $g_{\text{AB}}(r, \cos \theta)$: Eq. \ref{eq:gofrCosTheta} |
| 10 |
< |
\item $g_{\text{AB}}(r, \cos \omega)$: Eq. \ref{eq:gofrCosOmega} |
| 11 |
< |
\item $g_{\text{AB}}(x, y, z)$: Eq. \ref{eq:gofrXYZ} |
| 8 |
> |
\item $g_{\text{AB}}(r)$: Eq.~\ref{eq:gofr} |
| 9 |
> |
\item $g_{\text{AB}}(r, \cos \theta)$: Eq.~\ref{eq:gofrCosTheta} |
| 10 |
> |
\item $g_{\text{AB}}(r, \cos \omega)$: Eq.~\ref{eq:gofrCosOmega} |
| 11 |
> |
\item $g_{\text{AB}}(x, y, z)$: Eq.~\ref{eq:gofrXYZ} |
| 12 |
|
\item $\langle \cos \omega \rangle_{\text{AB}}(r)$: |
| 13 |
< |
Eq. \ref{eq:cosOmegaOfR} |
| 13 |
> |
Eq.~\ref{eq:cosOmegaOfR} |
| 14 |
|
\end{itemize} |
| 15 |
|
|
| 16 |
< |
\begin{equation}\label{eq:gofr} |
| 17 |
< |
g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle |
| 18 |
< |
\sum_{i \in \text{A}} \sum_{j \in \text{B}} |
| 19 |
< |
\delta( r - |\mathbf{r}_{ij}|) \rangle |
| 16 |
> |
\begin{equation} |
| 17 |
> |
g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle %% |
| 18 |
> |
\sum_{i \in \text{A}} \sum_{j \in \text{B}} %% |
| 19 |
> |
\delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofr} |
| 20 |
|
\end{equation} |
| 21 |
|
|
| 22 |
< |
\begin{multline}\label{eq:gofrCosTheta} |
| 22 |
> |
\begin{multline} |
| 23 |
|
g_{\text{AB}}(r, \cos \theta) = \\ |
| 24 |
|
\frac{V}{N_{\text{A}}N_{\text{B}}}\langle |
| 25 |
|
\sum_{i \in \text{A}} \sum_{j \in \text{B}} |
| 26 |
|
\delta( \cos \theta - \cos \theta_{ij}) |
| 27 |
|
\delta( r - |\mathbf{r}_{ij}|) \rangle |
| 28 |
+ |
\label{eq:gofrCosTheta} |
| 29 |
|
\end{multline} |
| 30 |
|
|
| 31 |
|
\begin{multline}\label{eq:gofrCosOmega} |